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Identifying the relevant degrees of freedom in a complex physical system is a key stage in developing
effective theories in and out of equilibrium. The celebrated renormalization group provides a framework for
this, but its practical execution in unfamiliar systems is fraught with ad hoc choices, whereas machine
learning approaches, though promising, lack formal interpretability. Here we present an algorithm
employing state-of-the-art results in machine-learning-based estimation of information-theoretic quantities,
overcoming these challenges, and use this advance to develop a new paradigm in identifying the most
relevant operators describing properties of the system. We demonstrate this on an interacting model, where
the emergent degrees of freedom are qualitatively different from the microscopic constituents. Our results
push the boundary of formally interpretable applications of machine learning, conceptually paving the way
toward automated theory building.
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Fundamental physical theories, in a reductionist spirit,
are often formulated at the smallest scales, describing the
interactions of elementary constituents. Nonetheless, the
experimentally accessible features typically arise from their
collective behavior. Indeed, there exist profound examples
of effective theories, e.g., classical hydrodynamics and
thermodynamics, consistently describing complex phe-
nomena in terms of a few macroscopic variables, without
making any reference to individual particles.
Bridging this scale gap to derive the emergent macro-

scopic properties from microscopic models is a perpetual
challenge. The renormalization group (RG) [1–4] provides
a powerful framework for this, associating physical theories
at different length scales by iteratively coarse-graining
configurations of local degrees of freedom (d.o.f.). The
induced RG transformation acts as a telescope in the space
of models, generating the RG flow, whose structure around
the fixed point eventually reveals the relevant d.o.f. They
are the scaling operators, which determine the correlations,
and thus the physical properties, at large scales.
In practice, executing this program in the real-space RG

is very difficult. The accuracy of the procedure is improved
by optimizing the coarse graining to retain the highest real-
space mutual information (RSMI) [5,6], quantifying cor-
relations to distant parts of the system. However, this still
misses a crucial insight: any long-range information is due
to the scaling operators and thus its optimal compression
not only can serve as a better RG transformation, but should
allow one to extract all the operators themselves, without
ever explicitly executing the RG flow. This was recently
proven in part: in critical systems, the formal solutions to

the RSMI compression problem are determined by the most
relevant operators [7], in theory allowing one to access
them directly. Unfortunately, solving this mathematical
problem is notoriously hard in a general setting [8].
Here, using state-of-the-art machine learning results in

estimating mutual information [8], we overcome this
challenge to develop a highly efficient algorithm extracting
relevant operators of the theory from real-space configu-
rations. In contrast to standard approaches, no RG maps
are iterated: scaling operators are not constructed from the
RG flow, but instead using their definition as dominant
contributions to RSMI, in a single step. The RSMI neural
estimator (RSMI-NE) returns them parametrized as neural
networks, which can be assigned scaling dimensions
and used in computations [see Fig. 1(a)]. Moreover, we
empirically demonstrate the power of the method across the
whole phase diagram, also away from criticality.
In particular, the algorithm can, unsupervised, construct

order parameters, locate phase transitions, and identify
spatial correlations and symmetries for complex and large-
dimensional real-space data. Our findings, elevating the
coarse-graining transformations to formal operators, give a
new paradigm in investigating statistical systems and a
numerical toolbox to do so.
An often raised criticism of the use of machine learning

in physics is the lack of interpretability of the results [9].
Particularly, the extent to which architecture- and training-
dependent conclusions from machine learning relate to
formal concepts in physical theories is unclear. RSMI-NE
overcomes this challenge: its outputs are explicitly iden-
tified with the scaling operators [7] on the lattice. Thus, in
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contrast to generic data-driven approaches, RSMI-NE
executes a physical principle using machine-learning tools
to produce theoretically interpretable results.
Below we give an overview of the general RSMI setup,

introducing the probabilistic language of the coarse-graining
optimization. We then present the RSMI-NE algorithm and
the theoretical and numerical results in machine learning
underlying its efficiency. We validate its capabilities on an
interacting model, whose nontrivial RG flow was a subject
of a detailed theoretical analysis [10,11]. We investigate the
physical data contained in the ensemble of RSMI filters. We
conclude with a discussion of further applications, most
notably to nonequilibrium problems.
Consider a system of classical d.o.f. in any dimension

denoted by a collective random variable X , whose physics
is specified by a probability measure pðxÞ, either Gibbsian
dictated by the energy of the realization x of X , or a generic
nonequilibrium distribution. A coarse-graining (CG) rule
X → X 0 is defined as a conditional distribution pΛðx0jxÞ,
determined by a set of parameters Λ to be optimized. The
coarse graining is typically carried out on disjoint spatial
blocks Vi ⊂ X , and it factorizes pðx0jxÞ ¼ Q

i pΛi
ðhijviÞ,

such that X ¼∪i Vi and X 0 ¼∪i Hi, with pΛi
ðhijviÞ as the

CG rule applied to block i. In translation-invariant systems,
a fixed Λi ≡ Λ suffices; with disorder each block can be
individually optimized.
The RSMI principle identifies CG rules extracting the

most relevant long-range features as the ones retaining the
most information shared by a block V ⊂ X to be coarse
grained and its distant environment E [5,6], i.e., those that
optimally compress this information. The environment is

separated from V by a shell of nonzero thickness
constituting the buffer B and forms the remainder of the
system [see Fig. 1(a)]. The “shared information” between
the random variables H and E is given by the mutual
information

