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Unconventional photon blockade refers to the suppression of multiphoton states in weakly nonlinear
optical resonators via the destructive interference of different excitation pathways. It has been studied in a
pair of coupled nonlinear resonators and other few-mode systems. Here, we show that unconventional
photon blockade can be greatly enhanced in a chain of coupled resonators. The strength of the nonlinearity
in each resonator needed to achieve unconventional photon blockade is suppressed exponentially with
lattice size. The analytic derivation, based on a weak drive approximation, is validated by wave function
Monte Carlo simulations. These findings show that customized lattices of coupled resonators can be
powerful tools for controlling multiphoton quantum states.
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Photon blockade—the use of optical nonlinearity to
suppress multiphoton quantum states—is a mechanism for
generating nonclassical light through coherent optical
illumination [1–4], with applications in quantum comput-
ing, quantum simulation, and other emerging quantum
technologies [5–10]. The conventional photon blockade
effect requires strong optical nonlinearities, as it relies on
interactions between resonant single-photon states and
off-resonant multiphoton states, so the interaction strength
has to be much larger than the cavity decay rate. This
regime can be achieved in cavity QED systems [6,11–21],
superconducting circuits [22,23], optomechanical resona-
tors [23–26], and other systems [27,28]. Weak nonlinear-
ities, however, are much easier to realize, such as in
resonators made of common nonlinear optical materials.
Remarkably, it is possible to efficiently suppress multi-
photon states even in the weakly nonlinear regime,
through the phenomenon of unconventional photon block-
ade (UPB). Liew and Savona showed some years ago that
in a system of two coupled nonlinear resonators, careful
parameter tuning can enable destructive interference
between different excitation pathways for the formation
of two-photon states in one resonator, even when the
photon interaction strength is smaller than the cavity
decay rate [29]. Subsequently, the conditions for UPB
to occur have been extensively studied [30–35], and the
phenomenon has been realized in experiments [36,37].
Other ways of realizing UPB using different setups and
different quantum interference schemes have also been
proposed [31,38–48], and similar ideas have been
explored for other forms of multiphoton state control in

weakly nonlinear systems, such as for creating entangled
photon sources [49,50].
In the context of classical optics and photonics, synthetic

lattices such as photonic crystals [51] and photonic
metamaterials [52,53] have proven to be versatile platforms
for wave manipulation. By offering a richer set of customi-
zable degrees of freedom, such as lattice symmetries, they
have the potential to outperform devices composed of
individual or a few coupled optical cavities, or even access
qualitatively different behaviors. For instance, photonic
lattices can host “bound states in the continuum,” whose
decay rates vanish due to destructive interference of
numerous decay pathways [54].
In this Letter, we show that a lattice of coupled resonators

can achieve UPB at much lower levels of optical nonlinearity
than previously studied two-resonator setups. We consider
resonators arranged in a dimer chain, or Su-Schrieffer-
Heeger (SSH) lattice, a one-dimensional model whose
single-particle properties have been extensively studied
[55]. By analyzing multiphoton states in this system and
exploiting lattice features such as chiral symmetry, we derive
analytic expressions for the one- and two-photon quantum
amplitudes to leading order in the intercell coupling.
Remarkably, we find that the nonlinear Kerr coefficient
required for UPB in a given signal resonator is suppressed
exponentially in the number of sites. Our theory predicts the
required resonator frequency detunings and cavity decay
rates, which form a striking pattern of complex roots in a 2D
parameter space. For the limiting case of a dimer (i.e., two
resonators), our formulas reproduce previous results [31].
Wave function Monte Carlo (WFMC) simulations of the
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multiphoton system agree well with the analytic results, and
help quantify the limits on photon antibunching imposed by
pure dephasing. Recently, two-mode UPB has been demo-
nstrated with quantum dot cavities [36] and superconducting
circuits [37], and our findings may help in designing lattice-
based single-photon sources on weakly-nonlinear platforms
such as silicon photonics [39,56].
Consider coupled optical resonators with identical physi-

cal properties and weak Kerr-type nonlinearity, arranged in
a dimer chain (or SSH lattice [55]) as shown in Fig. 1(a).
The number of sitesN is even. In the absence of driving and
dissipation, the Hamiltonian is H0 ¼ Hc þHp þHnl,
where

Hc ¼
�XN=2

j¼1

a†2j−1a2j þ t
XN=2−1

j¼1

a†2ja2jþ1

�
þ H:c:;

