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We present the first study of baryon-baryon interactions in the continuum limit of lattice QCD, finding
unexpectedly large lattice artifacts. Specifically, we determine the binding energy of the H dibaryon at a
single quark-mass point. The calculation is performed at six values of the lattice spacing a, using OðaÞ-
improved Wilson fermions at the SU(3)-symmetric point with mπ ¼ mK ≈ 420 MeV. Energy levels are
extracted by applying a variational method to correlation matrices of bilocal two-baryon interpolating
operators computed using the distillation technique. Our analysis employs Lüscher’s finite-volume
quantization condition to determine the scattering phase shifts from the spectrum and vice versa, both
above and below the two-baryon threshold. We perform global fits to the lattice spectra using
parametrizations of the phase shift, supplemented by terms describing discretization effects, then
extrapolate the lattice spacing to zero. The phase shift and the binding energy determined from it are
found to be strongly affected by lattice artifacts. Our estimate of the binding energy in the continuum limit

of three-flavor QCD is B
SUð3Þf
H ¼ 4.56� 1.13stat � 0.63syst MeV.
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The H dibaryon is a scalar six-quark state with flavor
content uuddss originally proposed in 1977 by Jaffe [1].
Despite years of effort, experimental searches have not
produced any hard evidence for its existence [2–4].
However, an upper bound on its binding energy has been
derived from the observed production and decay pattern of
a doubly strange 6

ΛΛHe hypernucleus [2,3].
Studying the properties of a potential Λ-Λ bound state

will help our understanding of the hadronic (Λ-Λ) inter-
action, which is relevant for the physics of double hyper-
nuclei, neutron-rich matter, and neutron stars. Recently,
experimental data for two-particle correlations in p-p,
p-Pb, and Au-Au collisions [5–7] have been analyzed to

constrain the Λ-Λ interaction and provide model estimates
for the binding energy of theH dibaryon. In addition, a dedi-
cated experiment is planned to search for it at J-PARC [8].
Other approaches to study the H dibaryon include chiral
effective field theory [9–12] and lattice QCD.
Lattice QCD studies of dibaryons and baryon-baryon

scattering are very challenging because of the signal-to-
noise problem [13,14] and the complexity of contractions.
In response to an inconsistency among results in the
nucleon-nucleon sector [15,16], there has been a recent
focus on improved baryon-baryon spectroscopy methods
[17–19]. This work goes beyond that to achieve control
over all systematic effects for the H-dibaryon channel at
one unphysical quark-mass point.
There is a long history of calculations studying whether

the H dibaryon is a prediction of QCD [17,20–34]. Results
for the binding energy BH from these calculations vary
considerably, with estimates ranging from a few MeVup to
75 MeV, depending on the methodology and/or the value
of the pion mass (see Fig. 5). Recently, employing
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near-physical pion and kaon masses, the HAL QCD
Collaboration reported that the Λ-Λ interaction is only
weakly attractive and does not sustain a bound or resonant
dihyperon [34].
In our previous work [17], using gauge fields with

dynamical u and d quarks and a quenched s quark, we
found that the distillation method [35] produced a better
determination of the two-baryon spectrum than previously
used methods. At a heavy SU(3)-symmetric point with a
pion mass of 960 MeV, we obtained BH ¼ 19� 10 MeV.
In this Letter, we extend our calculations to lattice QCD

with dynamical u, d, and s quarks with degenerate masses
set to their physical average value corresponding to mπ ¼
mK ≈ 420 MeV [36]. We present the first systematic study
of discretization effects in a multibaryon system by
computing finite-volume spectra at several lattice spacings,
extrapolating the corresponding scattering phase shift to the
continuum limit, and determining the binding energy.
As shown in Fig. 1, at vanishing lattice spacing, we find

B
SUð3Þf
H ¼ 4.56� 1.30 MeV, which is smaller than the

result at the coarsest lattice spacing by a factor of about
7.5. We conclude that a thorough investigation of lattice
artifacts is indispensable for answering the question
whether a bound H dibaryon exists in nature.
Our calculations are based on a set of eight gauge

ensembles generated by CLS [38], with a nonperturbatively
OðaÞ-improved Wilson-clover fermion action. These
ensembles have six different values of the lattice spacing
and multiple box sizes L (all satisfying mπL ≥ 4.4) as
shown in the inset of Fig. 3 [39].
For each ensemble, we determine the energy levels in the

rest frame and in four moving frames. To this end, in
each frame we compute a Hermitian matrix of two-point
correlation functions from a basis of interpolating oper-
ators: CijðtÞ≡ hOiðtÞO†

jð0Þi. The finite-volume spectrum
fEng determines the exponential falloff of CijðtÞ.