IΛðH∶EÞ ¼
X
h;e

pΛðe; hÞ log
�

pΛðe; hÞ
pΛðhÞpðeÞ

�
; ð1Þ

where pΛðe; hÞ and pðhÞ are the marginal probability
distributions of pΛðh; xÞ ¼ pΛðhjvÞpðxÞ obtained by sum-
ming over the d.o.f. in fV;Bg and fV;B; Eg, respectively.
Finding such optimal coarse graining requires thus maxi-
mizing IΛ as a function of parameters Λ.
The conceptual importance of the buffer B cannot be

overstated: it sets the length scale, filtering out contributions
of short-range correlations between V and E. Increasing its
thickness LB corresponds to growing the RG scale, pre-
serving only the long-range physics. With an arbitrary fixed
CG rule, this can only be achieved in the RG by iterating the
coarse graining, with all the ensuing difficulties, particularly
amplifying the errors in the formulation of the rule. In our
approach, the CG rules themselves contain long-range
information and are obtained in a single shot, by solving
the IΛ optimization problem directly at large LB, at different
points in the phase diagram.
The optimization problem of Eq. (1) is, however,

difficult, as estimating or maximizing mutual information
is notoriously hard [8]. This was a major weakness of the
RSMI proposal [5], hindering numerical and theoretical
progress. We can now overcome this challenge. At the
heart of our approach, encapsulated in the RSMI-NE
algorithm, is a series of recent results combining math-
ematically rigorous variational bounds on mutual informa-
tion [12–14] with deep learning [8,15]. A family of
differentiable lower bounds to IΛ is introduced, parame-
trized by neural networks fΘ [see Fig. 1(b)], which in the
course of gradient descent training on the joint samples of
H and E become accurate, and in the limit exact estimators
of IΛ, see the Supplemental Material [16]. The trans-
formation pΛðhjvÞ feeding the coarse-grained variables
into the estimator is also expressed by a neural network
ansatz. We use the following composite architecture [see
Fig. 1(b)]:

h ¼ τ∘ðΛ · vÞ: ð2Þ

Here Λ become parameters of a convolutional neural net-
work (CNN) applied to the configurations, and τ differ-
entiablymapsΛ · v into states of variableh of predetermined
type (e.g., pseudo-binary spins). This last embedding step is
both crucial [24] and algorithmically nontrivial [25]. We
emphasize that, while the CNN choice is motivated by
convenience, any sufficiently expressive ansatz can be used.

(a)

(b)

FIG. 1. Extracting the relevant operators with RSMI NE.
(a) The most relevant operators are learnt as the optimal
compressions of long-range information IðH∶EÞ at each point
in the phase diagram. The learnt maps can be associated with the
physical operators by computing the correlators and extracting
the scaling dimensions. (b) The architecture of RSMI-NE: the
relevant operators are extracted via the transformations Λ and
discretizing step τ. The long-range information that Λ maximize
is estimated by fΘ, all of which are parametrized by neural
networks and cotrained together.
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We have thus cast both the CG rule and the lower bound
to the cost function it optimizes as differentiable neural
networks. Next, we can chain them together [see Fig. 1(b)]
and simultaneously optimize via stochastic gradient
descent, improving the RSMI estimator and the CG rule
in each pass. Note that it is this numerical breakthrough that
enables the exploration of new theoretical ideas and renders
the RSMI algorithm a promising new approach to tackle
open challenges in complex domains.
We demonstrate this on the example of an interacting

dimer model. This is an optimal test bed for the illustration
of our algorithm. First, a large class of classical statistical
physics problems can be mapped to interacting dimer
models [26–35]. Moreover, aspects of the quantum dimer
model [36,37] leave their footprint on the phase diagram
[10,11]. Second, in the dimer model, the relevant low-
energy degrees of freedom are profoundly different from
the microscopic building blocks of the theory and change
qualitatively throughout the phase diagram. Hence, the
algorithm is presented a nontrivial task.
The model is defined by the partition function ZðTÞ ¼P
fCg exp ð−EC=TÞ at a given temperature T and the

