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We show that a one-dimensional ordered fermionic lattice system with power-law-decaying hopping,
when connected to two baths at its two ends with different chemical potentials at zero temperature, features
two phases showing subdiffusive scaling of conductance with system size. These phases have no analogues
in the isolated system (i.e., in absence of the baths) where the transport is perfectly ballistic. In the open
system scenario, interestingly, there occurs two chemical-potential-driven subdiffusive to ballistic phase
transitions at zero temperature. We discuss how these phase transitions, to our knowledge, are different
from all the known nonequilibrium quantum phase transitions. We provide a clear understanding of the
microscopic origin of these phases and argue that the subdiffusive phases are robust against the presence of
arbitrary number-conserving many-body interactions in the system. These phases showing subdiffusive
scaling of conductance with system size in a two-terminal setup are therefore universal properties of all
ordered one-dimensional number-conserving fermionic systems with power-law-decaying hopping at zero
temperature.
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Introduction.—Normal metals (conductors) have their
own well-defined conductivity at a given temperature. For a
metal wire of cross-sectional area A, length N, conductivity
σ, and connected to two terminals at its two ends, the
conductance (i.e., inverse of resistance) G is given as
G ¼ σA=N. Importantly, since conductivity is independent
of the dimension of the metal used, if the length of the wire
is changed keeping the cross-sectional area fixed, the
conductance scales inversely with N, i.e., G ∼ N−1. This
corresponds to normal diffusive transport. In the absence of
this behavior, conductivity no longer remains as a property
of the material, but rather depends on the dimension of the
wire in a nontrivial way. Two simple examples of these are
perfect insulators (no transport) with G ∼ e−λN and perfect
conductors (ballistic transport) with G independent of N.
It has been well established that transport behavior may

deviate from the ones described above, especially for low-
dimensional systems [1–4]. Such transport behavior, where
G ∼ N−δ, with 0 < δ ≠ 1, is often called anomalous. Rapid
miniaturization of devices has taken technology to limits
where realizing such low-dimensional systems have
become a real possibility, and thus understanding their
transport properties has become imperative [5–8]. One of
the most intriguing behaviors among the anomalous trans-
port is the so-called subdiffusive transport, which corre-
sponds to δ > 1 (as opposed to superdiffusive transport for
0 < δ < 1). In this case, even though the conductivity of
the wire goes to zero as N → ∞, for any finite length, its
conductance is exponentially larger than what one would

expect for a perfect insulator. For finite-size systems,
relevant in quantum technology, quantum chemistry and
mesoscopic physics, this particular feature can make a
significant difference. Subdiffusive behavior is often
observed for systems residing at the critical regions
separating localization-delocalization transitions [9–27].
It is usually associated with the presence of correlated or
uncorrelated disorder in the system, although a complete
microscopic understanding is largely missing. To the
contrary, in this work, we reveal, and microscopically
explain, a completely different way in which subdiffusive
scaling of conductance with system length can occur in a
large class of systems, even in the complete absence of
disorder.
Specifically, we show that, a one-dimensional fermionic

wire with long-range power-law-decaying hopping con-
nected to two terminals at the two ends, surprisingly
features two phases at zero temperature, showing sub-
diffusive scaling of conductance with N in the absence of
any disorder. These unique subdiffusive phases arise due to
an interplay between the long-range hopping and the
dissipation governed by the two terminals, and have no
analog in absence of either. We observe two chemical-
potential-driven dissipative quantum phase transitions
between phases featuring subdiffusive and ballistic trans-
port [see Fig. 1]. We discuss how these phase transitions are
different from all the previously well-known dissipative
quantum phase transitions. Furthermore, we provide a clear
microscopic understanding of the subdiffusive transport by
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connecting the corresponding scaling exponent to a non-
analyticity in the dispersion relation. We also argue that
these subdiffusive phases are immune to the presence of
many-body interactions in the system as long as the net
number of particles within the system is conserved. The
subdiffusive phases are therefore universal properties of
all clean number-conserving one-dimensional fermionic
systems with power-law-decaying hopping in the two-
terminal setup.
Low-dimensional long-range lattice systems have been