Hp ¼ E
XN
j¼1

a†jaj; Hnl ¼ α
XN
j¼1

a†ja
†
jajaj: ð1Þ

Here, að†Þj is the photon annihilation (creation) operator on
site j, t is the intercell hopping, E is the on-site single-
photon energy, α ∈ R is the Kerr coefficient, and H.c.
stands for the Hermitian conjugate. The intracell hopping is
normalized to unity (in nanophotonic systems, this is
determined by local features such as inter-resonator spac-
ings), so parameters such as E, α, and t are expressed

relative to this energy scale. We choose positive couplings,
but negative couplings can be dealt with by redefining the
operators for even j. Note that although the SSH model is
well known for hosting topologically protected single-
particle eigenstates at boundaries and domain walls, this
behavior is not used in the present work; our chain has no
domain walls, and (since N is even) no single-particle
topological end states. More pertinent is the SSH model’s
chiral symmetry, which ensures that the single-photon
spectrum is symmetric around zero, giving rise to a family
of noninteracting two-photon zero modes formed by pairs
of upper- and lower-band single-photon states. This is a
generalization of the single-dimer (N ¼ 2) model, where a
similar chiral symmetry is used to set up UPB [29].
Let the sites be coherently driven by the Hamiltonian

Hd ¼
XN
j¼1

Fja
†
j þ H:c:; ð2Þ

where Fj is the excitation coefficient on site j. Figure 1(a)
depicts the case where only the first site is driven, Fj ¼
F1δ1j. The evolution of the density matrix ρ is given by the
Lindblad master equation [57]

iℏ
dρ
dt

¼ ½Htot; ρ� þ
iγ
2

XN
j¼1

ð2ajρa†j − a†jajρ − ρa†jajÞ; ð3Þ

whereHtot ¼ H0 þHd. The terms in parentheses represent
environmental interactions that induce (i) deterministic on-
site decays and (ii) stochastic quantum jumps stemming
from the fluctuation-dissipation theorem. Both of these
effects will be accounted for when we later solve Eq. (3)
using stochastic WFMC simulations [58–61]. For now, we
pursue an approximate solution by neglecting the fluctua-
tions and absorbing the deterministic decay terms into the
Hamiltonian. We define

H0
p ¼ z

XN
j¼1

a†jaj; where z ¼ E −
iγ
2
; ð4Þ

and consider the semiclassical regime where time evolution
is well described by the Schrödinger equation with the non-
Hermitian Hamiltonian H ¼ Hc þH0

p þHnl. Flayac and
Savona have argued that this is valid in the “weak drive”
limit Fj → 0, since stochastic jumps are rare when photon
occupation numbers are low [40].
The steady state solution has the form

jψi ¼
X∞
k¼0

jψ ðkÞi; ð5Þ

where jψ ðkÞi is the projection of the full wave function into
the k-photon subspace (jψ ð0Þi is the vacuum state). In the

(a)

(b)

FIG. 1. (a) Schematic of a dimer chain of optical resonators.
Site j ¼ 1 is coherently driven, and site N − 1 is the signal
resonator. Each resonator has single-photon energy E, Kerr
coefficient α, and decay rate γ. Dashed boxes indicate the unit
cells; intra- and intercell couplings are 1 and t, respectively.
(b) Optimal Kerr coefficients for UPB in lattices of different N,
with t ¼ 0.1 and γ ¼ 0.3, 0.4, 0.5. The solid curves show the
analytic approximation (17), and the discrete data points are
numerical solutions to the weak drive equations.
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weak drive limit, the amplitude for the higher photon
number states is negligible. Truncating at k ¼ 2, we
obtain [62]

jψ ð1Þi ¼ −H−1Hþjψ ð0Þi; ð6Þ

jψ ð2Þi ¼ −H−1Hþjψ ð1Þi; ð7Þ

where Hþ ¼ P
j Fja

†
j . For k ¼ 1, we adopt the eigenstate

basis of Hð1Þ
c (the projection of Hc to the 1-photon

subspace), defined by

Hð1Þ
c jφni ¼ ϵnjφni: ð8Þ

Hence, the solution to Eq. (6) can be written as

jψ ð1Þi ¼
X
n

fnjφni
zþ ϵn

; fn ¼
XN
j¼1

Fjhφnjji; ð9Þ

where jji≡ a†j jψ ð0Þi is the state in which only site j is
occupied by a single photon. Details of the derivation are
given in the Supplemental Material [62]. Next, for k ¼ 2,
we define a basis formed by tensor products of the single-
particle eigenstates, jφmni≡ jφmi ⊗ jφni, and seek per-
turbative solutions to Eq. (7) of the form

jψ ð2Þi ≈ jψ ð2Þ
0 i þ αjψ ð2Þ

1 i; ð10Þ

where the solution in the absence of nonlinearity is

jψ ð2Þ
0 i ¼ 1ffiffiffi

2
p

X
mn

fmfn
ðzþ ϵmÞðzþ ϵnÞ

jφmni; ð11Þ

and the perturbative correction can be shown to be [62]

jψ ð2Þ
1 i¼

X
imnpq

jφmni
−

ffiffiffi
2

p
fpfqhφmnji;iihi;ijφpqi

ðzþϵpÞðzþϵqÞð2zþϵmþϵnÞ
; ð12Þ

where ji; ii≡ jii ⊗ jii.
Suppose only the first site is driven, so fn ¼ F1hφnj1i.

