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Entropy production characterizes irreversibility. This viewpoint allows us to consider the thermo-
dynamic uncertainty relation, which states that a higher precision can be achieved at the cost of higher
entropy production, as a relation between precision and irreversibility. Considering the original and
perturbed dynamics, we show that the precision of an arbitrary counting observable in continuous
measurement of quantum Markov processes is bounded from below by the Loschmidt echo between the
two dynamics, representing the irreversibility of quantum dynamics. When considering particular
perturbed dynamics, our relation leads to several thermodynamic uncertainty relations, indicating that
our relation provides a unified perspective on classical and quantum thermodynamic uncertainty relations.
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Introduction.—A thermodynamic uncertainty relation
(TUR) [1–17] (see [18] for a review) gives a universal
relation between precision and thermodynamic cost. It
states that ⟦|⟧2=h|i2 ≥ 2=hσi, where h|i and ⟦|⟧ are the
mean and standard deviation, respectively, of a current
observable |, and hσi is the mean of the entropy production.
The TUR indicates that a higher precision can be achieved
at the cost of higher entropy production. The entropy
production quantifies the irreversibility of a system. Let
PFðΓÞ be the probability for observing a trajectory Γ in the
forward process andPRðΓ̄Þ be the probability for observing
a time-reversed trajectory Γ̄ in the reversed process. Then,
the entropy production is defined by a log ratio between
PFðΓÞ and PRðΓ̄Þ [Fig. 1(a)]: hσi ¼ D½PFðΓÞjjPRðΓ̄Þ�≡
hln ½PFðΓÞ=PRðΓ̄Þ�i, where D½•jj•� denotes the relative
entropy. This relation suggests that the TUR is a conse-
quence of irreversibility, i.e., the larger the extent of
irreversibility, the higher the precision of a thermodynamic
machine.
In Newtonian dynamics, despite microscopic reversibil-

ity, irreversibility emerges due to the chaotic nature ofmany-
body systems. For chaotic systems, even considering
reversed dynamics by reversing the sign of the momenta,
an infinitely small perturbation applied to the state yields an
exponential divergence from the original reversed dynamics,
indicating the infeasibility of such reversed dynamics.
Thus, the extent of irreversibility can be evaluated through
the extent of chaos, which is often quantified by the
Lyapunov exponent in classical dynamics. The Loschmidt
echo [19–21] is an indicator for the effect of small pertur-
bations applied to the Hamiltonian in quantum systems. It
can be viewed as a quantum analog of the Lyapunov
exponent. Consider an isolated quantum system. Given
an initial pure state jΨð0Þi, with Hamiltonian H and

perturbed HamiltonianH⋆, the Loschmidt echo η is defined
as follows:

η≡ jhΨð0ÞjeiH⋆τe−iHτjΨð0Þij2: ð1Þ

Equation (1) evaluates the fidelity between two states,
e−iHτjΨð0Þi and e−iH⋆τjΨð0Þi, at time t ¼ τ, where τ > 0
[Fig. 1(b)]. These states are generated through the forward-
time evolution induced by H and H⋆, respectively.
Alternatively, Eq. (1) can be viewed as the fidelity between
jΨð0Þi and eiH⋆τe−iHτjΨð0Þi at t ¼ 0, where the latter state
is obtained by applying the forward-time evolution byH and
the subsequent reversed-time evolution by H⋆ to jΨð0Þi
[Fig. 1(c)]. The second interpretation gives a natural
extension to classical irreversibility. In this Letter, we show
that the precision of any counting observable in the
continuous measurement of quantum Markov processes is
bounded from below by the Loschmidt echo. This relation
can be viewed as a quantum extension of classical TURs.
Notably, the obtained quantum TUR holds for any continu-
ous measurement, which has not been achieved for previous
quantum TURs [22–33]. When we consider empty dyna-
mics for the perturbed dynamics, the main result appears to
be reminiscent of a bound obtained in Ref. [30], whereas the
bound in this Letter provides a tighter bound for a classical
limit. Moreover, when we consider time-scaled perturbed
dynamics, the main result reduces to the bound reported in
Ref. [28], which covers a classical TUR comprising the
dynamical activity [6]. Our result provides a unified per-
spective on classical and quantum TURs.
Results.—We consider a quantum Markov process de-