realized in various controlled experimental platforms
[28–47], and have been reported to show exotic physics
like time crystals [38,46], prethermalization [34], dynami-
cal phase transitions [33,37,44,48], environment assisted
transport [40], etc. This has lead to a large number of
studies in quantum transport which is so far limited mostly
to isolated (nondissipative) systems in the presence and
absence of disorder [49–57], and a very recent study on
dissipative spin chains at infinite temperature [58]. But,
interestingly, the physics of dissipative long-range fer-
mionic systems at low temperatures, a class of which
reveals the unique universal physics described here, has
remained entirely unexplored previously.
The clean long-range hopping model.—We consider the

following one-dimensional lattice model of fermions with
long-range hopping decaying as a power law

ĤS ¼ −
XN
m¼1

�XN−m

r¼1

1

mα ðĉ†r ĉrþm þ ĉ†rþmĉrÞ
�
; ð1Þ

where ĉr is the fermionic annihilation operator at the rth
site of the system. Interestingly, this long-range model
Hamiltonian has recently been realized using Floquet
engineering technique in superconducting qubits [47].
The above system Hamiltonian can be written as,
ĤS ¼

P
N
l;m¼1Hlmĉ

†
lĉm, where the matrix H is a

Toeplitz matrix with elements given by Hlm ¼
jl −mj−α, andHll ¼ 0. The eigenspectrum of this matrix,
which corresponds to the single-particle eigenvalues and
eigenvectors of ĤS, are difficult to find analytically for
arbitrary N. But, in the thermodynamic limit, N → ∞, the
single particle eigenvalues can be obtained via a Fourier
transform, and correspond to the dispersion relation [59],
ϵðk; αÞ ¼ −2

P∞
m¼1 m

−α cosðmkÞ. The infinite series sum-
mation in the dispersion relation is absolutely convergent
for all k if α > 1. It is in this case that the thermodynamic
limit (N → ∞) is well defined. We will therefore always
consider α > 1. It can be numerically verified that the
eigenvalues of H tend to this dispersion relation in the
large N limit and the corresponding single-particle eigen-
vectors of the system are completely delocalized. This
property indicates that there should be ballistic transport
in the system [51]. On the contrary, as we will show below,
in the open system scenario, there is a surprising sub-
diffusive to ballistic phase transition as a function of
chemical potential for all α > 1 at zero temperature. We
note that the band edges of the dispersion relation corre-
spond to εð0; αÞ ¼ −2ζðαÞ, where ζðαÞ ¼ P∞

m¼1m
−α is the

Riemann-zeta function, and εð�π; αÞ ¼ 2ηðαÞ with ηðαÞ ¼P∞
m¼1ð−1Þm−1m−α being the Dirichlet-eta function.
Open system conductance at zero temperature.—To

calculate the conductance in an open quantum system
setting, we consider the two terminal transport setup, where
the system is connected to two baths at its two ends, i.e., the
first and the Nth sites. Such open system setup is exactly
what is used for realizing autonomous (continuous) quan-
tum heat engines, refrigerators, thermoelectric genera-
tors etc [4,60,61]. The left (right) bath is modeled by a
noninteracting Hamiltonian with an infinite number of
modes ĤB1

