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In inertial confinement approaches to fusion, the asymmetry of target implosion is a major obstacle to
achieving high gain in the laboratory. A recently proposed octahedral spherical hohlraum makes it possible
to naturally create spherical target irradiation without supplementary symmetry control. Before any
decision is made to pursue an ignition-scale laser system based on the octahedral hohlraum, one needs to
test the concept with the existing facilities. Here, we report a proof-of-concept experiment for the novel
octahedral hohlraum geometry on the cylindrically configured SGIII laser facility without a symmetry
control. All polar and equatorial self-emission images of the compressed target show a near round shape of
convergence ratio 15 under both square and shaped laser pulses. The observed implosion performances
agree well with the ideal spherical implosion simulation. It also shows limitations with using the existing
facilities and adds further weight to the need to move to a spherical port geometry for future ignition laser
facilities.
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Laser indirect-drive inertial confinement fusion (ICF) is
one of the main approaches for achieving ignition of
nuclear fusion reactions in the laboratory [1]. A highly
symmetric irradiation is a prerequisite for compressing the
spherical deuterium-tritium fuel capsule to the extreme
conditions similar to those at the center of the Sun [2,3]. To
create a temporal spherical radiation drive inside a cylin-
drical hohlraum, elaborate tuning technologies [4–8] have
been developed at the National Ignition Facility (NIF) [9–
12] since its completion in 2009. Important milestones [13–
15] have been achieved on the quest for ignition at the NIF.
The superexciting one is that the NIF has taken a major leap
toward the ignition goal with a remarkable 1.3 MJ output
triggered by 1.9 MJ laser energy [16]. This is the clue to
make progress toward simple and robust target designs at
an upgrade facility for achieving repeatable and predictable
high gains and studying ignited targets in detail. Major
obstacles preventing high gain fusion still remain [17–19],
including asymmetry of target irradiation [4,5,7], laser
plasma instabilities (LPIs) [20–22], and hydrodynamic

instabilities [23–25], which are strongly connected with
the hohlraum configuration and laser arrangement.
Though all present laser facilities for the indirect-drive

approach are configured for the hohlraums with a cylin-
drical symmetry [1,26–34], various hohlraum configura-
tions have been proposed and investigated [35,36]. In
Ref. [37], the authors used the 60-beam OMEGA laser
to test the concept of the tetrahedral hohlraum with four
equivalent laser entrance holes (LEHs), achieving a con-
vergence ratio of ∼10 under radiation drive temperatures of
180 to 229 eV without symmetry tuning. However, the
dominating spherical harmonics of the tetrahedral hohl-
raum is Y32, whose asymmetry smoothing factor remains
higher than about 14% even at a hohlraum-to-capsule
radius ratio of 5 [1,3,38]. Here, Ylm is the spherical
harmonic of the polar mode l (viewed from the equator)
and the azimuthal mode m (viewed from the pole) defined
in quantum mechanics. Thus, the technology of dynamical
compensation by using two sets of laser beams was
proposed [35] to decrease the asymmetry inside a
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tetrahedral hohlraum, which nevertheless brings challenges
to theory, simulation, and technology.
A recently proposed octahedral spherical hohlraum [38–

40] (hereafter simplified as octahedral hohlraum) has the
advantage of robustly generating a full-time highly sym-
metric radiation drive without symmetry tuning, such as
wavelength detuning on lasers beams and beam depointing.
The octahedral hohlraum has six LEHs. In an ideal
configuration [38], all laser beams enter the LEHs at an
identical angle θL in a range of 50° to 60°. Such irradiation
scheme has the advantages of no beam crossing inside the
hohlraum, no laser spot overlapping, and no disturbance
between the laser beam propagation and ablated material
from the capsule. Distribution of x-ray radiation in an
octahedral hohlraum does not contain asymmetries corre-
sponding to the spherical harmonic modes l ¼ 2 and all
odd l, and asymmetry of l ¼ 6 is at a very low level.
Choosing a hohlraum-to-capsule radius ratio of about 5,
named the golden radius ratio in Ref. [39], the mode l ¼ 4
is also suppressed, thus leaving l ¼ 8 as the dominating
mode. This novel approach is unique and has initiated a
broad interest in the ICF community [41–44]. Note that the
ideal laser configuration of octahedral geometry can be
applied to other approaches [45,46].
Experimental campaigns on octahedral hohlraum began

