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The swelling dynamics of polymer gels are characterized by the (collective) diffusion coefficient D of
the polymer network. Here, we measure the temperature dependence of D of polymer gels with controlled
homogeneous network structures using dynamic light scattering. An evaluation of the diffusion coefficient
at the gelation point Dgel and the increase therein as the gelation proceeds ΔD≡D −Dgel indicates that
ΔD is a linear function of the absolute temperature with a significantly large negative constant term. This
feature is formally identical to the recently discovered “negative energy elasticity” [Y. Yoshikawa et al.
Phys. Rev. X 11, 011045 (2021)], demonstrating a nontrivial similarity between the statics and dynamics of
polymer networks.
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The entropy elasticity of rubberlike solids (e.g., rubbers
and polymer gels) and Brownian motion are described by
formally analogous equations as both originate from
thermal fluctuations. In rubberlike solids, the shear modu-
lus G is conventionally considered to be proportional to the
absolute temperature T, such that G ¼ nkBT for an affine
network model [1]. Here, n is the number density of
elastically effective strands, and kB is the Boltzmann
constant. Similarly, the Einstein relation [2] indicates that
the (self) diffusion coefficient of Brownian motion Ds is
described as Ds ¼ μkBT, where μ is the mobility. This
Letter reports that the investigation of the above analogy
led to the discovery of a nontrivial law that describes the
temperature dependence of the (collective) diffusion co-
efficient D of a polymer network in a solvent, which
characterizes the swelling dynamics of a polymer gel.
Notably, the temperature dependence of D is crucial for
controlling the kinetics in applications involving sensors
and actuators [3,4].
With regard to the elasticity of a polymer gel, we recently

found that G is not proportional to T but is a linear function
of T with a significantly large negative constant term b as
G ¼ aT þ b [5]. Here, the negative value of b is interpreted
as “negative energy elasticity” because the first and second
terms (aT and b) correspond to the entropy and internal
energy contributions to G, respectively. This result dis-
proves the conventional assertion that the gel elasticity is
approximately proportional to the absolute temperature
(i.e., G ≃ aT), similar to the rubber elasticity.
Moreover, by examining more than 50 different

polymer network structures, we found [5] that G is
governed by

GðT; c; pÞ ¼ aðc; pÞ½T − T0ðcÞ�; ð1Þ

where c is the polymer concentration and p is the network
connectivity characterizing the degree of gelation progress.
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FIG. 1. Temperature (T) dependence of (collective) diffusion
coefficient D and its components (Dgel and ΔD) in four gel
samples with different network connectivities (p ¼ 0.7, 0.8, 0.9,
and 1.0) for a polymer concentration of c ¼ 60 g=L. (see
Supplemental Material, Fig. S1 for c ¼ 30, 90, and 120 g=L
[9].) The black and gray circles represent the experimental results
of DðT; pÞ for each sample. By extrapolating DðT; pÞ to the
gelation point (p → pgel), we obtained DgelðTÞ (red circles) [see
Fig. 2(a)]. Then, we obtained ΔD as ΔDðT; pÞ ¼ DðT; pÞ −
DgelðTÞ (colored squares) for each sample. The lines represent the
least-squares fits of D, Dgel, and ΔD. We determine the temper-
ature TD at which ΔD does not contribute to D, i.e., DðTD; pÞ ¼
DgelðTDÞ and ΔDðTD; pÞ ¼ 0. (Schematic illustration) The gel
samples were synthesized by AB-type cross-end coupling of two
precursors (tetra-arm polymers) to tune p (0 ≤ p ≤ 1) after the
completion of the reaction, while maintaining c.
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Here, we consider the as-prepared state of the entire system
consisting of gel and sol components. Because gelation is a
dynamic process during which network connections are
formed, we cannot precisely measure the physical proper-
ties at a certain point during gelation. To statically replicate
the gelation proceed at any point, we developed a meth-
odology that enables measurements using p as a control
parameter [6,7]. This method utilizes AB-type cross-end
coupling of two precursors (tetra-arm polymers) whose
terminal functional groups (A and B) are mutually reactive
[8] (the schematics in Fig. 1). By mixing the two precursors
in stoichiometrically balanced and imbalanced ratios, we
can tune p after the completion of the reaction as p ≃ 2s,
while maintaining c. Here, p (0 ≤ p ≤ 1) is defined as the
fraction of the reacted terminal functional groups to all
the terminal functional groups, and s (0 ≤ s ≤ 1=2) is the
molar mixing fraction of the precursors of the minor group.
Using this method, we experimentally obtained Eq. (1),
which implies that T0, which governs negative energy
elasticity, is independent of p.
This Letter presents that an equation formally identical to