¼P∞
r¼1Ωr1B̂

†
r1B̂r1 (ĤBN

¼P∞
r¼1ΩrNB̂

†
rNB̂rN),

where B̂r1 (B̂rN) is the fermionic annhilation operator of the
rth mode of the left (right) bath. The baths are connected to
the system with the system-bath coupling Hamiltonian
ĤSB ¼ P

l¼1;N

P∞
r¼1ðκrlĉ†lB̂rl þ κ�rlB̂

†
rlĉlÞ. Initially, the

baths are assumed to be at their own thermal states with
their own temperatures and chemical potentials (μ1; μN),
while the system’s initial state is arbitrary. We are speci-
fically interested in the nonequilibrium steady state (NESS)
in the zero temperature limit and linear response regime,
μ1 ¼ μ; μN ¼ μ − Δμ;Δμ → 0.
It is possible to obtain the exact NESS properties of the

system using the nonequilibrium Green’s function (NEGF)
approach [62–64]. The retarded NEGF for such a setup is
given byGþðωÞ ¼ ½ωI −H − Σð1ÞðωÞ − ΣðNÞðωÞ�−1, where
I is the N-dimensional identity matrix, and Σð1ÞðωÞ
[ΣðNÞðωÞ] is the self-energy matrix due to the left (right)
bath. The only nonzero element in the N × N left (right)
bath self-energy matrix is the top left (bottom right)

corner element, ΣðlÞ
ll ðωÞ¼−if½JlðωÞ�=½2�g−P

R ½ðdω0Þ=
ð2πÞ�f½Jlðω0Þ�=½ω−ω0�g, l¼f1;Ng [59]. Here P denotes
principal value, and JlðωÞ is the bath spectral function,

FIG. 1. Nonequilibrium phase diagram obtained from system
size (N) scaling of zero-temperature conductance GðμÞ as a
function of chemical potential μ and long-range hopping ex-
ponent α for a one-dimensional open clean long-range system
[Eq. (1)]. The critical lines correspond to the system band edges
μ ¼ 2ηðαÞ (blue dashed line) and μ ¼ −2ζðαÞ (red line), where
ηðαÞ is Dirichlet-eta function and ζðαÞ is the Riemann-zeta
function.
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defined as JlðωÞ ¼ 2π
P∞

r¼1 jκrlj2δðω −ΩrlÞ. The zero
temperature particle conductance GðμÞ is given in terms of
the NEGF as

GðμÞ ¼ lim
Δμ→0

I
Δμ

¼ 1

2π
T ðμÞ ¼ J1ðμÞJNðμÞjGþ

1NðμÞj2
2π

;

ð2Þ

where Gþ
1NðμÞ denotes the ð1; NÞth element of the matrix

GþðμÞ, T ðωÞ is the transmission function and I ¼R
μN
μ1
½ðdωÞ=ð2πÞ�T ðωÞ is the NESS particle current. The

scaling of conductance with system-size N is used to
classify transport properties as described in the introduc-
tion. Note that, for anomalous transport, the classification
of different transport regimes in terms of conductance
scaling with system length, which is standard in an open
system setting, may not lead the to same results as its
corresponding isolated system counterpart where the
regimes are classified via time scaling of spread of
correlations [17].
Chemical-potential-driven subdiffusive to ballistic phase

transition.—We numerically calculate the exact trans-
mission function, and study the conductance scaling with
system size. Our central result is as follows. For
1 < α < ∞,

GðμÞ ∼ N−2α; ∀ μ < −2ζðαÞ; μ > 2ηðαÞ;
GðμÞ ∼ N−2; at μ ¼ −2ζðαÞ; 2ηðαÞ;
GðμÞ ∼ N0; ∀ − 2ζðαÞ < μ < 2ηðαÞ; ð3Þ

where, as mentioned before, ζðαÞ is the Riemann-zeta
function and ηðαÞ is the Dirichlet-eta function. In other
words, when the chemical potential μ is within the band of
the system, the transport is ballistic, as expected. But,
surprisingly, when μ lies outside the band of the system,
the transport is subdiffusive, with an exponent of 2α.
Moreover, when μ is located exactly at the band edges,
the transport is again subdiffusive but with an α indepen-
dent exponent. Representative plots showing the above
behavior are given in Fig. 2. Figure 2(a) shows the behavior
GðμÞ with μ for various system sizes at a chosen value of α
(α ¼ 1.75). Clearly, within the band, i.e., −2ζðαÞ <
μ < 2ηðαÞ, there is no scaling of GðμÞ with N, confirming
perfect ballistic behavior, whereas outside that regimeGðμÞ
scales with system size. Figure 2(b) shows the same result
as in Fig. 2(a) with the y axis now scaled by N2α. All data
points outside the band of the system collapse perfectly,
thereby confirming the subdiffusive scaling. Likewise, the
α independent scaling at the band edges can also be
checked (not shown in the figure for α ¼ 1.75) numerically.
Interestingly, this behavior is seen at all values of α > 1.
Figure 2(c) shows conductance scaling with system size at
values close to the system band edges for a different value