to be carried out in 2014 on the SGIII [47], addressing
various important aspects of this novel hohlraum configu-
ration [48–53]. However, an implosion experiment with an
octahedral hohlraum has not been done previously. To
create high symmetry radiation on a capsule, very different
from Ref. [52], it requires all LEHs to be of the same size

and a beam pointing to approach the ideal beam configu-
ration of the octahedral hohlraum as close as possible. The
LEH size is determined by beam injection angles, beam
focal spots at the LEH, beam pointing error, and LEH
closures under radiation. At the SGIII, all beams have a
0.25-mm-radius round focal spot at the polar LEHs. Their
focal spots at the equatorial LEHs are elliptical with a major
radius of about 0.47 mm if injected at ∼60°. Considering
the LEH closure under 175 eVand a laser pointing error of
0.07 mm, we use 0.7-mm-radius LEHs for the 2.4-mm-
radius SGIII scale the octahedral hohlraum in this implo-
sion experiment. The cylindrical LEHs are used with a
1.2-mm-radius outer ring.
Shown in Fig. 1(a) is the experimental setup with

diagnostics and the 32-beam optimum repointing scheme
obtained after investigating tens of possibilities of the
SGIII. As shown, there are four beams entering each
equatorial LEH with two beams entering at θL of 61.5°
and two beams at 62.1°, and there are eight beams entering
each polar LEH with four beams at an angle of 49.5° and
four beams at 55°. All injection angles are sufficiently close
to the ideal configuration of 50° to 60°. The laser spot
pattern on the hohlraum wall is shown in Fig. 1(b). The
polar beams send energy to the equator, while the equa-
torial beams send energy to the poles, explaining why there
are twice as many beams through each polar LEH. In our
design, we use a two-dimensional (2D) multigroup radi-
ation hydrodynamic code LARED-INTEGRATION with a two-
different-size LEH model to simulate the hohlraum
energetics, a 2D capsule-only multigroup radiation hydro-
dynamic code LARED-S to simulate the implosion dynamics
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FIG. 1. (a) Schematic diagrams of the experimental setup with diagnostics and the 32-beam optimum repointing scheme. The gray
sphere represents the target chamber with major diagnostic ports; the golden sphere represents the six-hole hohlraum with laser beams
entering through two polar and four equatorial ports; the wine sphere at the center represents the capsule. (b) Scenography of the laser
beam configuration and the laser spots on the hohlraum wall. (c) Square laser pulses (colored lines) for different shots and Tr;cap (black
line) for shot SGIII20181227364, which is the temporal space-averaged x-ray radiation drive on the capsule from postshot simulations
with LARED-INTEGRATION. (d) Shaped laser pulses (colored lines) for different shots and Tr;cap (black line) for shot SGIII20190102003.
(e) Layered capsule diagram. (f) Scenography of the radiation flux distribution on the capsule ablation surface at 1.5 ns for shot
SGIII20190102003.
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and hydrodynamic instabilities, a 3D view factor code VF3D

to calculate the radiation asymmetry on the capsule, and a
postprocessor HLIP to investigate the LPI. Details of the
optimum repointing scheme, simulation codes [39,54–60],
models and methods used in simulation [61–68], and
diagnostics [32,69–71] are presented in Ref. [72].
The octahedral hohlraum is filled with a gas neope-

ntane (C5H12) of initial density 1.3 mg=cc with windows
covered by 0.5 μm polyamide films. As shown in Figs. 1(c)
and 1(d), we use the 3 ns square and 4 ns shaped laser
pulses to generate the single-step and two-step x-ray pulses,
respectively. The maximum radiation temperature in the
hohlraum is about 175 eV under 85 kJ. Here, it is instruc-
tive to compare with Ref. [37], where the authors obtai-
ned a radiative temperature of 180 eV with a much
lower drive energy of 22 kJ and 2 ns duration at the
OMEGA. The difference is mostly due to the hohlraum
size. Reference [37] used a much smaller hohlraum of
1.4 mm radius, while here, with the 0.7-mm-radius LEHs,
we need a 2.4-mm-radius hohlraum to maintain a high
symmetry on the capsule. As a result, it has a much lower
temperature in our experiment.
The plastic capsule in Fig. 1(e) contains D2 gas of initial