The N ¼ 2 lattice (i.e., a single dimer) is known to exhibit
UPB in site 1, which serves as both the drive and signal
resonator [29]. We will generalize this to larger N by
demonstrating enhanced UPB on a designated signal
resonator on site N − 1 (i.e., one site away from the end
of the chain, opposite to the drive cavity), as shown in
Fig. 1(a). UPB shall be achieved if the equal time second-
order photon correlation in the signal resonator,

gð2Þs ð0Þ ¼ 2
jhN − 1; N − 1jψ ð2Þij2

jhN − 1jψ ð1Þij4 ; ð13Þ

vanishes. Note that plugging only Eq. (11) into Eq. (13)

gives gð2Þs ð0Þ ¼ 1 (i.e., in the linear regime the emission is
always coherent).
If the intercell coupling is weak (t ≪ 1), we can estimate

the two-photon state by applying Laurent series expansions
to Eqs. (11) and (12) in the domain t < jzj < 1. The
derivation, given in the Supplemental Material [62], utilizes

the chiral symmetry of Hð1Þ
c . The result is

hN − 1; N − 1jψ ð2Þ
0 i ≈ F2

1ffiffiffi
2

p tN−2z2;

hN − 1; N − 1jψ ð2Þ
1 i ≈ F2

1ffiffiffi
2

p ð−1ÞN2þ1ðN − 3Þ!!tN−2

ðN − 2Þ!!ð2zÞN−1 : ð14Þ

Referring to Eq. (10), UPB is achieved when

α ≈
ð−1ÞN2
4

ðN − 2Þ!!
ðN − 3Þ!! ð2zÞ

Nþ1: ð15Þ

Notably, this is independent of the drive amplitude F1.
We now restrict our discussion to α > 0 for simplicity of

presentation (the α < 0 case is very similar). From Eq. (15),
z=jzj is one of the (N þ 1) complex roots of ð−1ÞN=2. We
select the root with the most negative imaginary part,
corresponding to the experimentally preferred situation
where α=γ, the nonlinearity strength relative to the cavity
decay rate, is minimal; choosing a different root would only
slightly modify the following results. Then E and α can be
expressed in terms of γ, as follows:

E ¼ γ

2
cot θ; ð16Þ

α ¼ 1

4

ðN − 2Þ!!
ðN − 3Þ!! ðγ csc θÞ

Nþ1; ð17Þ

θ ¼ N
N þ 1

π

2
: ð18Þ

For N ¼ 2, this reproduces the previously derived single-
dimer result [31]. For larger N, given any decay rate γ
smaller than the intracell coupling strength (i.e., γ < 1),
Eq. (17) states that the nonlinearity strength α required for
UPB decreases exponentially with the lattice size N. This is
the primary finding of the present work.
Instead of using the series expansions, we can solve the

single-photon eigenproblem (8) numerically, and plug the
results into the weak drive equations (9) and (11)–(12) to
obtain the single-photon and two-photon wave functions.
[This is more efficient than directly solving Eqs. (6)–(7) as
it avoids a matrix inversion for each z.] Figure 1(b) plots the
optimal Kerr coefficients versus lattice size N, as given by
the analytic expression (solid curves) and the numerical
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solutions to the weak drive equations (discrete points). We
find good agreement between the two.
The vanishing of the two-photon signal for specific z

is a robust feature, since these are exact zeros of the regu-
lar function hN − 1; N − 1jψ ð2Þi in the complex z plane.
Although Eq. (17) gives approximate locations for the
zeros, valid for t ≪ 1, small corrections merely shift the
zeros; they cannot be eliminated except by annihilation
with poles arriving from elsewhere in the complex plane.
To show this, Fig. 2 plots the complex argument of
hN − 1; N − 1jψ ð2Þi versus z, obtained numerically from
the weak drive equations for various N. Here and in the
following numerical examples, we choose t ¼ 0.1 and
different α for each N. We observe phase singularities at
discrete z points, corresponding to analytic zeros, occurring
in the predicted pattern of roots of ð−1ÞN=2. With increasing
N, smaller values of α are required for the zeros to appear at
comparable jzj, as expected. Experimentally, the fact that
the UPB effect originates from analytic zeros implies that it
is robust against disorder, which merely shifts the optimal
values of z [62].
To verify the above results, we perform WFMC simu-