The building blocks of our operator basis are products of
two single-baryon operators projected to momenta p⃗1 and
p⃗2 with total spin zero or one. For each frame momentum
P⃗ ¼ p⃗1 þ p⃗2, we take linear combinations that transform
under the trivial irreducible representation of the little
group of P⃗, which contains the 1S0 scattering channel
[39]. Following Refs. [31,52], the flavor content of our
interpolating operators is a linear combination of isospin-
zero ΛΛ, ΣΣ, and symmetric NΞ that corresponds to the
singlet irreducible representation of SU(3) flavor.
Calculating the correlation functions of bilocal operators

requires the ability to compute “time-slice-to-all" quark
propagators. As in our previous study [17], we have used
the distillation technique [35,39].
The finite-volume energy levels in each frame are

determined by solving a generalized eigenvalue problem
[39,53,54], CðτDÞvn ¼ λnCðτ0Þvn for fixed τ0 and τD
satisfying τD > τ0 ≥ τD=2. We then use the eigenvectors
vn to construct C̃nmðtÞ≡ v†nCðtÞvm, an approximately
diagonalized correlator matrix. We have verified that
different combinations of ðτ0; τDÞ yield consistent results
across a wide range of values [39].
Before fitting to the data, we divide the rotated two-

baryon correlators by a product of two single-baryon
correlators that form the corresponding two-baryon non-

interacting level RnðtÞ≡ C̃nnðtÞ=½Cp⃗1

Λ ðtÞCp⃗2

Λ ðtÞ�, where Cp⃗i
Λ

is a single-Λ correlator with momentum p⃗i, and the total
frame momentum is p⃗1 þ p⃗2. The leading term in this ratio
falls off exponentially with the shift ΔE of the interacting
two-baryon energy away from the noninteracting level. In
the ratio, we observe a partial cancellation of correlated
statistical fluctuations and residual contributions from
excited states, which helps in the reliable determination
of ΔE.
Our finite-volume energies are determined from single-

exponential fits to RnðtÞ. For all levels, we choose tmin, i.e.,
the smallest time separation included in the fits, to lie in the
plateau region of RnðtÞ. We also aim to have tmin lie in the
plateau region of the single-baryon correlators, and in
the majority of cases we set it to be the first time separation
in this plateau region. Since the single-baryon correlators
take longer than the two-baryon correlators to reach their
asymptotic behavior, this ensures that all correlators enter-
ing the ratio have little to no excited-state contamination.
In some cases, however, the signal of RnðtÞ is already
significantly degraded at the start of the single-baryon
plateau region, and we are led to choose a slightly lower
tmin that still lies within the plateau region of the correlator
ratio. For all levels, we estimate the sensitivity to tmin by
extracting an alternative spectrum with tmin further lowered,
and use it in subsequent analyses to estimate the systematic
uncertainty of our energy determination.
The fits also yield the couplings between each energy

eigenstate and our operators. For each frame that includes a
spin-one operator, we find one eigenstate that has strong

FIG. 1. Binding energy versus squared lattice spacing from fits
to the full p2 range (blue squares and solid curves) and to the
near-threshold region (orange circles and dashed curves). Points
are from fits to individual ensembles and curves are from the
combined fits to the spectra of different subsets of the ensembles;
they are not fitted to these points. Gray diamonds show results
from the small-volume ensembles and the black cross shows our
final estimate.
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overlap with only that operator, allowing for a simple
identification of the spin-one dominated states.
Figure 2 shows the effective energy difference

ΔEeffðtÞ≡ −ðd=dtÞ logRðtÞ and the extracted ΔE for
the ground state in frame (0,0,1) on four ensembles that
differ primarily in their lattice spacing. This level is
particularly important because it is the closest to the
bound-state pole determined in the phase shift analysis.

