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In the hydrodynamic framework of heavy-ion collisions, elliptic flow v2 is sensitive to the quadrupole
deformation β of the colliding ions. This enables one to test whether the established knowledge on the low-
energy structure of nuclei is consistent with collider data from high-energy experiments. We derive a
formula based on generic scaling laws of hydrodynamics to relate the difference in v2 measured between
collision systems that are close in size to the value of β of the respective species. We validate our formula in
simulations of 238Uþ 238U and 197Auþ 197Au collisions at top Relativistic Heavy Ion Collider (RHIC)
energy, and subsequently apply it to experimental data. Using the deformation of 238U from low-energy
experiments, we find that RHIC v2 data implies 0.16≲ jβj ≲ 0.20 for 197Au nuclei, i.e., significantly more
deformed than reported in the literature, posing an interesting issue in nuclear phenomenology.
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Introduction.—The hydrodynamic modeling of the
quark-gluon plasma (QGP) formed in relativistic heavy-
ion collisions is a precision tool to understand the wealth of
measurements obtained at the Brookhaven National
Laboratory Relativistic Heavy Ion collider (RHIC) and
at the CERN Large Hadron Collider (LHC) [1–7]. The
success of this framework is largely based upon a correct
description of the initial condition of the QGP prior to its
dynamical expansion [8]. One does in general expect that
such initial condition is impacted by the quadrupole
deformation of the colliding ions [9–12]. This has been
demonstrated in particular by recent flow data in 238Uþ
238U collisions at RHIC [13]. In principle, the uncertainty
brought by this observation to the overall picture should be
under control, as the structure of nuclear ground states is
well constrained by nuclear experiments at low energy, and
one may assume that the structure probed at colliders on
ultrashort timescales of order 10−24 s is the same. For an
unbiased interpretation of high-energy data, it is crucial to
check whether this is indeed the case, i.e., that the
manifestations of nuclear deformation at high energy are
consistent with the expectations from low-energy physics.
The majority of nuclei are deformed in their ground state,

presenting an intrinsic quadrupole moment in their mass
distribution,

R jrj2Y20ρðrÞ ≠ 0. Experimentally [14,15], the
deformation of an (even-even) nucleus of mass number A
and chargeZe is quantified by β ¼ ð4π=3ZeR2

0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðE2Þ ↑p

,
whereR0 ¼ 1.2A1=3, andBðE2Þ ↑ is themeasured transition
probability of the electric quadrupole operator from the
ground state to the first 2þ state. Nearly spherical nuclei,

such as 208Pb, have β ≈ 0, while well-deformed nuclei, like
238U, have β ≈ 0.3.
In heavy-ion collisions, deformed nuclei are modeled

through 2-parameter Fermi mass densities: ρðrÞ ∝ ð1þ
exp ½jrj − R0ð1þ βY20Þ�=a0Þ−1, with the value of β taken
(up to small corrections [16]) from low-energy experi-
ments. Colliding randomly oriented deformed nuclei
impacts the initial state of the QGP, enhancing in particular
the fluctuations of its ellipticity [12], ε2, determined by the
transverse positions ðr;ϕÞ of the participant nucleons ε2 ¼
jP r2ei2ϕ=

P
r2j [17]. In hydrodynamics, ε2 ≠ 0 yields an

elliptical imbalance in the pressure-gradient forces [18] that
drive the expansion of the QGP. This pressure imbalance
results in a cosð2ϕÞ modulation of the azimuthal distribu-
tion of detected hadrons dN=dϕ ∝ 1þ 2v2 cosð2ϕÞ, where
v2 is the elliptic flow coefficient [19]. In hydrodynamic
calculations [20], v2 emerges indeed as a response to the
initial eccentricity v2 ¼ k2ε2 so that β ≠ 0 in the colliding
nuclei leads to enhanced fluctuations of the observed v2.
In this Letter, we address the question of whether the

values of β found in low-energy literature are consistent
with v2 data at high energy. We introduce a simple method
to do so, and argue that, at present, the sought consistency
of nuclear experiments across energy scales is not achieved.
Relating v22 to the quadrupole deformation.—The idea is

to compare systems that are close in size. As we show in the
next section, the dependence of the mean squared (ms)
elliptic flow on β is the following:

v2f2g2 ≡ hv22i ¼ aþ bβ2; ð1Þ
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where averages are performed over events in a narrow
centrality class, and the physical meaning of the coeffi-
cients a and b will be clarified below. Given two collision
systems X þ X and Y þ Y, we introduce the following
quantities [the subscript XðYÞ indicates a quantity evalu-
ated in X þ XðY þ YÞ collisions]:

rv2
2
≡ hv22iY

hv22iX
; rb ¼

bX
bY

; ra ¼
aX
aY

; rY ¼ bY
aY

: ð2Þ

With these definitions and Eq. (1), we can express the
quadrupole deformation parameter of species Y, β2Y , as a
linear function of β2X,

β2Y ¼
�rv2

2
ra − 1

rY

�
þ ðrv2

2
rbÞβ2X: ð3Þ

The ratios rb, ra, rY can be reliably predicted in hydro-
dynamics, so that Eq. (3) can be used to verify the
consistency of data from nuclear experiments at different
energy scales. Specifically, in hydrodynamics we expect
the following:
(i) The coefficient b in Eq. (1) quantifies how efficiently

the fluctuations in the global geometry due to the deformed,
randomly oriented nuclear shapes are converted into
fluctuations of elliptic flow. The contribution of the term
bβ2 to the ms v2 in Eq. (1) is thus of the same nature as the
contribution from the so-called elliptic flow in the reaction
plane v2;RP to the ms v2 in collisions of spherical nuclei. At
a given collision centrality, the relative contribution of v2;RP
to the ms v2 varies very slowly with the mass number,
therefore, if X and Y are large systems, we expect rb ≃ 1.
(ii) The coefficient a in Eq. (1) corresponds to ms v2 in

the absence of deformation. Therefore, a in central colli-
sions is the v2 originating solely from fluctuations, e.g., in
the positions of the participant nucleons. This quantity
scales with the inverse mass number 1=A and an additional
factor from viscous damping. Considering βX ¼ βY ¼ 0

and hv22i ¼ k22hε22i, if X and Y are close in size the relative
difference in elliptic flow between X þ X and Y þ Y
collisions, Δhv22i=hv22i ¼ ðhv22iX − hv22iYÞ=hv22iY , has an
intuitive decomposition:

Δhv22i
hv22i

¼ Δk22
k22

þ Δhε22i
hε22i

: ð4Þ

The contribution coming from the variation of ε2 is rela-
ted to the variation in the mass number Δhε2ni=hε2ni ¼
Δð1=AÞ=ð1=AÞ (up to corrections of a few percent [21]),
while viscous damping drives the variation of the response
coefficient Δk2=k2, which we estimate as follows. The
response kn to the nth harmonic in viscous hydrodynamics
is damped with the respect to the ideal hydrodynamic
value kn;IH. The damping is linear in the viscosity, and

larger for higher harmonics. In the simplified scenario
of Ref. [22], for instance, one has kn=kn;IH ≈ 1 − Kn2,
where K encodes the viscous correction [23]. This leads
to Δkn=kn ≈ −ΔKn2kn;IH=kn. For large systems [24],
k3;IH=k3 ≈ k2;IH=k2, so that

Δk2=k2 ¼ 4=9Δk3=k3: ð5Þ

Recent state-of-the-art hydrodynamic simulations [25]
report, however, a slightly smaller damping, reflected by
a larger coefficient, 0.57 ∼ 5=9, in the right-hand side of
Eq. (5). Now, since v3 is not affected by the deformation of
the colliding ions [see Fig. 1(b)], we can estimate the
variation of the a coefficient in Eq. (1) (i.e., the variation of
v2 in the case β ¼ 0) from the variation of the mass number
and the experimentally measured variation of hv23i:

ra− 1¼Δa
a

¼ ð1− xÞΔð1=AÞ
1=A

þ x
Δhv23i
hv23i

; x≈
4

9
: ð6Þ

(iii) The ratio rY is a property of a single collision
system, and has to be evaluated through an explicit
calculation. Its value is, however, largely model indepen-
dent, as we explain in the next section.
Wrapping up, Eq. (3) relates the deformation parameters

of two ions close in size to the ratio of elliptic flow
coefficients. The ratios rb, ra, and rY are properties of the
hydrodynamic description, and can be predicted by generic
scaling laws, as we now demonstrate through numerical
calculations.
Numerical validation.—To gather the huge statistics of