Eq. (1) holds not only for elasticity but also for the elastic
contribution of diffusion of the polymer network in a
solvent. The diffusion of a network is characterized by the
(collective) diffusion coefficient D [12,13] and is repre-
sented by the diffusion equation for the displacement vector
of the network u as

∂
∂tu ¼ D∇2u; ð2Þ

where t is the time, and ∇2 is the Laplacian operator. [For
gels with a general shape, there exists an additional term
proportional to ∇ × ð∇ × uÞ in Eq. (2) [13], but it is not
relevant to this study.] Figure 1 summarizes the main
results. Remarkably, at a fixed c, the extrapolations of the
linear fits for the T dependence ofD with varying values of
p intersect at a single point (that is, [TD;DðTDÞ]). To
interpret the physical meaning of this intersection, we focus
on the change in D as the gelation proceeds, that is, the p
dependence ofD. Throughout this Letter, we only consider
gel states, that is, pgel < p < 1, where pgel represents p at
the gelation point. We decompose D into two components:
DðT; c; pÞ ¼ DgelðT; cÞ þ ΔDðT; c; pÞ, where we define

DgelðT; cÞ≡ lim
p→pgel

DðT; c; pÞ ð3Þ

and the increment from Dgel as gelation proceeds as

ΔDðT; c; pÞ≡DðT; c; pÞ −DgelðT; cÞ; ð4Þ

which originates from the polymer network elasticity
(see the section “Analysis based on the THB theory”
below). As shown in Fig. 1, we find that ΔD has a form
equivalent to Eq. (1) as

ΔDðT; c; pÞ ¼ aDðc; pÞ½T − TDðcÞ�; ð5Þ

where TD is independent of p. This property is a nontrivial
feature formally identical to T0. We experimentally con-
firmed Eq. (5) for various concentrations (Supplemental
Material, Fig. S1 for c ¼ 30, 60, 90, and 120 g=L [9]).
We emphasize that the procedure in Eqs. (3)–(5) is not

based on any assumptions or models, but instead relies only
on well-defined parameters to analyze D. Many studies
have investigated D of polymer gels using light scattering
measurements by tuning various parameters, such as the
ionization degree [14], number of pendant chains [15],
polymer volume fraction [16], cross-link density [17],
solvent quality [18], and temperature [12,16,18].
Notably, most studies [15–19] have assumed the Stokes-
Einstein relation [Ds ¼ kBT=ð6πηξÞ with the solvent vis-
cosity η and the correlation length ξ]. However, the
applicability of the Stokes-Einstein relation to polymer
gels has not been strictly validated, and the meaning of ξ is
unclear. In contrast, the Tanaka, Hocker, and Benedek
(THB) theory [12] contains only well-defined parameters.
In this Letter, we first analyze the experimental results in
terms of the procedure in Eqs. (3)–(5) and then interpret our
analysis based on the THB theory.
Materials and methods.—For the model polymer gel with