An overview of the finite-volume spectrum is shown in
Fig. 3, where the energy shifts are transformed to the
center-of-mass momentum p. For every level, these two
figures show a clear increasing trend as the lattice spac-
ing is reduced, indicating that discretization effects are
significant.
Given the two-particle scattering amplitude, Lüscher’s

finite-volume quantization condition [55] and its genera-
lizations [56–58] determine the finite-volume spectrum,
up to exponentially suppressed corrections, between the
t-channel cut (p2 > −m2

π=4) and the three-particle thresh-
old (Ec:m: < 2mB þmπ). Since the quantization condition
is diagonal in spin [57,58], the spin-one part of the
scattering amplitude does not affect the spin-zero finite-
volume spectrum, and we choose to ignore the spin-one
states. In addition, we neglect higher partial waves starting
from 1D2. In this case, the quantization condition yields the
1S0 phase shift δðpÞ at the momentum corresponding to
each finite-volume energy level:

p cot δðpÞ ¼ 2ffiffiffi
π

p
Lγ

ZP⃗L=ð2πÞ
00

�
1;

�
pL
2π

�
2
�
; ð1Þ

where γ ¼ E=Ec:m: and ZD⃗
00 is a generalized zeta function.

In addition to excluding levels with too-low or too-high p2

from our analysis, we must also exclude the first excited
levels in frames (0,1,1) and (1,1,1), as the 1D2 partial wave

FIG. 2. Effective energy difference obtained from R0ðtÞ for the
ground state in frame (0,0,1) on four ensembles with similar
volumes. The bands showΔE determined from a single-exponential
fit to R0ðtÞ and also indicate the range of t used for the fit. The
dashed lines show the alternative fit used to estimate systematic
uncertainty.

FIG. 3. Finite-volume spectrum: center-of-mass scattering momentum p2 versus lattice extent L. The five different frames are shown
separately and are labeled with D⃗≡ P⃗L=ð2πÞ. Colored points show spin-zero levels, and gray points (offset horizontally) show levels
identified as spin-one. Solid horizontal lines show the two- and three-particle thresholds, while dashed horizontal lines represent the
t-channel cut. The noninteracting spectrum is denoted by red dashed curves, and solid blue curves show the interacting spectrum
determined in the continuum (see main text); the pale curves correspond to levels that have not been determined in the lattice calculation.
The inset serves as a legend showing L and a2 for the ensembles used in this Letter.
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is necessary to describe their position below the lowest
noninteracting level [39].
The quantization conditions do not take discretization

effects into account; strictly speaking, they are only valid in
the continuum. There is no general formalism for finite-
volume quantization at nonzero lattice spacing, except for a
simple model studied in Ref. [59]. In principle, discretiza-
tion effects would affect both the scattering amplitude and
the finite-volume quantization condition. Effects on the
former could include a dependence and frame dependence
of the scattering amplitude, as well as couplings between
JP that are forbidden in the continuum. Effects on the latter
could include a modification of the zeta functions [59].
Either way, discretization effects might spoil the factori-
zation that separates spin-zero from spin-one. Lacking a
rigorous understanding, we have elected to model discre-
tization effects in a simple way by allowing the parameters
of the phase shift to depend on a.
Our primary analysis is based on combined fits of

the dependence of the phase shift on both p2 and a.
Specifically, our model is

p cot δðpÞ ¼
XN−1

i¼0

cip2i; ci ¼ ci0 þ ci1a2: ð2Þ

Concerning the dependence on p2, we fit in two ways. The
first uses the near-threshold region jp2j≲m2

π=4 (where the
effective range expansion converges) with N ¼ 2 terms for
the dependence on p2. The second uses the full p2 range,
starting from the t-channel cut and stopping just below the
three-particle threshold, with N ¼ 3. Given fcijg, solving
Eq. (1) yields a discrete spectrum of p2 for each volume and
frame; we fit these to the lattice spectra. For comparison,
we also performed fits to individual ensembles, neglecting
discretization effects. Given δðpÞ, a solution below thresh-
old to p cot δðpÞ ¼ −

ffiffiffiffiffiffiffiffiffi
−p2

p
corresponds to a bound-state

pole. All of the fits yielded a bound H dibaryon.
Our preferred fit is to all ensembles using the full p2