scribed by a Lindblad equation [34,35]. Let ρSðtÞ be a
density operator at time t in the principal system S. The
time evolution of ρSðtÞ is governed by
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_ρS ¼ LρS ≡ −i½HS; ρS� þ
XM
m¼1

DðρS; LmÞ; ð2Þ

where _• is the time derivative, L is a Lindblad super-
operator, HS is a Hamiltonian, DðρS; LÞ≡ LρSL† −
fL†L; ρSg=2 is a dissipator, and Lm (1 ≤ m ≤ M with M
being the number of Lm) is themth jump operator (½•; •� and
f•; •g denote the commutator and anticommutator, respec-
tively). Note thatHS is different from the total Hamiltonian
H, which induces unitary time evolution in the total system.
For a sufficiently small time interval Δt, Eq. (2) admits
the Kraus representation ρSðtþ ΔtÞ ¼ P

M
m¼0 VmρSðtÞV†

m,
where

V0 ≡ IS − iΔtHS −
1

2
Δt

XM
m¼1

L†
mLm; ð3Þ

Vm ≡ ffiffiffiffiffiffi
Δt

p
Lm ð1 ≤ m ≤ MÞ: ð4Þ

Here, IS denotes the identity operator in S (the other identity
operators are defined similarly). V0 corresponds to no jump
and Vm (1 ≤ m ≤ M) to the mth jump within the interval
½t; tþ Δt�. Vm (0 ≤ m ≤ M) satisfies the completeness
relation

P
M
m¼0 V

†
mVm ¼ IS. Vm defined in Eqs. (3) and (4)

are not the only operators consistent with Eq. (2). There are
infinitely many operators that can induce the same time
evolution.
Using the input-output formalism [36–39], employed in

studying TURs in a quantum domain [28,30], we describe
the time evolution generated by the Kraus operators
[Eqs. (3) and (4)] as interactions between the principal
system S and environment E. Let t ¼ 0 and t ¼ τ be the
initial and final times of time evolution, respectively. We
discretize the time interval ½0; τ� by dividing it into N
intervals, where N is a sufficiently large natural number; in
addition, we define Δt≡ τ=N and tk ≡ Δtk (t0 ¼ 0 and
tN ¼ τ). Here, the orthonormal basis of E is assumed to be
jmN−1;…; m1; m0i (mk ∈ f0; 1;…;M − 1;Mg), where a
subspace jmki interacts with S through a unitary operator

Utk during an interval ½tk; tkþ1� (Fig. 2). When the initial
states of S and E are jψSi and j0N−1;…; 01; 00i, respec-
tively, the composite state at t ¼ τ is

jΨðτÞi ¼ UtN−1
� � �Ut0 jψSi ⊗ j0N−1;…; 00i

¼
X
m

VmN−1
� � �Vm0

jψSi ⊗ jmN−1;…; m0i: ð5Þ

Calculating TrE½jΨðτÞihΨðτÞj� for Δt → 0, we recover the
original Lindblad equation of Eq. (2). This input-output
formalism is referred to as the repeated interaction model in
quantum thermodynamics [40–42], which was recently
used to derive quantum TURs [43,44]. Importantly, the
input-output formalism assumes that the environment is
pure so that the time-evolved state in Sþ E is pure
[Eq. (5)], which enables the following calculation.
Continuous measurement [45,46] through the environment
corresponds to environmental measurement at the final
time. When we measure the environment at t ¼ τ through a
set of projectors fjmihmjgm with m≡ ½mN−1;…; m1; m0�,
we obtain a realization of m, and the principal
system is projected to VmN−1

