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We investigate the susceptibility of long-range ordered phases of two-dimensional dry aligning active
matter to population disorder, taken in the form of a distribution of intrinsic individual chiralities. Using a
combination of particle-level models and hydrodynamic theories derived from them, we show that while in
finite systems all ordered phases resist a finite amount of such chirality disorder, the homogeneous ones
(polar flocks and active nematics) are unstable to any amount of disorder in the infinite-size limit. On the
other hand, we find that the inhomogeneous solutions of the coexistence phase (bands) may resist a finite
amount of chirality disorder even asymptotically.
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Many if not most active matter systems are made of
interacting units that convert energy gathered from their
environment to displace themselves. In most models and
theories, these self-propelled particles are taken identical
and they evolve in a homogeneous medium. Of course,
particles in real systems are never strictly identical, nor do
they move, in the common case where they are in direct
contact with a substrate, in a pristine space. To what extent
the spectacular collective phenomena of active matter
uncovered in models and theories resist population or
environment disorder is thus a valid question.
Recent works have made significant progress regarding

the effects of heterogeneous substrates (spatial quenched
disorder) on active matter [1–18]. As often, attention
focused mostly on “polar flocks,” the nickname for the
homogeneous collective motion phase exhibited by self-
propelled particles locally aligning their velocities against
some noise, as in the Vicsek model and the Toner-Tu theory
[19–24]. Even though the matter is not yet fully settled, it
was found that the true long-range polar order present even
in two dimensions (2D) is deeply modified and sometimes
broken by any amount of quenched disorder.
Is orientationally ordered active matter equally suscep-

tible to population disorder? Only a few active systems with
heterogeneous population have been studied so far [25–35].
Again, most of these works deal with aligning self-
propelled particles and investigate the fate of collective
motion phases. The population disorder considered takes
the form of either two subpopulations, each made of
identical particles, or truly distributed disorder, with each
particle assigned some individual parameter. While some of
these works have revealed interesting phenomena, such
as the nonreciprocal phase transitions of [35], others did

consider the robustness of polar flocks and all concluded,
often implicitly, that they resist a finite amount of disorder.
This conclusion was in particular reached for systems with
chirality disorder, in which self-propelled particles each
possess an intrinsic tendency to turn either clockwise (CW)
or counterclockwise (CCW), but with the total population
remaining globally achiral [30,31].
In short, polar flocks seem sensitive to spatial quenched

disorder, but robust to finite amounts of population disorder.
In the latter case, though, only relatively small systems were
considered, and no finite-size study was provided.
In this Letter, we thoroughly investigate the susceptibil-

ity of long-range ordered phases of 2D dry aligning active
matter to chirality disorder. Using both particle-level
models and hydrodynamic theories derived from them,
we show that, asymptotically, any amount of this type of
disorder breaks both polarly and nematically ordered
homogeneous phases. On the other hand, we find that
the traveling Vicsek bands characterizing the coexistence
phase in the polar case may resist a finite amount of
chirality disorder. We provide a brief description of the
chirality-induced phases replacing the long-range ordered
ones and rough phase diagrams, but defer their detailed
study to a future publication [36].
We consider point particles i ¼ 1;…; N, endowed with

an intrinsic frequency ωi, which move at constant speed v0
in a square domain of linear size L with periodic boundary
conditions. Their positions ri and orientations θi evolve in
continuous time:

_ri ¼ v0 eðθiÞ; ð1aÞ
_θi ¼ ωi þ κhsin αðθj − θiÞij∼i þ

ffiffiffiffiffiffiffiffi
2Dr

p
ηi; ð1bÞ
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where eðθÞ is the unit vector along θ, the average h� � �ij∼i is
taken over all particles within unit distance of ri, and ηi is a
uniform white noise drawn in ½−π; π�. For α ¼ 1, particles
align ferromagnetically, like in the Vicsek model, while
alignment is nematic for α ¼ 2. Both cases are considered
below. Finally, the individual frequencies ωi are drawn
from a zero-mean distribution. Here, we study two cases: a
Gaussian distribution of rms ω0 and a bimodal distribution
where half of the particles have frequency þω0 and the
other half −ω0.
In the pure, disorderless case of identical particles