a homogeneous network structure, we used a tetra-arm poly
(ethylene glycol) (tetra-PEG) hydrogel [8], which is syn-
thesized by AB-type cross-end coupling of two precursors:
tetra-arm PEG units with molar masses of M ¼ 20 kg=mol
(NOF Co., Japan and XIAMEN SINOPEG BIOTECH Co.,
Ltd., China). Each end of the tetra-arm PEG is modified with
mutually reactive maleimide (tetra-PEG-MA) and thiol
(tetra-PEG-SH). All other reagents were purchased from
WAKO. All the materials were used without further puri-
fication. To optimize the gelation time [20], we dissolved
each precursor in a phosphate-citric acid buffer (pH 3.8),
where the molar concentration was 68 and 200 mM for the
dynamic light scattering (DLS) measurement and the
dynamic viscoelasticity measurement, respectively. We pre-
viously confirmed that the results of the latter measurement
are almost independent of the molar concentration of the
buffer [5]. The polymer concentrations (c) were 30, 60, 90,
and 120 g=L. We mixed the precursor solutions in different
proportions of s ¼ 0.35, 0.40, 0.45, and 0.50, where
s ¼ ½tetra-PEG-SH�=ð½tetra-PEG-MA� þ ½tetra-PEG-SH�Þ,
to obtain gel samples with tuned p after the completion of
the reaction as p ≃ 2s [6]. All gel samples were used in the
as-prepared state.
We measured D via DLS on an ALV/CGS-3 compact

goniometer system (ALV, Langen, Germany) in the same
way as in Refs. [21,22]. The gel samples were fabricated in
a DLS glass tube (disposable culture tube 9830-1007 with
an inner diameter of 8.4 mm; IWAKI, Japan). We measured
the scattered light intensity IðtÞ at time t at a scattering angle
of π=2 at 288, 293, 298, 303, and 308 K for 600 s. Then, we
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evaluated the autocorrelation functions gð2ÞðτÞ≡ hIð0ÞIðτÞi=
hIð0Þi2 for the delay time τ ≃ 0.01–0.1 ms, corresponding
to the concentration fluctuation of the polymer network
[8,12]. Here, h� � �i denotes the time average. Using gð2ÞðτÞ
with the partial heterodyne model [23–25], we evaluate D,
details of which appear in Sec. S1 of Supplemental
Material [9].
We measured the (static) shear modulus G using a

dynamic shear rheometer (MCR302, Anton Paar, Austria)
in the same way as in Ref. [5]. The mixed solutions of tetra-
PEG-MA and tetra-PEG-SH were poured into the interstice
of the double cylinder of the rheometer. The time courses of

the storage modulusG0 and loss modulusG00 were measured
at 298 K with the applied shear strain γ of 2.0% and the
angular frequency ω of 31 rad=s. After G0 reached the
equilibrium, we measured the ω dependences of G0 and G00
at 288, 293, 298, 303, and 308 K. Here, we varied ω from
0.63 to 63 rad=s with γ ¼ 1.0%, which guarantees linear
elasticity. As G0 was independent of ω in this region
(Supplemental Material, Fig. S3 [9]), we considered G0
at ω ¼ 31 rad=s and γ ¼ 1.0% as G.
Results and analysis.—We analyze the experimental

results in terms of the procedure in Eqs. (3)–(5). Figure 2(a)
demonstrates that D is a nearly linear function of G for all

(a)

(b)

FIG. 2. Formally identical relationships governing the shear modulus G and ΔD. We synthesized the gel samples with 16 different
network structures (c ¼ 30, 60, 90, 120 g=L and p ¼ 0.7, 0.8, 0.9, 1.0). We measured G and D at T ¼ 288, 293, 298, 303, and 308 K.
The data of G are partly taken from Ref. [5]. (a) Shear modulus dependence of D at constant T. The open circles represent the
experimental results, and the lines represent the least-squares fits of D ¼ DðGÞ ¼ Dgel þ αG. Here, DðG ¼ 0Þ corresponds to Dgel