� � �Vm0
jψSi (note that this is

unnormalized). Thus, m comprises a measurement record
of continuous measurement. Since the evolution of
VmN−1

� � �Vm0
jψSi is stochastic depending on the measure-

ment record, it is referred to as a “quantum trajectory,”
which can be described by the stochastic Schrödinger
equation (see Supplemental Material [47]). Figure 2
presents an example of continuous measurement in the
input-output formalism for M ¼ 1 (i.e., a single jump
operator) with N ¼ 4. After the measurement with
the set of projectors fjmihmjgm, suppose we obtain
½13; 02; 01; 10�, where 1’s denote the detection of jumps.
Then, two jump events occurred in the principal system S in
two intervals ½t0; t1� and ½t3; t4�. Let us define the counting
observable C that counts and weights jump events in a
quantum trajectory. We define C by an Hermitian operator
on E, which admits the following eigendecomposition:

time

(a) (b) (c)

FIG. 1. Quantification of irreversibility. (a) Entropy production σ in classical Markov processes, defined by a log ratio between PFðΓÞ,
the probability for observing a trajectory Γ in the forward process, and PRðΓ̄Þ, the probability for observing a time-reversed trajectory Γ̄
in the reversed process. (b) Loschmidt echo η in quantum dynamics, which is the fidelity between two states, e−iHτjΨð0Þi and
e−iH⋆τjΨð0Þi at t ¼ τ. These states are obtained through forward-time evolution induced byH andH⋆, respectively. (c) An interpretation
of the Loschmidt echo η as the fidelity between two states, jΨð0Þi and eiH⋆τe−iHτjΨð0Þi, at t ¼ 0. The latter state is obtained through
forward-time evolution by H and the subsequent reversed-time evolution by H⋆.
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C ¼
X
m

gðmÞjmihmj ¼
X
c

cϒðcÞ; ð6Þ

where ϒðcÞ≡P
m∶gðmÞ¼c jmihmj and we assume gð0Þ ¼ 0

with 0≡ ½0N−1;…; 01; 00�. A set fϒðcÞgc comprises a
projection-valued measure. gðmÞ in Eq. (6) counts and
weights jumps in a measurement record m. The condition
gð0Þ ¼ 0 implies that the counting observable should
vanish when there are no jump events, which constitutes
a minimum assumption for the counting observable [30].
For instance, gðmÞ is typically expressed as follows:

gðmÞ ¼
XN−1

k¼0

Cmk
; ð7Þ

where ½C0; C1;…; CM� with C0 ¼ 0 being a real projection
vector specifying the weight of each jump (recall
mk ∈ f0; 1;…;M − 1;Mg). For instance, in Fig. 2 with
the weight vector ½C0; C1� ¼ ½0; 1�, gðmÞ in Eq. (7) simply
counts the number of jumps in m to yield gðmÞ ¼ 2 for
m ¼ ½13; 02; 01; 10�. The probability distributions of the
counting observable are PðcÞ≡ hΨjIS ⊗ ϒðcÞjΨi and
P⋆ðcÞ≡ hΨ⋆jIS ⊗ ϒðcÞjΨ⋆i. The mean and standard
deviation are hCi≡ hΨðτÞjIS ⊗ CjΨðτÞi ¼ P

c cPðcÞ and

⟦C⟧≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2i − hC2i

p
, respectively (quantities with a sub-

script ⋆ should be evaluated for jΨ⋆i instead of jΨi).
The Lindblad equation of Eq. (2) covers classical

stochastic processes. Consider a classical Markov chain
with NS states. Such classical states can be represented
quantum mechanically by an orthonormal basis fjb1i;
jb2i;…; jbNS

ig. Classical Markov chains can be emulated
by setting HS ¼ 0, Lji ¼ ffiffiffiffiffi