of α (α ¼ 2). The behavior consistent with Eq. (3) is clearly
observed here.
Origin of the subdiffusive phases.—The origin of these

surprising subdiffusive phases for chemical potentials out-
side the band of the system can be traced to the non-
analyticity property of the dispersion relation at itsminimum
value at k ¼ 0. From Eqs. (2), it is evident that the system
size scaling of conductance originates from that of Gþ

1NðμÞ.
Since the baths are attached only to the first and the last sites,
we conjecture that, for large N, system size scaling of
Gþ

1NðμÞwill be same asgþ
1NðμÞ, wheregþðμÞ ¼ ½ðμ − iϵÞI −

H�−1 is the retarded Green’s function of the system in the
absence of the baths. That is, Gþ

1NðμÞ ∝ gþ
1NðμÞ with the

proportionality constant being independent ofN. Also, since
the system is clean (ordered), in the N → ∞ limit, one can
obtain the bare retarded Green’s function via a Fourier
transform, gþ

pqðμÞ ¼ limϵ→0

R
dkgþðk; μÞe−ikjp−qj, where

gþðk; μÞ ¼ ½μ − εðk; αÞ − iϵ�−1. Combining all of these,
we have, for large N,

Gþ
1NðμÞ ∝ lim

ϵ→0

Z
π

−π
dk

e−ikN

μ − εðk; αÞ − iϵ
: ð4Þ

The above heuristic expression, in combinationwith Eq. (2),
relates the scaling of conductance with system size of an
open system with spectral properties of the isolated system
in the thermodynamic limit.
The major contribution to the above integral comes from

the singularities of the integrand. It can be checked that k ¼
0 is always a singular point because εðk; αÞ is nonanalytic
at k ¼ 0, limk→0f½∂pεðk; αÞ�=½∂kp�g → ∞; ∀ p > α − 1.
To capture the effect of this nonanalyticity, we derive a

(a) (b)

(c)

FIG. 2. (a) Zero-temperature conductance GðμÞ as a function of
chemical potential μ, at a chosen value of α ¼ 1.75 for various
system sizes N. The two vertical lines correspond to band-edges
μ ¼ −2ζðαÞ and μ ¼ 2ηðαÞ. (b) The same plot as in (a) but with
the y-axis scaled by N2α. (c) The scaling of GðμÞ with system size
at various values of μ, for α ¼ 2.0. The black dashed lines are fits
of N−2α. The black dotted lines are fits of N−2. For the plots, the
bath spectral functions are chosen to be J1ðωÞ ¼ JNðωÞ ¼
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω=ΛÞ2

p
, with Λ ¼ 8, Γ ¼ 10. All energy scales are in

units of nearest-neighbor hopping strength.
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nontrivial nonanalytic small k expansion of εðk; αÞ
for noninteger α > 1 [59], εðk; αÞ ≃ −2½ζðαÞ − a1jkjα−1−
a2k2�; ∀ jkj ≪ 1 where a1 and a2 are real numbers. The
presence of jkjα−1 makes the above expression explicitly
nonanalytic, clearly distinguishing it from a standard Taylor
expansion. While evaluating the integral in Eq. (4) via
contour integration, the noninteger value of α leads to a
branch whose contribution to Eq. (4) can be shown to scale
with system size as N−α [59]. Though these results are
obtained for noninteger values of α, integer values of α can
be included by assuming an arbitrarily small fractional part.
Now, when μ is within the band of the system,