configurationsC involve binary-valuedmicroscopic degrees

of freedom, dimers, that sit on the edges of the square lattice.
They obey the constraint of exactly one dimer being
connected to every vertex. The energy EC ¼ NCðjjÞ þ
NCð¼Þ counts plaquettes covered by parallel dimers favored
by the interaction, see Fig. 2(a).
The essence of this system is in the interplay of aligning

interaction energy and entropic effects due to the nonlocal
cooperation of local dimer covering constraints. At low T
the former facilitates a long-range order crystallizing the
system into one of the four translation symmetry breaking
columnar states, see Fig. 2(a). With increasing T the system
undergoes a Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition at TBKT ¼ 0.65ð1Þ [11], entering a critical phase
characterized by algebraic decay of correlations (also at
T → ∞) with exponents continuously changing with T.
This is reflected in the effective continuum field theory,
which, via the mapping of dimer configurations to height
field φðrÞ [38] (see also the Supplemental Material for the
definition [16]) is given by a sine-Gordon action [11]

S½φðrÞ� ¼
Z

d2r

�
gðTÞ
2

j∇φðrÞj2 þ V cos ½4φðrÞ�
�
: ð3Þ

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. RSMI analysis of the interacting dimer model. (a) RG flow of the model [see Eq. (3)] and representative configurations (top).
(b) Total RSMI extracted with the optimal filters as a function of T and its scaling with the buffer size. (c) Information extracted by the
pristine staggered and plaquette filters at different T. (d) Samples of optimal filters obtained with RSMI-NE for different T [columnar
(C), plaquette ðP1; P2Þ, and staggered ðS1; S2Þ]. (e) The average overlap of the optimal filters at T with the pristine components. (f) The
dimer symmetry breaking and plaquette order parameters extracted using the low-T pristine filters.
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The potential V locks φðrÞ into four values corresponding
to the columnar states. The stiffness gðTÞ controls fluctua-
tions of φðrÞ: large gðTÞ favors “flat” fields of high entropy;
low gðTÞ allows large gradients corresponding to the
staggered configurations, which are not suppressed in
the algebraic phase. The RG flow is shown in Fig. 2(a):
the T < TBKT fixed point with finite gðTÞ and V → ∞
leaves energy minimization as the sole relevant constraint;
the line of fixed points at V ¼ 0 at T > TBKT indicates that
the energetic interactions are irrelevant and exponents vary
with T. The flow reveals the physical nature of the algebraic
correlations: ∇φðrÞ obeys Gauss’s law and so the fixed
point theory is that of electrical fields.
To showcase RSMI-NE, we input Monte Carlo

samples of the model across the whole temperature range
to the algorithm. For concreteness, we restrict the coarse-
grained variables H to a two-component binary vector
f�1;�1g (the optimal dimensionality can be found
systematically [39]). Hence, we are looking for a two-
component vector of filters Λ1, Λ2 determining how the
visible region V is mapped onto H. Optimizing the filters
Λ1, Λ2 for all T separately gives a comprehensive picture
of the long-wavelength physics, culminating in the con-
struction of the relevant operators on the lattice, as we
now show.
First, we find that already the curve IΛðTÞ, i.e., the

amount of long-range information attained with the optimal
Λ, reveals the structure of the phase diagram [see Fig. 2(b)].
To wit, for T < TBKT its value is constant and equal to
log 4. The information shared between distant parts of the
system in the ordered phase is precisely which of the four
columnar states they are in.
Phase transitions are reflected by nonanalyticities in

IΛðTÞ (cf. [40,41]). Moreover, the algebraic decay of IΛðTÞ
with the buffer size for T > TBKT is indicative of a critical
phase, see Fig. 2(b) and Fig. 6(c) in Ref. [39]. This behavior
should also be contrasted with the exponential decay for the
paramagnetic phase of 2D Ising model in Ref. [39].
Going beyond the mutual information and examining the

filters ΛðTÞ yields further insight about spatial correlations.
As conjectured, the optimal CG rules depend on the tuning
parameters of the system. In the high- and low-temperature
limits, three classes of filters emerge: independent opti-
mizations return exclusively sets of Λ1;2 that correspond to
columnar and plaquette at low temperatures, and staggered
ones at high temperatures, see Fig. 2(d). We call these
filters “pristine” as they reflect simple limiting cases. They
are orthogonal to each other and represent independent
degrees of freedom. The filters for intermediate tempera-
tures and their overlap with the pristine ones is shown
in Figs. 2(d) and 2(e), respectively. We first discuss in
detail the individual filters Λ1;2 in the different temperature
regimes T → 0, T ∼ TBKT, and T ≫ TBKT, and then
explicitly match them with the RG-relevant operators of
the continuum sine-Gordon theory.