γji
p jbjihbij, and ρSðtÞ ¼P

i piðtÞjbiihbij, where γji is a transition rate from jbii
to jbji, and piðtÞ is the probability of being jbii at time t.
C with Eq. (7) is a reminiscent of the counting observable in
the classical stochastic thermodynamics, which is defined

by
P

j≠iCjiNji with Nji being the number of transitions
from jbii to jbji in ½0; τ�, and Cji ∈ R being its weight.
The current observable, which is an observable of interest
in the conventional TUR [1,2], additionally assumes
antisymmetry Cji ¼ −Cij.
The Loschmidt echo considers the fidelity between the

original jΨi and perturbed state jΨ⋆i [Eq. (1)]. LetH⋆;S and
L⋆;m (1 ≤ m ≤ M) be the perturbed Hamiltonian and jump
operators, respectively, in Eqs. (3) and (4). We define the
Kraus operators of the perturbed dynamics V⋆;m by Eqs. (3)
and (4), whereHS and Lm should be replaced withH⋆;S and
L⋆;m, respectively. Similar to Eq. (5), the composite state of
the perturbed dynamics at t ¼ τ is given by

jΨ⋆ðτÞi¼
X
m

V⋆;mN−1
� � �V⋆;m0

jψSi⊗ jmN−1;…;m0i: ð8Þ

Calculating the Loschmidt echo jhΨ⋆jΨij2 for Eqs. (5)
and (8) is not an easy task since the composite state [jΨðτÞi
or jΨ⋆ðτÞi], comprising the principal system and environ-
ment, is generally inaccessible. For continuous measure-
ment, the Loschmidt echo can be explicitly calculated after
Refs. [37,49]. Note that hΨ⋆ðtÞjΨðtÞi ¼ TrSE½jΨðtÞi×
hΨ⋆ðtÞj� ¼ TrS½ϕðtÞ� where ϕðtÞ≡ TrE½jΨðtÞihΨ⋆ðtÞj�.
Thus, using Eqs. (5) and (8), ϕ satisfies a two-sided
Lindblad equation [37,49]: _ϕ ¼ Kϕ≡ −iHSϕþ iϕH⋆;SþP

m LmϕL
†⋆;m − 1

2

P
m½L†

mLmϕþ ϕL†⋆;mL⋆;m�, where K is a
superoperator. Note that ϕ does not preserve the trace,
i.e., TrS½ϕðtÞ� ≠ 1 in general. By solving the two-sided
Lindblad equation, we obtain ϕðτÞ ¼ eKτρSð0Þ, where
ρSð0Þ ¼ jψSihψSj is the initial density operator of the
Lindblad dynamics [50]. The Loschmidt echo η is
expressed by η ¼ jTrS½eKτρSð0Þ�j2. Importantly, η can be
specified by quantities of S alone (HS, Lm,H⋆;S, and L⋆;m).
Moreover, the Loschmidt echo jhΨ⋆jΨij2 can be obtained
via the consideration of an ancillary qubit [49], which is a
natural extension of the approach used to experimentally
measure the Loschmidt echo in closed quantum dynamics.
The above calculations assumed an initially pure state;
however, a generalization to an initially mixed state case is
straightforward (see Supplemental Material [47]).
Next, we relate the precision of the counting obse-

rvable C with the Loschmidt echo η. Let F be an arbitrary
Hermitian operator on jΨi and jΨ⋆i. F admits the eigen-
decomposition F ¼ P

z∈Z zΛðzÞ, where Z and ΛðzÞ re-
present a set of distinct eigenvalues of F and a projector
corresponding to z, respectively. By using the projector
ΛðzÞ, the fidelity is bounded from above by

jhΨ⋆jΨij ≤
X
z∈Z

jhΨ⋆jΛðzÞjΨij ≤
X
z∈Z

ffiffiffiffiffiffiffiffiffi
PðzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
P⋆ðzÞ

p

¼ 1 −H2ðP;P⋆Þ; ð9Þ
where PðzÞ≡ hΨjΛðzÞjΨi, P⋆ðzÞ≡ hΨ⋆jΛðzÞjΨ⋆i, and
H2ð•; •Þ is the Hellinger distance. The first inequality