range; the corresponding continuum interacting energy
levels are shown as blue curves in Fig. 3. In addition to
the alternative spectrum fit range, we estimate the system-
atic uncertainty using the root-mean-square difference of
alternative combined fits that cover all combinations of cuts
on p2 (full range or near threshold), a (all six or the finest
four), and L (excluding L ≈ 2.1 fm or not). All of these fits
have acceptable fit quality, with p values between 0.2 and
0.9. We explored adding an a3 term in Eq. (2) but found
that this reduces χ2 by at most 1.1 for each additional fit
parameter, a sign of overfitting.
The phase shifts from the preferred fit in the continuum

and at nonzero lattice spacing corresponding to the four
ensembles with L ≈ 2.4 fm (J500, N300, B450, A653) are
shown in Fig. 4. Since these ensembles have similar values
of L, they allow us to perform a cross-check shown in the

lower panel. We select the volume of ensemble B450 as our
target and call this box size L�. For the three other lattice
spacings, we estimate each energy level at L� by shifting
from L using the quantization condition: p2ðL�Þ ≈ p2ðLÞþ
p2
QCðL�Þ − p2

QCðLÞ. For each energy level, we then study
the dependence of p2ðL�Þ on the lattice spacing and
compare it with the value obtained from applying the
quantization condition to the continuum limit of the
preferred fit. The cross-check shows that a level-by-level
continuum extrapolation at L� is consistent with the latter.
However, some levels show curvature in the dependence on
a2 and the fixed-L� extrapolation is less precise, making it
less useful than the combined fits.
Near threshold, we can write p cot δ ¼ −1=a0þ

r0p2=2þOðp4Þ, where a0 is the scattering length and
r0 is the effective range. We obtain

FIG. 4. Upper panel: p cot δ versus p2 normalized using the
pion mass, with inset showing the near-threshold region. Data are
shown for the four ensembles with L ≈ 2.4 fm. Curves show the
result from a combined fit at nonzero lattice spacing (indicated by
color) and in the continuum (blue with error band); intersections
with the red dashed curve correspond to bound-state poles. Only
points to the right of the vertical dashed line are included in the
fit. Lower panel: level-by-level cross-check of continuum
extrapolation, with adjustments on three ensembles to match
the target volume L�. Pale points (displaced vertically) show the
levels before adjustment. The spectrum obtained from the
continuum phase shift is indicated using blue crosses. Curves
show continuum extrapolations of the form b0 þ b1a2 excluding
the coarsest lattice spacing (solid magenta) and b0 þ b1a2 þ b2a3

using all four lattice spacings (dashed cyan).
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a
SUð3Þf
0 ¼ 3.30� 0.36� 0.21 fm; ð3Þ

r
SUð3Þf
0 ¼ 0.98� 0.04� 0.05 fm; ð4Þ

where the first error is statistical and the second is
systematic. The dependence of the H dibaryon binding
energy on a is shown in Fig. 1; in the continuum, we obtain

B
SUð3Þf
H ¼ 4.56� 1.13� 0.63 MeV; ð5Þ

which is substantially lower than the binding energies
determined at nonzero lattice spacing, except on the finest
two of our ensembles.
We report the first lattice study of a baryon-baryon

system in the continuum limit. The crucial elements of our
methodology are the finite-volume quantization condition
supplemented by terms describing discretization effects and
applied over a wide range of lattice spacings, as well as the
subsequent extrapolation to the continuum limit. We
conclude that cutoff effects are large and cannot be ignored
in an investigation of the H dibaryon using lattice QCD; it
will be essential to study their importance in other multi-
baryon systems such as the deuteron, where calculations
disagree [15,16,18]. Our final result for the binding energy
given in Eq. (5) suggests the existence of a weakly boundH
dibaryon, which is not only at variance with Jaffe’s original
bag model prediction [1] of a deeply bound uuddss state,
but is also substantially lower than the binding energies
determined in previous lattice calculations [17,27–33] at
nonzero lattice spacing (see Fig. 5). This adds to the
evidence against deeply bound hexaquark dark matter
[60–67]. An obvious caveat is that our calculation was
performed for one set of degenerate quark masses. The
issue of SU(3) symmetry breaking, which is crucial, since

the splitting between physical ΛΛ and NΞ thresholds is

larger than B
SUð3Þf
H , is currently under investigation [68].

Previous estimates based on extrapolations of lattice data
found a bound state at the physical point unlikely
[9,11,33,69,70]; our smaller binding energy should make
it even less likely.
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