−2ζðαÞ < μ < 2ηðαÞ, there are additional poles on the real
line. It can be checked easily that such poles can at best
generate an oscillatory behavior with N and thus cannot
provide a scaling with N. These poles within the band
therefore gives the leading behaviorGþ

1NðμÞ ∼ N0 implying
ballistic transport. When μ is below the band of the system,
i.e., μ < −2ζðαÞ, the additional poles on the real-line do not
exist, and the main contribution to the integral comes from
the nonanalytic point k → 0. As mentioned above, in this
case, the contour integration generates a scaling of the form
Gþ

1NðμÞ ∼ N−α ∀ μ < −2ζðαÞ, leading to a subdiffusive
exponent of 2α from Eq. (2). On the other hand, when
μ > 2ηðαÞ, one may argue that the main contribution to the
integral comes from k ∼�π corresponding to the upper
band edge, εð�π; αÞ ¼ 2ηðαÞ, where the denominator in
Eq. (4) would be minimum. However, an expansion about
this point, εðk� π; αÞ ≃ 2ηðαÞ − 2a2ð1 − 23−αÞk2, jkj ≪ 1,
shows that, unlike the lower band edge at k ¼ 0, this point
is analytic, and its contribution to the integral in Eq. (4)
decays exponentially with N [59]. Consequently, for large
enough N, the leading contribution once again stems from
the singularity at k ¼ 0, and giving Gþ

1NðμÞ ∼ N−α ∀ μ >
2ηðαÞ, leading to the same subdiffusive exponent.
However, interestingly, since the denominator in Eq. (4)
is now large, the value of Gþ

1NðμÞ, and therefore the
conductance, for μ > 2ηðαÞ is much smaller than that for
μ < −2ζðαÞ, even though the system size scaling is the
same. This is clearly seen in all the plots of Fig. 2.
A more careful analysis is required at the critical points

μ ¼ −2ζðαÞ; 2ηðαÞ. At any finite N, the critical μ values
always lie slightly outside the system band, but the
minimum and maximum eigenvalues of H approach these
values with increase in N. We find that it becomes difficult
to use Eq. (4) to capture this behavior. Nevertheless, the
conjecture Gþ

1NðμÞ ∝ gþ
1NðμÞ still holds, and it can be

directly numerically checked for finite N that gþ
1N ½−2ζðαÞ�;

gþ
1N ½2ηðαÞ� ∼ N−1, independent of α [59]. This therefore

clearly gives the origin of N−2 scaling of conductance
at μ ¼ −2ζðαÞ; 2ηðαÞ.
A different type dissipative quantum phase transition.—

Since GðμÞ ∝ jGþ
1NðμÞj2, a non-analytic change in GðμÞ

corresponds to a non-analytic change in NESS, thereby

pointing to a dissipative quantum phase transition. This
type of dissipative quantum phase transition, to our knowl-
edge, has not been discussed before. In existing examples
of dissipative phase transitions in the literature that we
know of (for example, Refs. [65–79]) the phase transition
occurs on changing either a parameter in the system
Hamiltonian, or the strength of the system-bath couplings.
In contrast, here, the phase transition occurs as a function
of the chemical potentials of the baths. These are not
Hamiltonian parameters, either of the system or of the
baths, but rather are the thermodynamic parameters fixed
by the initial state of the baths. These control the zero
temperature noise that originates from the baths, which, in
turn control the NESS.
As is clear from the above results, this phase transition

stems from the nonanalyticity of the dispersion relation of
the system in the thermodynamic limit. It is therefore a
property of the system in the large N limit, and is
completely independent of details of the baths, as long
as there is a unique NESS. In fact to guarantee a unique
NESS, only two properties of the bath spectral functions are
required: (a) the spectral functions for both the baths must
be continuous, (b) the band of the baths must encompass
the band of the system [64]. Notably, the strength of
system-bath coupling, while determining the value of
conductance, does not affect the system-size scaling
of conductance. This is evident from validity of the
conjecture Gþ