FIG. 2. Illustration of continuousmeasurement model forN ¼ 4.
The initial states of S and E are jψSi and j03; 02; 01; 00i, respec-
tively. The environment subspace j0ki interacts with S during an
interval ½tk; tkþ1�. Finally, at t ¼ τ, E is measured with a set of
projectors fjmihmjgm. Suppose that the measurement record is
m ¼ ½13; 02; 01; 10�. Then, the state of the principal system under-
goes two jump events in the intervals ½t0; t1� and ½t3; t4�.
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used the triangle inequality, where the equality holds if
and only if the direction of hΨ⋆jΛðzÞjΨi in the
complex plane is the same for all z. The second inequality
used the Cauchy-Schwarz inequality, where the equality
holds if and only if ΛðzÞjΨ⋆i ∝ ΛðzÞjΨi for all z. The
Hellinger distance is defined as follows: H2ðP; P⋆Þ ¼
1
2

P
z∈Z ð ffiffiffiffiffiffiffiffiffi

PðzÞp
−

ffiffiffiffiffiffiffiffiffiffiffiffi
P⋆ðzÞ

p Þ2, where 0 ≤ H2ðP;P⋆Þ ≤ 1.
The Hellinger distance has a lower bound, given the mean
and variance [51–53]. We use a tighter lower bound
recently derived in Refs. [53,54] (see the Supplemental
Material [47] for a brief explanation),

H2ðP; P⋆Þ ≥ 1 −
�� hF i − hF i⋆

⟦F⟧þ ⟦F⟧⋆

�
2

þ 1

�
−1
2

; ð10Þ

where hF i≡ hΨjF jΨi ¼ P
z∈Z zPðzÞ and ⟦F⟧≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hF 2i − hF 2i
p

(quantities with a subscript ⋆ should be
evaluated for jΨ⋆i instead of jΨi). The equality of Eq. (10)
holds if and only if PðzÞ and P⋆ðzÞ are defined on a set
consisting of two points. Substituting Eq. (10) into Eq. (9),
we obtain

�
⟦F⟧þ ⟦F⟧⋆
hF i − hF i⋆

�
2

≥
1

η−1 − 1
: ð11Þ

Note that a similar relation, which is looser than Eq. (11),
was derived in Ref. [55]. Because F is arbitrary, by taking
F ¼ IS ⊗ C ¼ P

c c½IS ⊗ ϒðcÞ� in Eq. (11), where C is the
counting observable defined in Eq. (6), we obtain

�
⟦C⟧þ ⟦C⟧⋆
hCi − hCi⋆

�
2

≥
1

jTrS½eKτρSð0Þ�j−2 − 1
; ð12Þ

which is the main result of this Letter. The left-hand side of
Eq. (12) concerns the counting observable C, whereas the
right-hand side can be calculated through HS, HS;⋆, Lm,
L⋆;m, and ρSð0Þ. The left-hand side of Eq. (12) can be
identified as a similarity between two distributions, PðcÞ
and P⋆ðcÞ, when ðhCi − hCi⋆Þ2 is sufficiently large.
Equation (12) shows that the precision of counting observ-
ables improves when the extent of irreversibility increases,
which qualitatively agrees with the classical TURs [1,2].
Classical TURs have a lower bound based on the entropy
production that characterizes the irreversibility of classical
Markov processes. Equation (12) is reminiscent of a
hysteretic TUR [56], which considers an observable of
two processes. Similarly, Eq. (12) includes the mean and
variance of two dynamics, the original and perturbed
dynamics. The Kraus operators Vm in Eqs. (3) and (4)
are not unique; a different Kraus operator corresponds
to a different continuous measurement. We can show that
Eq. (12) still holds for any continuous measurement
(any unraveling) [47]. Let us mention the equality
condition of Eq. (12). The equality of Eq. (12) requires