(ωi ¼ 0; ∀ i), one finds the typical phase diagram of
Vicsek-style models: at any global density ρ0 ¼ N=L2,
decreasing the noise strength Dr or, equivalently, increas-
ing the coupling strength κ, one transits from a disordered
gas to a homogeneous ordered liquid with nontrivial
fluctuations. This transition is not direct, but via a coex-
istence phase in which particles organize themselves in
dense, ordered bands evolving in a residual sparse gas [24].
Chirality disorder introduces another important parameter,

the distribution width ω0. Below we present results obtained
at fixed density of particles ρ0 ¼ 1, varying Dr (with fixed
κ ¼ 1) and ω0. All simulations presented here were per-
formed at v0 ¼ 1 using an explicit Euler scheme with time
step 0.1. Phase diagrams at fixed, finite-size L ¼ 256 in this
ðω0; DrÞ plane are presented in Fig. 1 for both ferromagnetic
(α ¼ 1) and nematic (α ¼ 2) alignment, and for both
Gaussian and bimodal distribution of frequencies. Typical
snapshots representing most involved phases are shown in
Fig. 2. Since here we are chiefly concerned with the fate of
the phases present in the pure case under the influence of
chirality disorder, a detailed study of the phase diagrams is
beyond the scope of this Letter and will be presented
elsewhere [36]. The next paragraph only provides a brief
synthetic description, stressing the similarities between the
four cases studied.
The homogeneous ordered liquid phases and the coex-

istence band phases are broken at strong enough disorder,
giving way to density-segregated phases unknown in the
pure case. With ferromagnetic alignment (Fig. 1, left),
particles are then also spontaneously chirality segregated
into dense, locally polarly ordered CW and CCW struc-
tures. In the Gaussian case, only axisymmetric vortices
appear [Fig. 2(c)] [39]. In the bimodal case, vortices
themselves give way, at higher ω0 values, to rotating polar
packets [Fig. 2(d)], which have a global polarity that rotates
in time (contrary to vortices). With nematic alignment
(Fig. 1, right), similarly to the ferromagnetic case, chirality-
sorted rotating polar packets are observed with bimodal
disorder [Fig. 2(h)]. Other phases are not chirality sorted.
For both types of disorder, well-formed nematic vortices
[Fig. 2(g)] are present for Dr values roughly corresponding
to the range over which the homogeneous nematic is
observed in the pure case. For stronger noise, the nematic
bands of the pure case become an active foam, i.e., a

constantly rearranging network of thin nematic bands
[Fig. 2(f)].
As seen above for L ¼ 256, the pure-case ordered liquid

phases are observable at finite values of ω0 [examples are
given in Figs. 2(a) and 2(e)]. The presence of chirality
disorder is reflected in the bimodal distribution of the
orientations of particles (not shown, but see [30]).
However, the liquid phases do not survive the L → ∞
limit: choosing Dr values well into the liquid phase in the
pure case, we estimated, for various system sizes, the
maximum disorder value ω�

0 beyond which global order
breaks down due to the emergence of vortices [40]. As
shown in Fig. 3(a), ω�

0 ∼ L−γ with γ ≃ 0.6, indicating that
the parameter region where the ordered fluid can be
observed shrinks with increasing system size, both in the
ferromagnetic and nematic cases, for both Gaussian and
bimodal disorder.
In contrast, ω�

0 does not vanish when L → ∞ at a Dr
value chosen to be at the level of the traveling (Vicsek)
band phase (not shown). For large systems with ferromag-
netic alignment, one observes the band-vortices transition
at more or less the same ω�

0 value, but with a region of
coexistence between the two phases [Fig. 3(b)]. The Vicsek
bands are thus robust structures that can survive chirality
disorder and even coexist with chiral structures.
To be complete, let us describe the fate of the nema-

tic coexistence phase. In systems of moderate size, one

(a) (b)

(c) (d)

FIG. 1. Phase diagrams in the ðω0; DrÞ plane (ρ0 ¼ κ ¼
v0 ¼ 1, L ¼ 256). (a),(c) (left column) ferromagnetic alignment.
(b),(d) (right column) nematic alignment. Top row (a),(b)
Gaussian distribution; bottom row (c),(d) bimodal distribution.
(Details about the numerical protocol used to build these
diagrams are given in Supplemental Material [37].).
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typically observes a single nematic band in the pure case,
but it is well known that nematic bands are inherently
unstable, with this instability leading to band spatiotem-
poral chaos [41–43]. Thus the nematic coexistence phase is
intrinsically disordered even in the pure case. Chirality
disorder, as indicated in our phase diagrams (Fig. 1), leads
to the dynamic active foam illustrated in Fig. 2(f). This
regime appears to be different from band chaos, and is
reminiscent of the active foams described in [44,45] but this
point will be studied elsewhere [36].
A major conclusion of the numerical study above is

that the homogeneous ordered phases (polar flocks and
nematic) seem to be broken, asymptotically, by any amount

of chirality disorder. We now turn to a theoretical under-
standing of this at the continuous level. We focus on the
case of ferromagnetic alignment and bimodal distribu-
tion of chiralities for which it is easiest to construct a
hydrodynamic theory starting from our microscopic
model (1). We follow the Boltzmann-Ginzburg-Landau
approach [24,46–48]. Details are given in Supplemental
Material [37].
In the bimodal case, it is quite natural to separate theþω0

and −ω0 subpopulations. We write two coupled Boltzmann
equations ruling the evolution of their one-body probability
density functions fþðr; θ; tÞ and f−ðr; θ; tÞ:

∂tf� þ v0eðθÞ ·∇f� � ω0∂θf� ¼ Isd½f�� þ Ico½f�; f�;
ð2Þ

where f ¼ fþ þ f−, and Isd and Ico are self-diffusion
and collision integrals given in [37]. Note that the two
equations are only coupled via the collision integral, and
each of them is thus similar to the Boltzmann equation
for the pure case [47]. Expanding f� in Fourier series
of θ [i.e., f�ðr; θ; tÞ ¼ ð1=2πÞPþ∞

k¼−∞ f�k ðr; tÞe−ikθ] the
Boltzmann equations are dedimensionalized and trans-
formed into a hierarchy of partial differential equations for
the complex fields fþk and f−k . Linear stability analysis of the
disordered solution ρ� ≡ f�0 ¼ 1

2
ρ0, f�k≠0 ¼ 0 reveals that it

is unstable to f�1 perturbations at large density and/or weak
noise. Thus, unsurprisingly, local polar order emerges at the
onset and one can truncate and close the hierarchy of
equations using the same Ginzburg-Landau scaling ansatz
as in the pure case. Denoting, for legibility, p≡ fþ1 and
m≡ f−1 , we obtain

FIG. 2. Typical snapshots of phases reported in Fig. 1 taken after transients following random initial conditions. These images were
obtained in the Gaussian case, except the polar rotating packets [panels (d),(h)], which are only observed in the bimodal case. For each
phase, two subpanels are shown: particles’ orientation (left) and intrinsic chirality (right) are represented as small colored segments
[color maps are in panel (g)]. For (e)–(g), which have local nematic order, 2θ is represented in the left subpanel. For the other phases, the
polar angle θ is shown. In the right subpanels, chirality-segregated structures appear red (CW) or blue (CCW), while mixed chirality
regions appear purple. The chirality color map goes from −ωmax to þωmax, with ωmax adapted for each panel for better legibility.
(a) polar liquid (ω0 ¼ 0.004, Dr ¼ 0.03, ωmax ¼ 0.005). (b) polar (Vicsek) bands (ω0 ¼ 0.004, Dr ¼ 0.06, ωmax ¼ 0.005). (c) polar
vortices (ω0 ¼ 0.054, Dr ¼ 0.03, ωmax ¼ 0.05). (d) rotating polar packets (ω0 ¼ 0.167, Dr ¼ 0.03, ωmax ¼ 0.5). (e) nematic liquid
(ω0 ¼ 0.004, Dr ¼ 0.008, ωmax ¼ 0.005). (f) active foam (ω0 ¼ 0.03, Dr ¼ 0.016, ωmax ¼ 0.02). (g) nematic vortices (ω0 ¼ 0.118,
Dr ¼ 0.012, ωmax ¼ 0.05). (h) rotating polar packets (ω0 ¼ 0.05, Dr ¼ 0.002, ωmax ¼ 0.1).

(a) (b)

FIG. 3. (a) Variation of the ½0;ω�
0ðLÞ� domain of existence of

the homogeneous ordered phases with system size L (ferromag-
netic cases Dr ¼ 0.03, nematic cases Dr ¼ 0.004). (b) Snapshot
taken in the region of coexistence between Vicsek bands and
polar vortices [ferromagnetic alignment, Gaussian distribution of
chiralities, ω0 ¼ 0.06, Dr ¼ 0.054, L ¼ 256, colors indicate
particles’ orientation as in Figs. 2(a) and 2(d), left subpanels].
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∂tρ
þ ¼ −Re½▿�p�; ð3aÞ