(filled circles) because of the definition in Eq. (3). (b) Temperature dependence of G (upper panels) andDgel and ΔD≡D −Dgel (lower
panels). Insets in the upper panels depict the same results in different ranges of T. The open circles represent the experimental results,
and the lines represent the least-squares fits of the T dependences of G, Dgel, and ΔD. All extrapolations of G ¼ GðTÞ and ΔD ¼
ΔDðTÞ with the same c pass through T0 and TD on the T axis, leading to Eqs. (1) and (5), respectively. The value of T0 or TD in each
graph represents the average of the four samples with different p, and the values in parentheses represent the standard deviation.
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values of c and T. Here,G is controlled by tuning p [5–7,26];
G is an increasing continuous function of p, and G → 0 for
p → pgel. Based on the linearity and definitions of Eqs. (3)
and (4), we determined DgelðT; cÞ by extrapolating the
D–G relations to G → 0 (corresponding to p → pgel) and
ΔDðT;c;pÞ≡DðT;c;pÞ−DgelðT;cÞ ¼ αðT;cÞGðT;c;pÞ,
where αðT; cÞ is the slope.
Figure 2(b) depicts the T dependence ofG,Dgel, andΔD.

Each of G and ΔD is a linear function of T with a
significantly large negative constant term. The extrapola-
tions ofΔD for each value of c converge at T ¼ TD on the T
axis. This unexpected law is described by Eq. (5), which
is formally identical to Eq. (1) for G (meaning negative
energy elasticity [6]). We also confirmed these results for
similar gels with M ¼ 10 kg=mol (Supplemental Material,
Fig. S4 [9]). We note that the actual value of D would not
follow the extrapolations at low T away from themeasuredT
because the coexisting solvent (water) freezes at T ≃ 273 K.
Despite the similarity in the forms of Eqs. (1) and (5), TD is
significantly larger than T0. The implication of this differ-
ence is discussed in the next section.
Analysis based on the THB theory.—We interpret our

experimental results based on the THB theory [12], which
shows that D ¼ ½K þ ð4=3ÞG�=f in Eq. (2) for p > pgel.
Here, K ≡ c∂Π=∂c is the osmotic bulk modulus, Π ¼
Πmix þ Πel is the total swelling pressure (Πmix and Πel are
the mixing and elastic contributions, respectively), and f is
the friction coefficient (per unit volume) between the
polymer and the solvent. We cannot directly compare
our experimental results with D ¼ ½K þ ð4=3ÞG�=f
because K ¼ Kmix þ Kel consists of both the polymer-
solvent mixing contribution (Kmix ≡ c∂Πmix=∂c) and
elastic contribution (Kel ≡ c∂Πel=∂c). Assuming that
(i) Πel ¼ −G [26], (ii) the scaling law G ∼ cβ during the
swelling [27], and (iii) fðT; c; pÞ ≃ fðT; cÞ (the water
permeation experiments [28,29] confirm that the p depend-
ence of f is quite weak), we can derive [21,22]

DðT; c; pÞ ≃ KmixðT; cÞ
fðT; cÞ þ ð4=3 − βÞGðT; c; pÞ

fðT; cÞ ; ð6Þ

where β ranges from 1=3 to ð9ν − 4Þ=ð9ν − 3Þ ≃ 0.563
depending on the polymer concentration of the gel. Here,
ν ≃ 0.5876 is the universal critical exponent for polymer
solutions (or the self-avoiding walk) [30–32]. In the gel
state (p > pgel), Kmix and Πmix are independent of p (see
Fig. 2 in Ref. [26]). Equation (6) indicates thatD is a linear
function of G with increasing p, which is consistent with
Fig. 2(a). Substituting Eq. (6) into Eq. (3), we have Dgel ≃
Kmix=f because GðT; c; pgelÞ ¼ 0. Also, combining
Eqs. (4) and (6), we obtain ΔD ≃ ð4=3 − βÞG=f. Thus,
Dgel and ΔD largely correspond to the mixing and elastic
contributions to D, respectively.
Using Eq. (6) with assuming β ≃ 0.563 (i.e., 4=3−