lations [58–61,63], which solve Eq. (3) including the
effects of stochastic quantum jumps. Figure 3(a) compares

the gð2Þs ð0Þ calculated by the two methods, for a lattice of

N ¼ 6 sites. The WFMC simulations use per-site Fock
cutoffs balancing accuracy and computational cost [62],

and produce gð2Þs ð0Þ from the full multiphoton state rather
than its low-occupation approximation (13). The results
shown here use drive amplitude F1 ¼ 10−4, but almost
identical outcomes are obtained for other choices of
F1 ≪ 1 [62]. The WFMC and weak drive calculations
give very similar results, particularly with regard to the
parameter values where photon antibunching occurs. The
results for N ¼ 2 and N ¼ 4 show similar good agreement,
as shown in the Supplemental Material [62].
Figure 3(b) shows the unequal time second-order corre-

lation gð2Þs ðτÞ [62], calculated with WFMC for lattices of size
N ¼ 2, 4, 6 (with each lattice tuned to its optimal point). For
N ¼ 2 (a single dimer), the correlation has previously been
shown to oscillate with τ [29]. The behavior for larger values
of N is similar, with the oscillation frequency not signifi-
cantly influenced by N. Till now, our discussion bases on a
normalization J ¼ 1. If we forgo the normalization and
make J tunable, we can show that for the same nonlinearity
strength, a longer dimer chain allows a smaller optimal J to
achieve UPB. This indicates that a longer dimer chain allows
for longer antibunching timescale, which is favorable in
experiments [62].
In systems with significant environmental interactions,

UPB may be constrained by pure dephasing processes such
as coupling to background phonon modes [29,39,64],
distinct from the dissipation-induced quantum jumps con-
sidered thus far. To investigate this, we performed a set of
WFMC simulations with the term

i
κ

2

X
j

ð2a†jajρa†jaj − a†jaja
†
jajρ − ρa†jaja

†
jajÞ ð19Þ

added to the Lindblad master equation [29]. Figure 3(c)

shows the z dependence of gð2Þs ð0Þ for N ¼ 4 using
dephasing rates κ ¼ 10−3α, 0.1α, and α. We find that
excessively strong pure dephasing “smears out” the zeros

of gð2Þs ð0Þ. Figure 3(d) plots the dependence of gð2Þs ð0Þ on
the dephasing rate for lattices of size N ¼ 2, 4, and 6,
indicating that photon antibunching requires κ to be small
compared to α. This must be accounted for if UPB is to be
achieved in large-N lattices with extremely weak non-
linearities. A previous study of silicon photonic crystal
cavities estimated a pure dephasing rate of κ ≈ 10−7γ
at room temperature [39]; if so, even the N ¼ 8 lattice,
which requires α ≈ 6.6 × 10−5γ, would be in the regime of
negligible pure dephasing.
The finding of exponential UPB enhancement points to

interesting opportunities for using photonic lattices to
manipulate multi-photon quantum states. The enhancement
appears to stem from the exponential scaling of the number
of spatial excitation pathways with lattice size; tiny shifts
of these pathways, induced by an exponentially weak

(a) (b)

(d)(c)

FIG. 2. Complex argument of hN − 1; N − 1jψ ð2Þi, the two-
photon amplitude in the signal resonator, plotted versus Re½z� ¼
E and Im½z� ¼ −γ=2. The heat maps are obtained by solving the
weak drive equations numerically, without the analytic approxi-
mations, using intracell coupling t ¼ 0.1 and different values of
N, α: (a) N ¼ 2 with α ¼ 10−2, (b) N ¼ 4 with α ¼ 2 × 10−3,
(c) N ¼ 6 with α ¼ 2 × 10−4, and (d) N ¼ 8 with α ¼ 2 × 10−5.
The dashed circles indicate the optimal values of jzj predicted by
the analytic expression (15).
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nonlinearity, can thereby achieve destructive interference of
the two-photon amplitude in a signal cavity. More gen-
erally, the lattice’s larger Hilbert space offers more room to
find a global steady state in which the reduced density
matrix at the signal cavity satisfies the relevant constraints.
The chiral symmetry of the lattice also plays an important
role in setting up the right interference conditions between
single-photon eigenmodes in different bands [62]. In the
future, related effects could be explored in more compli-
cated systems such as two-dimensional lattices, as well as
exploiting special lattice phenomena such as topologically
protected single-photon states [65,66]. These ideas might
also be used to implement single-photon sources using
silicon photonics, or other photonic platforms with weak
nonlinearities.
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