∂tp ¼ ðμ½ρþ; ρ−� þ iω0 − ξjpj2Þpþ νΔp

þ κ1▿
�p2 þ κ2p�

▿p −
1

2
▿ρþ

þ ðμ̃½ρþ� − ξ̃jmj2Þmþ ν̃Δmþ κ̃1▿
�m2 þ κ̃2m�

▿m

þ γ1jmj2pþ γ2m2p� þ γ̃1jpj2mþ γ̃2p2m�

þ δ1▿
�ðpmÞ þ δ2p�

▿mþ δ̃2m�
▿p; ð3bÞ

where ▿≡ ∂x þ i∂y denotes the complex gradient, Δ ¼
▿▿

� is the Laplacian in this complex notation, and the
dependence of coefficients on local density have been
explicited. (The equations for ρ− and m are obtained by
performing the swapsρþ ↔ ρ−,p ↔ m, andω0 ↔ −ω0.)A
few comments are in order: Eq. (3) is the usual exact
conservation equation [∂tρþ∇ðρvÞ ¼ 0]. In contrast with
nonchiral theories, almost all coefficients in (3b) are com-
plex, as shown in [37] where their expression in terms of the
microscopic parameters is given. The first two lines of (3b)
constitute a standard Toner-Tu equation (up to the iω0 term
and the ρ− dependence of the linear term), identical to that
obtained using the same method for the Vicsek model
[24,47,48]. The third line of (3b) also has a Toner-Tu
appearance but for the m field, and of course without a
▿ρ− “pressure” term. Finally, the last two lines of (3b)
regroup the terms coupling p and m.
Below, we only study the linear stability of the sta-

tionary homogeneous solutions of the above equations.
The comprehensive numerical study at the nonlinear,
inhomogeneous level is ongoing work that will appear
elsewhere [36]. Apart from the trivial disordered solution
ρ� ¼ ðρ0=2Þ, p ¼ m ¼ 0, Eqs. (3a), (3b), and their coun-
terparts governing ρ− and m have another homogeneous
solution with jpj ¼ jmj ¼P, m=p ¼ expðiΩÞ. This ordered
solution, described in [30] in some limit case of the above
hydrodynamic equations, reduces to the polar flock sol-
ution of the Toner-Tu equations in the ω0 → 0 limit where
Ω ¼ 0. It corresponds to the polar flock phase observed at
particle level [Fig. 1(c)]. Its expression in closed form is
cumbersome, and in practice we calculate it numerically at
arbitrary precision from the simple equations defining P
and Ω. This allows us to determine not only its existence
domain, but also its full linear stability analysis. While all
details are provided in [37], we only sketch here how this is
done. We first linearize the equations around the ordered
solution and write the resulting 6 × 6 matrix in Fourier
space, where its coefficients depend on a wave number
q ¼ ðqk; q⊥Þ, here expressed in the coordinates relative to
the order of the solution [49]. For each parameter set of
interest, we solve the matrix and determine the most
unstable (or least stable) mode q�, i.e., the mode with
the highest growth rate σ�. We find that the solution is
unstable (σ� > 0) everywhere in its domain of existence

[Fig. 4(a)]. This indicates that the instability of the polar
flock solution found at particle level [Fig. 3(a)] is probably
due to this linear instability at (deterministic) hydrody-
namic level.
We also determined the wave vectors separating stable

from unstable modes, and in particular that with the largest
wave number q† ¼ jq†j, which is of interest since L† ¼
1=q† is the maximum system size at which the ordered
solution is stable. We find that L† varies like 1=ω0

[Fig. 4(b)]. We believe this algebraic law is at the root
of the one observed at microscopic level [Fig. 3(a)]. The
fact that the scaling exponent takes a “nontrivial” value in
this last case may be due to fluctuations and nonlinear
effects.
To summarize, we have shown that the homogeneous

orientationally ordered phases of dry aligning active matter,
be they polarly or nematically ordered, are susceptible to
any amount of population heterogeneity introduced in the
form of chirality disorder. Even though finite systems may
resist a finite amount of such disorder, the maximum
disorder strength that can be supported by the ordered
liquid vanishes in the infinite-size limit. We have traced this
back, in the polar case, to the generic instability of the
ordered homogeneous solution of the hydrodynamic theory
that we derived from our particle-level model. Our results
(in the polar, ferromagnetic case) are not aligned with the
“activity-induced synchronization” put forward in [30].
This Letter, though, did not present a finite-size study such
as that shown in Fig. 3, nor a linear stability analysis of the
ordered solution as in Fig. 4 [50].
Thus, as in variants of the Kuramoto model where

random oscillators are locally coupled, synchronization
of random frequency-chirality active particles is impossible
in 2D, in spite of the true long-range order (also known as
synchronization) proven by Toner and Tu in the pure case.
In this context, the study of higher-dimensional systems
would be interesting since it is known that, for the locally

(a) (b)

FIG. 4. Linear stability analysis of the homogeneous ordered
solution of the hydrodynamic theory (ρþ ¼ ρ− ¼ 1). (a) Direction
of most unstable mode in ðω0; DrÞ plane (in the gray area, the
solution does not exist; the homogeneous disordered solution is
linearly unstable below the dashed line). (b) Variation of L† (size
of largest stable system) with ω0 at fixed Dr ¼ 0.4.
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coupled Kuramoto model, frequency synchronization is
possible in three and four dimensions, whereas phase
synchronization occurs above [51]. Ongoing work inves-
tigates “flocking” versions of the models of globally
coupled high-dimension oscillators studied in [52,53].
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