events required to constrain observables in central colli-
sions, we employ the multiphase transport model (AMPT)
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FIG. 1. Mean-squared v2, hv22i (left), and v3, hv23i (right), as a
function of Npart=2A in 197Auþ 197Au and 238Uþ 238U collisions,
for different values of β. The insets show the corresponding hε22i
and hε23i. The dashed boxes indicate roughly the 0%–1% range,
on which our analysis is focused.
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as a proxy for hydrodynamics. This model has proven
successful in describing collective flow data in small and
large collision systems at RHIC and LHC [26–29]. AMPT
starts with a Glauber Monte Carlo calculation [30], which
determines event-to-event the collision impact parameter
and participant nucleons Npart. The system evolution is
modeled with strings that first melt into partons, followed
by elastic partonic scatterings, which engender the hydro-
dynamic collectivity, followed by parton coalescence and
hadronic rescattering. We use AMPT v2.26t5 in string-
melting mode, and a partonic cross section of 3.0 mb
[27,28], which gives a reasonable description of 197Auþ
197Au v2 data at RHIC. We simulate 238Uþ 238U collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 193 GeV with β ¼ 0, 0.15, 0.22, �0.28, 0.34,
0.4, as well as

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV 197Auþ 197Au collisions
implementing β ¼ 0;−0.13. We emphasize that this is the
first such calculation, where one systematically scans over
several β values, ever performed. The 2-parameter Fermi
parameters for the colliding ions are taken from the fits of
their nuclear charge densities [31]. We use hadrons with
0.2 < pT < 2 GeV and jηj < 2, and define the event
centrality from either Npart or the charged hadron multi-
plicity, Nch, in the window jηj < 1.
Figure 1 shows hv22i and hv23i as functions ofNpart=2A, as

well as the corresponding hε22i and hε23i in the inset panels.
We note a strong dependence of hv22i on the value of β in
central collisions, whereas hv23i is independent of β. The v2
values are similar between β ¼ 0.28 and β ¼ −0.28,
confirming that v2 is an even function of β [although in
extremely central collisions, say 0%–0.2%, we found
ε2ðβ ¼ −0.28Þ > ε2ðβ ¼ 0.28Þ and v2ðβ ¼ −0.28Þ >
v2ðβ ¼ 0.28Þ]. These features are present as well in the
curves of the hε2ni, demonstrating the geometric origin of vn
in our simulations. We note that the value of hv23i is larger in
197Auþ 197Au collisions, due to the smaller A.
Figure 2 shows that hv22i is indeed linear in β2, in

agreement with Eq. (1). The calculation is performed for
different centrality classes (defined from the distribution of
Nch), showing that the linear relation is valid even in
noncentral collisions. To emphasize the geometric origin of
this result, we show that hε22i is also linear in β2:

hε22i ¼ a0 þ b0β2: ð7Þ

Figure 3 shows the centrality dependence of rb, ra, and
rY (X ¼ 197Au, Y ¼ 238U), and demonstrates explicitly the
points made in the previous section.
Figure 3(a) shows rb ¼ bX=bY , and confirms the expect-

ation that this quantity should be close to unity. This is a
geometric effect. We find indeed that plotting r0b, obtained
from the linear fits of hε22i across centrality, yields a
dependence which is essentially identical to that of rb,
implying a minor role of the hydrodynamic response.

Figure 3(b) shows ra ¼ aX=aY as a function of central-
ity. The hydrodynamic expectation given by Eq. (6), is
shown as a line for the most central bins. The agreement
with the calculated ra is excellent in the 0%–1% bin,
confirming our arguments. The result is ra ¼ 1.18 with
Δð1=AÞ=1=A¼0.21, x ¼ 4=9 in Eq. (6) and Δhv23i=hv23i ¼
0.136 from AMPT in the 0%–1% bin. We have checked
that the estimated value of ra reduces only by ∼1% if a
larger coefficient x ¼ 5=9 is used, showing that the
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uncertainty on the precise magnitude of the viscous
correction does not affect our analysis. Once more, r0a in
Fig. 3(b) calculated from the eccentricity shows the same
centrality dependence, indicating that the hydrodynamic
response yields only a global rescaling factor close to unity.
Figure 3(c) shows rU ¼ aU=bU, which is 25.6 in the