β ≃ 0.770) based on Ref. [22], we evaluate f and Kmix

from the slopes [ð4=3 − βÞ=f] and ordinate inter-
cepts (Kmix=f) of the linear fits in Fig. 2(a) [21,22].
Figure 3(a) shows that the obtained values of f are
consistent with the scaling relationships for semidi-
lute solutions in a good solvent [28] f=η ∼ c2ν=ð3ν−1Þ,
where η is the solvent viscosity. Similarly, those of
Kmix are consistent with Kmix=kBT ∼ c3ν=ð3ν−1Þ [33,34]
(Supplemental Material, Fig. S5 [9]). Moreover,
Fig. 3(a) indicates that f=η is almost independent of T,
which was experimentally shown using poly(acrylamide)
gels (Fig. 9 in Ref. [28]). Therefore, our observations and
analyses are consistent with the THB theory and scaling
relationships.
To elucidate the origin of Eq. (5), we focus on the

temperature (T) dependence of ΔD. Inspired by the THB
theory, we plot the experimentally obtained αη against T in
Fig. 3(b) to show that the T dependence of αη is quite
weak. Thus, we can set αη ≃ hðcÞ and obtain αðT; cÞ≃
hðcÞ=ηðTÞ. From the definition of α, we have

ΔDðT; c; pÞ ¼ αðT; cÞGðT; c; pÞ ≃ hðcÞGðT; c; pÞ
ηðTÞ ; ð7Þ

showing that the T dependence of ΔD is determined by
G=η. Because the T dependence of 1=η is greater than that
of G (see Supplemental Material, Fig. S6 [9]), 1=η almost
determines the T dependence of ΔD. Moreover, substitut-
ing Eq. (1) into Eq. (7), we obtain Eq. (5) by neglecting the
second order terms of T (see Sec. S2 of Supplemental
Material [9]). Therefore, TD is significantly larger than T0,
and exhibits almost no concentration dependence.
Concluding remarks.—We experimentally investigated

the temperature (T) dependence of the (collective) diffusion
coefficient D of polymer gels. In Eqs. (3) and (4), we
operationally defined Dgel and ΔD, which largely corre-
spond to the mixing and elastic contributions, respectively
[Eq. (6)]. As depicted in Figs. 1 and 2(b), ΔD is a linear
function of T with a significantly large negative constant
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FIG. 3. (a) Log-log plots of the c dependence of f=η, indicating
f=η ∼ c2ν=ð3ν−1Þ ≃ c1.54 for ν ≃ 0.5876. Here, each friction co-
efficient between the polymer and the solvent f is obtained from
the linear fits in Fig. 2(a) by assuming Eq. (6) and β ≃ 0.563.
(b) Log plots of the T dependence of αη. The viscosity of the
solvent (water) η is taken from Ref. [35]. The solid lines serve as a
guide to the eye.
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term, which is formally identical to that of the shear
modulus [5]. At a certain temperature TD, ΔD vanishes,
andD is independent of the network connectivity p [Eq. (5)
and Figs. 1 and 2(b)]. This simple unexpected law [Eq. (5)]
has not been predicted by any existing theory and can
stimulate experimental and theoretical research of TD.
Our findings demonstrate a nontrivial similarity between

the statics and dynamics of polymer networks and provide
new insights into the so-called diffusio-mechanical (or
stress-diffusion) coupling [36–39]. Furthermore, our find-
ings are important for controlling the swelling response
time of stimuli-responsive gels, such as sensors and
actuators [3,4]. This is because a temperature change of
20 K can nearly double D up to a maximum [c ¼ 30 g/L
with p ¼ 1 in Fig. 2(a)], and this change is mainly caused
by the elastic contribution ΔD, which has not been
explicitly discussed [15–17,19,25] until recently [21,22].
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