the following three conditions: hΨ⋆jIS ⊗ ϒðcÞjΨi has
the same direction in the complex plane for all c, ½IS ⊗
ϒðcÞ�jΨ⋆i ∝ ½IS ⊗ ϒðcÞ�jΨi for all c, and PðcÞ and P⋆ðcÞ
are defined on a set comprising two points. For instance, an
observable that simply counts the number of jumps satisfies
the last condition for sufficiently short τ, in which the
observable takes either 0 (no jump event) or 1 (one jump
event). We perform simulation analysis for Eqs. (12) and
numerically verify the bounds (see Supplemental Material
[47]). At this point, the condition gð0Þ ¼ 0 was not used;
however, it hereafter plays an important role when con-
sidering particular perturbed dynamics.
We consider a specific case of the empty perturbed

dynamics in Eq. (12), i.e., H⋆;S ¼ 0 and L⋆;m ¼ 0 for
all m. Then, the composite state of the perturbed dynamics
at t ¼ τ becomes jΨ⋆ðτÞi ¼ jψSi ⊗ j0N−1;…; 00i, which
is unchanged from the initial state. In this case, the
Loschmidt echo is η ¼ jhΨð0ÞjΨðτÞij2. Since C in
Eq. (6) assumes gð0Þ ¼ 0, hCi⋆ ¼ 0 and ⟦C⟧⋆ ¼ 0 for
the empty dynamics. Equation (12) becomes

⟦C⟧2

hCi2 ≥
1

jTrS½e−iHeffτρSð0Þ�j−2 − 1
; ð13Þ

where Heff ≡HS − ði=2ÞPm L†
mLm is the effective

Hamiltonian (note that Heff is non-Hermitian). Note that
Eq. (13) requires continuous measurement that corresponds
to Eqs. (3) and (4) [47], whereas Eq. (12) holds for an
arbitrary continuous measurement. The bound of Eq. (13)
is similar to that obtained in Ref. [30],

⟦C⟧2

hCi2 ≥
1

TrS½e−iH
†
effτρSð0ÞeiHeffτ� − 1

: ð14Þ

In the short time limit τ → 0, Eqs. (13) and (14) reduce to
the same bound ⟦C⟧2=hCi2 ≥ 1=fTrS½

P
m L†

mLmρSð0Þ�τg,
where the denominator corresponds to the dynamical
activity [57] in classical Markov processes. Using the
quantum-to-classical mapping explained above, we can
obtain a classical limit of Eq. (13) as follows:

⟦C⟧2

hCi2 ≥
1�P

ipið0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−τ

P
jð≠iÞ γji

q �−2
− 1

: ð15Þ

Similarly, the classical limit of Eq. (14) is

⟦C⟧2

hCi2 ≥
1P

ie
τ
P

jð≠iÞ γjipið0Þ − 1
; ð16Þ

where e−τ
P

jð≠iÞ γji in Eqs. (15) and (16) corresponds to the
probability of no jump within ½0; τ� starting from jbii,
which is an experimentally measurable quantity. By using
Jensen’s inequality, we can show that Eq. (15) provides a
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tighter lower bound than Eq. (16). Contrariwise, when the
system approaches the closed quantum dynamics, the lower
bound of Eq. (14) becomes tighter than that of Eq. (13)
(please see Supplemental Material [47] for details).
So far, we have considered the empty perturbed dynam-

ics. We now consider a different perturbed dynamics in
Eq. (12), a time-scaled perturbed dynamics. This case is
specified by H⋆;S ¼ ð1þ εÞHS and L⋆;m ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ ε
p