density 1.8 mg=cm3. Shown in Fig. 1(f) is the radiation flux
distribution on the capsule ablation surface calculated by
VF3D by taking the ablation surface at 0.5 mm and a spot-
to-wall flux ratio as 2∶1 valid at 1.5 ns for shot
SGIII20190102003 [72]. As shown, the polar flux is higher
than the equatorial. This is caused by the optimum
repointing scheme [Fig. 1(b)], which contains residual
imbalances between the polar and equatorial beams and
leads to, very different from the case of ideal octahedral
hohlraums, a mode l ¼ 2 asymmetry. In this proof-of-
concept experiment, we take the hohlraum-to-capsule

radius ratio as 5.9 to balance the trade-offs among the
needs for a high neutron yield and a high convergence ratio
under the 175 eV radiation. From LARED-S, both x-ray
pulses drive the capsule to a convergence ratio of about 15
but with different implosion dynamics [72]. The two-step
pulse implodes the capsule to a higher velocity, leading to a
higher ion temperature Ti and further producing a neutron
yield of 25% higher than the single-step pulse.
The implosion dynamics was measured with the soft

x-ray radiography diagnostic shown in Fig. 2(a). A back-
lighter Pb plate was illuminated by four beams of SGIII,
and the transmitted radiation was recorded with the x-ray
streak camera (XSC) through the two LEHs and imaging
slots. Notice that the octahedral hohlraum has the advan-
tage over the cylindrical hohlraum of having the possibility
of using opposite equatorial LEHs for radiography diag-
nostics. Shown in Fig. 2(b) are the implosion trajectories
recorded by the XSC for shots SGIII20181227364 driven
by the square pulse of 79.5 kJ and SGIII20181228366 by
the shaped pulse of 78.5 kJ. In all postshot simulations, we
use the measured parameters of the target and laser for each
shot. The implosion trajectories and velocities are com-
pared to the postshot 1D simulations from LARED-S in
Fig. 2(c), showing very good agreement with the measure-
ments. It reveals a high implosion symmetry achieved in the
experiment.
From LARED-S, the growth factors of the perturbations

seeded on the CH surface reach their peak of only 40 for
mode l ¼ 30 on the ablation front and peak of 30 for l ¼ 20
at the CH=D2 interface [72], which is reasonable for such
an implosion with a convergence ratio of 15 under 175 eV
radiation. Thus, the implosion is hydrodynamically stable
and compromised only by low mode asymmetries.
Hereafter, we focus on the perturbations corresponding
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FIG. 2. (a) Target configuration with side-target radiography to measure the implosion trajectory of the capsule via an XSC.
(b) Implosion trajectory recorded by an XSC for SGIII20181227364 under the square pulse (upper) and for SGIII20181228366 under
the shaped pulse (lower). (c) Comparisons of the observed implosion trajectory RðtÞ (blue squares) and velocity vðtÞ ¼ dRðtÞ=dt (red
squares) with the postshot 1D simulations (blue and red dashed lines) from a capsule-only multigroup radiation hydrodynamic code
LARED-S.

PHYSICAL REVIEW LETTERS 127, 245001 (2021)

245001-3



to the modes l ¼ 2 and l ¼ 4. From VF3D, Y6m and Y8m can
be neglected because their amplitudes are much lower than
Y2m and Y4m for this experiment. Further notice that Y44 is a
fully 3D mode, with completely different polar and
azimuthal angle ranges from Y40. Thus, we only consider
Y20 and Y40 for the asymmetry study.
Asymmetry of an octahedral hohlraum is mainly decided

by two radius ratios and two flux ratios, which are RH=R�
C,

R�
LEH=R

�
C, FS=FW , and FLEH=FW [72]. Here, RH is the

hohlraum radius, R�
C is the position where asymmetries are

applied to the radiation flux on the capsule, and R�
LEH is the

LEH radius with closure behavior; FW , FS, and FLEH are
fluxes from the hohlraum wall, laser spot, and closing LEH,
respectively. The temporal behaviors of these ratios can be
obtained from 2D simulations. From measurement, the
averaged backscattered fraction of equatorial beams is
remarkably higher than that of the polar [72]. Aroused
by imbalances between polar and equatorial beams, Y20 is
seriously influenced by FS=FW, which is strongly con-
nected with the flux or energy difference among the beams.
In VF3D, we consider the measured input laser energy and
laser backscatters as multipliers on FS=FW separately for
each beam. Temporal scattered percentages are obtained
from the measured backscattered spectra. Note that
imbalances between the polar and equatorial beams not

only directly lead to Y20 but also possibly indirectly lead to
an asymmetry due to different LEH closing rates. However,
our 2D simulations show there is little difference between
the LEH closure behaviors and the polar and equatorial
LEHs, so we take the same polar and equatorial LEH
closure behaviors in VF3D. As compared to the case without
LPI in the asymmetry calculations, Y20 is significantly
suppressed by the strong laser backscatters of equatorial
beams during the flattop of the second step laser [72]. In
contrast, Y40 is much simpler, which is mainly decided by
RH=R�

C at RH=R�
C ∼ 5. According to our design, RH=R�

C is
around 5, so Y40 is close to zero during the whole shock
transition phase. In the acceleration phase, the smoothing
factor of Y4m is very small with little change at RH=R�

C > 7,
so Y40 slowly increases as time and keeps lower than 0.5%.
Thus, it results in a quasispherical symmetry with the
compensation of LPI.
In Fig. 3, we compare the measured polar and equatorial

self-emission images of the hot spot with the postshot 2D
simulation for SGIII20190102003 driven by the shaped
laser pulse. The x-ray framing camera from the polar view
records the time-resolved images of the hot spot via x-ray
emissions above 2 keV, and a pinhole camera records
the time-integrated images in the equatorial plane with
different filters. As shown, both polar and equatorial
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FIG. 3. Comparisons of polar (left) and equatorial (right) self-emission images between the experiment and postshot 2D simulation for
SGIII20190102003. First row shows time-resolved polar self-emission images from an x-ray framing camera at 4.5, 4.6, and 4.7 ns (left,
with system resolution of ∼17 μm and pixel value of 0.9 μm at the object space) and time-integrated equatorial self-emission images
from a pinhole camera with different filters for x-ray emissions above 5, 9, and 10 keV (right, with system resolution of ∼19 μm and
pixel value of 2.5 μm at the object space). The red spots in the center hottest regions are due to the space resolution. The solid and dotted
lines are contours of 20% and 50% peak emissions, respectively, with their contour asymmetries Y20 and Y40 at the image bottom. Here,
Y8m is too small to be analyzed with our present technology. The second row shows polar (left) and equatorial (right) images from
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measured contour lines on the simulation images. The fourth row shows polar (left) and equatorial (right) images from postshot 2D
simulation without accounting for LPI in the asymmetry calculation.
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self-emission images are quasispherical. For equatorial
images, the contours with different filters have almost
the same size, indicating that all these x-rays are mainly
generated from the same region where fusion reactions take
place. The postshot 2D simulations with LPI taken into
account well reproduce the experimental images. As a
comparison, without LPI, the simulation generates a
pancake image from the equatorial view due to a beam
imbalance of the repointing scheme as in Fig. 1(b).
Our experimental results are repeatable. For all effective

shots with neutron yield measurement, the neutron yield
ratio of the scintillation detector to the 1D simulation is
above 55% under both square and shaped laser pulses. A
summary of the key measurements and postshot simulated
implosion performances is given in Ref. [72] for
SGIII20181227364 and SGIII20190102003, which have
different pulse shapes but similar laser energies. The
neutron yield ratio of the scintillation detector to the 1D
simulation is 84% and to the 2D simulation is
89% for SGIII20181227364, and 71% and 73% for
SGIII20190102003, respectively. Similar to the NIF shots
N130927 [13], N130812 [73], N191007, and N191110
[15], both SGIII20181227364 and SGIII20190102003
have lower measured neutron yields while higher ion
temperatures than simulations. The reason should be
investigated in the future work.
We have implemented a proof-of-concept experiment for

the octahedral hohlraum geometry on the SGIII without
symmetry control. The 1D implosion simulations agree
very well with the measurements, revealing a very high
symmetry possibly achieved in the experiment. Note that it
is more of a LPI-compensated test than a straight test of the
optimized octahedral scheme, which in turn indicates
limitations with the existing laser facilities for octahedral
hohlraum studies. The beam imbalance of the repointing
scheme can lead to the sensitivity of Y2m to power balance
and difference in LEH closure rates, which further
increases the complexity of asymmetry mitigation.
However, the history of the field shows that lessons learned
on one facility help in the design of the next, and our results
add further weight to the need to move to an octahedral
geometry for ignition-scale laser systems.
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