0%–1% bin. We argue that this is a generic prediction of
hydrodynamics, and not of our specific setup. From Eq. (1),
and considering v2f2g2 ¼ κ22ε2f2g2 at fixed centrality, one
can write

rU ¼ d ln v2f2g2
dβ2

����
β2¼0

¼ 1

κ22ðβ2 ¼ 0Þ
dκ22
dβ2

þ 1

ε2f2g2ðβ2 ¼ 0Þ
dε2f2g2
dβ2

: ð8Þ

Now, dκ22=dβ
2 is determined by how an increase in system

size due to β modifies the hydrodynamic response. This is
dictated by generic scaling laws, irrespective of the chosen
setup. Similarly, from explicit calculations within different
initial-state models we find that the variation dε2f2g2=dβ2
is essentially model independent. The values of κ22 and
ε2f2g2 evaluated at β2 ¼ 0 are, on the other hand, model
dependent. However, if models are tuned such to return the
same v2f2g2, i.e., the same product κ22ε2f2g2 after hydro-
dynamics, then any such model dependence would dis-
appear in Eq. (8). The value of rU appears to be, hence, a
solid prediction. That said, Eq. (8) contains 1=ε2f2g2jβ2¼0,
therefore, one expects rU to present a strong centrality
dependence, confirmed by the trends in Fig. 3(c). This
engenders an uncertainty from the centrality definition
[32,33]. In particular, repeating these calculations with the
centrality defined according to Npart instead of Nch, we find
that rU increases by about 20%.
In summary, the hydrodynamic expectations on the

ratios rb, ra, and rY pointed out in the previous section
are confirmed by our numerical results. We can thus move
on and apply Eq. (3) to existing data from nuclear structure
and heavy-ion experiments.
Application to RHIC data.—We apply Eq. (3), with

X ¼ 197Au and Y ¼ 238U, to the 0%–1% most central v2
data collected by the STAR Collaboration, where one has
rv2

2
¼ 1.49� 0.05 [13]. For the value of rU, we employ the

estimate of the AMPT model. We take into account the fact
that this quantity is smeared by the centrality definition, and
allow for an asymmetric 20% uncertainty, i.e., rU ¼
25.6þ0

−5.1. For the value of ra, from Eq. (6) we obtain
ra ¼ 1.18, with no expected sizable uncertainty. Last, for
the value of rb we use the large-system limit, but allow for a
small asymmetric error rb ¼ 1þ0

−0.05. Using these parameters
from high-energy heavy-ion collisions, we plot in Fig. 4, as
a solid line, how β2U depends on β2Au, following Eq. (3). The
dashed curves represent the estimated total uncertainty.

Next, we couple this plot to the expectations from
low-energy nuclear structure physics. The quadrupole
deformation of 238U is known well. Experimental determi-
nations from transition probabilities give β ¼ 0.286 [14].
On the theoretical side, we look at the state-of-art tabu-
lations of even-even ground-state deformations by
Delaroche et al. [34] (5DCH) and by Bender et al. [35],
which give βU ¼ 0.29 and 0.292, respectively. We con-
sider, then, 0.28 < βU < 0.29 as the estimate from low-
energy physics. The situation for the odd-even 197Au is less
transparent, as there is no experimental determination of its
value of β in the literature. Further, 197Au is in a transition
region between well-deformed rare-earth nuclei and the
spherical 208Pb, and as such it is triaxial in the ground state.
Such feature is included in the comprehensive 5DCH
calculation, which can be used to reliably estimate the
deformation of 197Au from the deformation of its neighbors,
leading to 0.10 < jβAuj < 0.14.
Adding this knowledge to Fig. 4 shapes a region in the

upper-left corner of the ðβ2Au; β2UÞ plane preferred by low-
energy nuclear data. This region lies well outside the
constraint defined by the elliptic flow data, whose allowed
ranges of βU and βAu are highlighted as gray areas. The
recent preliminary observation [36] of a large anticorrela-
tion between v2 and the average transverse momentum
hpTi in central 238Uþ 238U collisions points to βU ≈ 0.3 at
high energy [37], in agreement with the low-energy
estimates. Therefore, our result is likely an issue related
to 197Au. Using βU ≃ 0.29, the v2 data implies 0.16≲
jβAuj≲ 0.20, which is significantly more deformed than
suggested by nuclear structure calculations. This may be
viewed as the first experimental constraint on the defor-
mation of this nuclide.
Before concluding, we note that additional evidence that