1NðμÞ ∝ gþ
1NðμÞ, and can also be verified

numerically [59]. However, the presence of the baths are
crucial to allow subdiffusive transport at the chemical
potentials beyond the system bandwidth. The isolated
system at such chemical potentials would either be com-
pletely empty or completely filled, thereby having no
possibility of transport. Thus, the subdiffusive behavior
observed here has no isolated system analog.
This phase transition is clearly a quantum phase tran-

sition, as it occurs strictly at zero temperature. At any finite
temperature, at all values of chemical potentials of the
baths, calculation of current or conductance will have finite
contribution from energies within the system energy bands.
At low temperatures, for chemical potentials outside the
system band, this contribution will be small, but as system
size is increased, will eventually be the leading contribu-
tion. So, at finite but low temperatures, for chemical
potentials outside the system band, there will be a crossover
from the subdiffusive to the ballistic behavior as a function
of system size. Thus, like standard quantum phase tran-
sitions, this phase transition gives rise to a finite size
crossover at finite but low temperatures.
It is important to note that the standard Lindblad

equation approaches in local and global (eigenbasis) forms
[4,80–95] cannot capture these subdiffusive phases. This is
because such approaches, by construction, neglect contri-
butions coming from bath energies which are away from
system energy scales. Such an equation would therefore
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wrongly predict zero conductance for chemical potentials
outside the system band at all system sizes [59]. Whether
more refined quantum master equation approaches
[96–101], including the Redfield equation [4,80,86,93],
can capture the subdiffusive behavior remains to be seen
and requires further investigation.
Universality of the subdiffusive phases.—When

μ ≤ −2ζðαÞ, it is intuitive and can be numerically checked
[59] that there is a subextensive number of particles in the
system. If a number-conserving many-body interaction
term (i.e., higher than quadratic term, for example,
Ĥint ¼

P
l;m Vlmĉ

†
lĉlĉ

†
mĉm, ĤS → ĤS þ Ĥint) is now

switched on, at large enough N, due to extremely low
particle density in the system, it will play a negligible role
for μ ≤ −2ζðαÞ. A similar argument, in terms of holes
rather than particles, can be made for μ ≥ 2ηðαÞ. Thus, the
subdiffusive phases for chemical potential outside the
system band, as well as the critical points, are robust
against the presence of arbitrary number-conserving
many-body interactions in the system. Therefore they are
universal.
For μ < −2ζðαÞ [μ > 2ηðαÞ], the intuitive picture that

emerges is that few particles (holes) tunnel into the system
from one bath due to quantum fluctuations, and then hop
into the other bath with essentially a single long-range hop
of amplitude ∼jN−αj2. This is consistent with the scaling
GðμÞ ∼ N−2α. However, such a simple picture does not
explain the GðμÞ ∼ N−2 scaling at the critical points
μ ¼ −2ζðαÞ; 2ηðαÞ. Moreover, the scaling at the critical
points is superuniversal since it is also independent of α,
which controls the effective range of hopping. Conversely,
for −2ζðαÞ < μ < 2ηðαÞ, there will be a finite particle
density in the system and the many-body interactions can
have a nontrivial effect that can change the nature of the
transport, making this regime nonuniversal.
Direct demonstration of above statements in presence of

many-body interactions is currently beyond the state-of-
the-art numerical techniques. But, interestingly, long-range
magnetization-conserving spin Hamiltonians with power-
law-decaying interactions have been realized in several
experimental platforms [39–44]. These can be mapped via
Jordan-Wigner transformation into number-conserving fer-
mionic Hamiltonians with power-law-decaying hopping
and many-body interactions [59]. This makes experimental
verification of the universal subdiffusive phases plausible.
The effect of uncorrelated or correlated disorder [57] on
such subdiffusive phases remains to be seen.
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