Lm for
all m, where ε ∈ R is an infinitesimally small parameter.
The Lindblad equation of Eq. (2) for the perturbed
dynamics becomes _ρS ¼ ð1þ εÞLρS, which is identical
to the original dynamics, except for its timescale. Assume
that this Lindblad equation converges to a single steady-
state density operator. Moreover, we perform a continu-
ous measurement corresponding to Eqs. (3) and (4)
assuming the condition of Eq. (7) for the counting obser-
vable. Then, for τ → ∞, according to Ref. [58], the mean
and variance of the perturbed dynamics satisfy hCi⋆ ¼
ð1þ εÞhCi and ⟦C⟧2⋆ ¼ ð1þ εÞ⟦C⟧2 [47]. This scaling
relation is intuitive; since the timescale of the perturbed
dynamics is 1þ ε times faster (when ε > 0), jump events
occur 1þ ε times more frequently within the fixed time
interval ½0; τ� for τ → ∞. However, this scaling relation
does not necessarily hold with a different continuous
measurement. The left-hand side of Eq. (12) becomes
ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ ε
p Þ2⟦C⟧2=ðε2hCi2Þ. Since jΨ⋆ðτÞi depends on

ε, we may write jΨ⋆ðτÞi ¼ jΨðτ; εÞi, where jΨðτÞi ¼
jΨðτ; ε ¼ 0Þi because ε ¼ 0 case reduces to the original
dynamics. Next, we evaluate the right-hand side of
Eq. (12). The fidelity and quantum Fisher information
are related via [59]

J ðτÞ ¼ 8

ε2
½1 − jhΨðτ; εÞjΨðτ; 0Þij� ðε → 0Þ; ð17Þ

where J ðτÞ denotes the quantum Fisher information
[60–63]. Substituting the scaling relation of the left-hand
side and Eq. (17) into Eq. (12), for ε → 0, we obtain

⟦C⟧2

hCi2 ≥
1

J ðτÞ ðτ → ∞Þ: ð18Þ

Equation (18) rederives a quantum TUR obtained in
Ref. [28] through the quantum Cramér-Rao inequality
[60–63]. In Ref. [28], J ðτÞ was explicitly evaluated and
shown to reduce to dynamical activity in the classical limit.
J ðτÞ linearly depends on τ, which contrasts with Eq. (13).
Therefore, a classical TUR comprising dynamical activity
[6] can be derived as a particular case of Eq. (12). Since
Eqs. (18) and (13) depend on τ linearly and exponentially,
respectively, Eq. (18) is tighter than Eq. (13). However,
Eq. (13) requires fewer assumptions on the dynamics and
observable; Eq. (13) holds for arbitrary dynamics and for
counting observables satisfying gð0Þ ¼ 0, whereas Eq. (18)
is valid only for steady-state dynamics (τ → ∞) and for the

counting observable, which satisfies the additional
assumption given in Eq. (7). The relative entropy between
two nearby probability distributions yields the Fisher
information, which plays a fundamental role in classical
stochastic thermodynamics [10,64–66]. Contrariwise, the
quantum relative entropy between two nearby density
operators does not yield the quantum Fisher information
[67], but the fidelity does [Eq. (17)], which indicates
that not the quantum relative entropy, but the Loschmidt
echo, provides a unified perspective on classical and
quantum TURs.
Conclusion.—In this Letter, we obtained a relation

between the Loschmidt echo and the precision of continu-
ous measurement in quantumMarkov processes, which can
be viewed as a quantum generalization of classical TURs.
Since the relations derived in this Letter exploited the
advantage of general quantum bounds, which holds for
general Hermitian operators, we can obtain other thermo-
dynamic relations for the continuous measurement through
our approach. Indeed, in our followup paper [68], we obtain
a TUR for quantum first passage processes using the same
technique. Moreover, because Eq. (12) shows that the upper
bound of the Loschmidt echo jhΨ⋆jΨij2 can be obtained
from the continuous measurement, a possible application of
Eq. (12) is related to thermodynamic inference, which is
actively studied in classical TURs [69–72].
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