βAu ∼ 0.2 can be found in preliminary STAR data on the

Au
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above mentioned correlation between v2 and hpTi.
Preliminary results [36] indicate that such correlation in
midcentral 197Auþ 197Au collisions is (i) bigger than in
238Uþ 238U collisions, (ii) lower than measured in 208Pbþ
208Pb collisions (at the same centralities) by the ALICE
Collaboration [38] with nearly identical kinematic cuts.
This ordering among systems is naturally explained by
197Au being more deformed than 208Pb and less deformed
than 238U. However, taking βU ¼ 0.29 and βPb ¼ 0.06
from low-energy data [14], we have checked in initial-
state calculations that capture well the ratios of vn-hpti
correlations between different systems [39] that the
magnitude of the deviations observed experimentally can
not be explained with jβAuj ¼ 0.1, while implementing
jβAuj ≈ 0.2 improves dramatically the agreement with data.
These results will be reported in future work.
Conclusion and outlook.—Anisotropic flow in high-

energy nuclear collisions emerges as a dynamical response
of the QGP to its initial spatial anisotropy. The latter is
affected by the geometric shape of the colliding nuclei,
leading to an intrinsic connection between the phenom-
enology of heavy-ion collisions and the structure of atomic
nuclei. Matching high-energy data to low-energy expect-
ations, we assess if our knowledge of nuclear physics
across energy scales leads to consistent results.
Equation (3) allows one to do so in a way that is robust
against the details of the hydrodynamic modeling.
Using the low-energy estimates of βU, our analysis of
197Auþ 197Au data points to a deformation of 197Au larger
than found in low-energy literature.
Further efforts are required to elucidate this issue. At low

energy, what is missing is the evaluation of the structure
properties of 197Au in a state-of-art theoretical framework,
such as that of Ref. [40]. This would reduce the spread of
the βAu interval in Fig. 4. At high energy, one should repeat
our analysis on more collision systems. We have attempted
to do so for 0%–1% 129Xeþ 129Xe and 208Pbþ 208Pb
collisions. The ALICE Collaboration reports [41] a large
ratio rv2

2
¼ hv22iXe=hv22iPb ≃ 2.56. We do not have yet

AMPT results for 129Xeþ 129Xe collisions, however, we
have checked via the initial-state calculations of Ref. [12]
that b0Xe ≈ b0U and a0Xe ≃ ð238=129Þa0U. The logic of the
present discussion should apply, i.e., bXe ≈ bU,
aXe ≈ ð238=129ÞaU, so that rXe ≈ ð129=238ÞrU. Using
v3f2gXe=v3f2gPb ¼ 1.22 from the CMS Collaboration
[42], we obtain ra ¼ aPb=aXe ≈ 0.64 from Eq. (6)
(increases to 0.65 if x ¼ 5=9 is used). With rb ¼ 1 and
βPb ¼ 0.06 [14] this leads to βXe ≈ 0.24 via Eq. (3). Much
as for 197Au, this value is larger than found at low-energy
models, where βXe ≈ 0.2 [39]. The same analysis should be
performed on collisions of 96Ru, 96Zr, and possibly 63Cu
nuclei, to assess whether the discrepancy between low-
energy and high-energy data are systematic.

Arguably, though, the most efficient way to do so would
be collecting data from collisions of even-even species that
are close in size but have different and experimentally
measured deformation. The ideal candidates for such a
study are the stable samarium isotopes, which present a
remarkable transition from spherical to well-deformed
shapes [43]. One could collide, for instance, 144Sm, which
is essentially as spherical as 208Pb, 148Sm, mildly deformed
with a triaxial ground state, much as 129Xe and 197Au, and
154Sm, which is a well-deformed nucleus like 238U.With the
ideas introduced in this Letter, it would thus be possible to
assess from high-energy data if the evolution of β along the
isotope chain is consistent with the low-energy expect-
ations. Systematic deviations would eventually open deeper
physics questions.
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