The pristine plaquette and columnar filters at T → 0
break translation or rotation symmetry, respectively. Any
pair of Λ1;2 drawn out of these filters is a bijection between
the four ordered columnar states and the four states
ð�1;�1Þ taken by the compressed degrees of freedom
H. This degeneracy of plaquette and columnar filters is
lifted when the rotation symmetry is restored: the pristine
columnar filter is not found above TBKT. Strikingly, its
modulus acquires an expectation value for T < TBKT [see
Fig. 2(f)]. This filter is thus an order parameter discovered
by RSMI-NE and is, in fact, equal to the dimer symmetry
breaking (DSB) order parameter identified in Ref. [10].
The optimal CG rules around TBKT hold yet further

insights. Particularly, the plaquette filters give rise to a
putative plaquette order parameter [see Fig. 2(f)]. The
corresponding regime where it attains a nonvanishing value
does not survive in the thermodynamic limit. However,
the nonzero expectation value at finite system sizes
[see Fig. 2(f)] reveals the importance of such plaquette
correlations, which are stabilized in the quantum dimer
model (QDM) [36]. RSMI-NE indicates this without
any prior insights about QDM, which inspired previous
studies [10,11].
Finally, the critical phase T > TBKT interpolates between

pristine plaquette and staggered filters, due to the com-
petition between the electric field operator and plaquette
correlations in the finite system, as per Eq. (3). The value of
RSMI attained with fixed rules reflects this competition: the
plaquette filter retains more information until well above
TBKT, where the staggered one takes over as plaquette
correlations dwindle [see Fig. 2(c)]. The staggered filters
are the electric fields, viz. they define coarse-grained
variables E1;2ðrÞ ≔ τ∘Λ1;2½VðrÞ�, which precisely target
the operator ∇φðrÞ (see the Supplemental Material [16]).
The RSMI-NE finding the order parameters or the

electric fields is no accident: the pristine Λ filters define
the relevant operators on the lattice. The considerable
technical machinery behind this is the subject of
Ref. [7]; here we show it using the field theory of the
dimer model, also away from criticality. To wit, the
columnar and the DSB order parameters in Fig. 2(f)
correspond to the relevant electric charge operators
OnðφÞ ¼ ðcosðnφÞ; sinðnφÞÞ [42] for n ¼ �1 and n ¼ �2,
respectively. This is seen explicitly, using the height-field
map in Table I as a dictionary,

ðΛP1;ΛP2Þ∘φ ¼ ðcosðφþ 3π=4Þ; sinðφþ 3π=4ÞÞ; ð4Þ

ΛC∘φ ¼ cosð2φÞ; ð5Þ

where on the left dimer configurations (on which the Λ act)
mapped to height-field value φ are denoted by φ itself.
Though competing correlations, especially in finite-size

systems, may result in mixing of the pristine components,
they can be identified by applying standardmachine-learning
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tools to the ensemble of filters. Note that RSMI-NE is a
stochastic algorithm and through independent runs produces
a distribution of optimal CG rules. Thus, Fig. 2(d) shows a
sample of filters at each T, and in Fig. 2(e) the overlap is
averaged over the filter ensemble at each temperature.
The distribution contains crucial information, e.g., the
disappearance of the columnar filter above TBKT signals
the lifting of the columnar and plaquette degeneracy (con-
sistent with the scaling dimensions of On, which go as n2)
and restoration of the rotation symmetry. More concretely,
representations of the broken symmetries can be identified in
the distribution, whereas at high T it can be used to retrieve
even the emergentU(1) symmetry of the electrical field. See
Ref. [39] for a more detailed discussion.
We thus managed to automatically sequence the oper-

ators of the theory, returning their lattice representations,
which are modular, reusable, and may be formally labeled
by their scaling dimensions. Indeed, evaluating a correlator
of two neural networks parametrized by the plaquette
filters, we fit a scaling dimension of 1.00037 at T → ∞
(see the Supplemental Material [16]), in excellent agree-
ment with 1.0 predicted for O1 [42]. This raises the
remarkable prospect of building a complete effective theory
from raw data using machine learning.
Though the discussion centred around an equilibrium

example in two dimensions, our procedure works in any
dimension, can be adapted to disorder [24], and does not
require the existence of a Hamiltonian, as it only uses
probability distributions. While a formal understanding of
this approach for nonequilibrium distributions, extending

the results of Ref. [7], is missing, in the companion paper
[39] we validated the concept on the example of lattice
model with aggregation and chipping [43] for which
RSMI-NE locates precisely the nonequilibrium phase
transition. We believe complex systems, such as realized
in, e.g., active matter [44,45] or atmospheric phenomena
[46], to be a natural arena where information-theoretic
methods can be applied [47], and our conceptual and
numerical advancements may provide new theoretical
insights (see also Ref. [48]). The understanding of chal-
lenging higher-dimensional interacting and quasiperiodic
statistical systems [49–52] may also benefit from this new
method.

The source code for the RSMI-NE is available
online [53].
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