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Symmetry and topology govern many electronic, magnetic, and photonic phenomena in condensed
matter physics and optics, resulting in counterintuitive skyrmion, meron, and other phenomena important
for modern technologies. Here we demonstrate photonic spin lattices as a new topological construct
governed by the spin-orbit coupling in an optical field. The symmetry of the electromagnetic field in the
presence of the spin-orbit interaction may result in only two types of photonic spin lattices: either
hexagonal spin-skyrmion or square spin-meron lattices. We show that these spin structures correspond to
the lowest energy of the electromagnetic field configuration, therefore, energetically stable. We further
show that in the absence of spin-orbit coupling these spin topologies are degenerated in dynamic field
skyrmions, unifying the description of electromagnetic field topologies. The results provide a new
understanding of electromagnetic field topology and its transformations as well as new opportunities for
applications in quantum technologies, spin optics, and topological photonics.
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Topologically nontrivial spin textures appear in various
fields from high-energy to condensed matter physics [1–5],
and skyrmions [6–8] and merons [9–11] in magnetic
materials are their prominent examples. Magnetic sky-
rmions and merons are topologically protected nanopar-
ticlelike objects with a magnetization swirl in chiral or
noncentrosymmetric magnets, important for practical appli-
cations in spintronics [6–10]. Depending on the properties
of ferromagnetic materials and/or external magnetic fields,
skyrmions, having integer topological number, can exist as
isolated entities or condense into a lattice. In contrast to
skyrmions, merons are topological constructs with a half-
integer topological charge. Because of this, the individual
merons cannot be observed and magnetic merons always
form a lattice [10,11].
Recently, photonic analogies of magnetic skyrmions

were observed in different realizations with either optical
spin forming a skyrmionlike topology (photonic spin-
skyrmions) [12], or a lattice of the electric field textures
with hedgehog structure (photonic field skyrmions, which
are dynamic field textures with the electric field oscillating
in time) [13,14]. Higher order skyrmionic structures were
also suggested in polarization textures [15,16]. Individual
photonic spin skyrmions have been recently demonstrated
using spin-orbit coupling in the evanescent field [17] to
achieve topological protection through the generalized
photonic quantum spin-Hall effect [18], which leads to
the locking of the spin to the local momentum of
the evanescent wave [19,20]. The interference of the

evanescent electromagnetic fields in the sixfold symmetry
cavity results in the creation of the field skyrmions in a
hexagonal lattice [13,14,21]. Until now, there were no
reports of photonic analogies of other spin lattices, such as
spin skyrmion and spin or field merons.
Here we show that it is the symmetry of the field that

completely determines the topology of the electromagnetic
field of the guided modes (the modes with the evanescent
field component) through spin-orbit coupling. We demon-
strate both experimentally and theoretically the spin-
skyrmion and spin-meron lattices formed due to a broken
rotational symmetry of the field, with sixfold symmetry
being responsible for a skyrmion lattice and fourfold
symmetry for a meron lattice. In the absence of spin-orbit
coupling (in the case when the field is not carrying
topological charge), instead of spin-skyrmions, field sky-
rmions are formed, thus connecting two types of skyrmion
manifestation in optics. We also show that the spin skyrmion
and spin meron textures correspond to the lowest energy of
the electromagnetic field configuration, therefore, energeti-
cally stable. The demonstrated photonic spin topologies
open up new pathways for topological photonics, quantum
photonics, and metrology, and a new avenue to understand
topological condensed matter systems [22].
Individual photonic spin skyrmions formed due to the

spin-orbit coupling in the guided waves with the evanescent
field component [Fig. 1(a)] can be described by a Hertz
vector potential with a helical phase term in the cylindrical
coordinate ðr;φ; zÞ as [23]
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Ψ0 ¼ AJlðkrrÞeilφe−kzz; ð1Þ

where A is a constant, kr and ikz are the transverse
and longitudinal wave-vector components satisfying
k2r − k2z ¼ k2 with k being the wave vector, and Jl is the
Bessel function of the first kind of order l. The Néel-type
photonic spin skyrmions are formed for l ≠ 0, with the
spin-up or -down in the center of the skyrmion, determined
by the sign of l. Equation (1) describes an evanescent
optical vortex (eOV) in a source free, homogeneous, and
isotropic medium. If the rotational symmetry of the field is
broken, individual eOVs will interact and may condense in
a lattice. In order to reveal the topological features under
different types of symmetry, we consider superpositions of
the individual Hertz vector potentials with each lattice point
fed by an eOV: Ψ ¼ Ψ0 ∗P

δðr − rmnÞ, where rmn is the
position of each lattice point, δ is the Dirac delta function,
and � represents the operation of convolution. In two
dimensions, only two Bravais lattices exist with equal
lattice constants corresponding to point groups D6 and
D4 having hexagonal and square lattices, respectively
[Figs. 1(a) and 2(a)]. In view of translational and rotational
symmetry imposed by a lattice, the total Hertz potential can
be obtained as [24]

Ψ ¼ A
X2N
n¼1

eilθneikrr·ene−kzz; ð2Þ

where θn ¼ nπ=N, en ¼ ðcos θn; sin θnÞ with N ¼ 3 for
hexagonal and N ¼ 2 for square lattice. The Hertz potential
in Eq. (2) exhibits rotational periodicity with total angu-
lar momentum l (we consider l ¼ 1 in the following).
The amplitude distributions of the Hertz potential reveal
the lattice symmetry features [Figs. 1(a) and 2(a)] with zero

points corresponding the singularities of the phase distri-
bution [Figs. 1(b) and 2(b)].
The Poynting vector P ¼ ReðE� ×HÞ=2, which repre-

sents a directional energy flux of an electromagnetic field
in the lattice, can be calculated through the Hertz potential
as [24]

P ¼ ωεk2r
2

ImðΨ∗∇ΨÞ ∼ hΨji∇jΨi; ð3Þ

where ω is the angular frequency of the wave and ε is the
absolute permittivity of the medium. The spin texture of
the electromagnetic field can be obtained considering the
Poynting vector distribution in the lattice since for TM=TE
polarized evanescent waves, the intrinsic spin-momentum
coupling yields a relationship between the SAM S and the
Poynting vector P as [19]

S ¼ 1

2ω2
∇ × P: ð4Þ

The generalized spin-momentum relationship in Eq. (4)
is a manifestation of the conservation law of SAM, which
indicates that the SAM of an evanescent field originates
from the vortices of the electromagnetic energy flow.
Equation (4) can be expressed in terms of the Hertz
potential as S¼ðεk2r=4ωÞImð∇Ψ∗×∇ΨÞ∼h∇Ψj× ij∇Ψi,
revealing that the SAM of an evanescent field is in
correspondence to the Berry curvature of the Hertz poten-
tial [25]. Consequently, a nontrivial spin texture is a
consequence of winding of the Hertz potential in the
presence of spin-orbit coupling (e.g., formation of an
individual spin skyrmion as l ≠ 0).
The phase singularity of the Hertz potential pins the

center of each Poynting vector vortex [Eq. (3)] and,

FIG. 1. (a) Schematic of the eOV lattice of hexagonal symmetry with a lattice constant 2λr (λr is in-plane wavelength) and the
distribution of the amplitudes of the resultant Hertz potential. Each lattice point (red dots) is fed with an eOV described by a helical Hertz
potential Ψ0 corresponding to isolated spin-skyrmion (inset). (b) Poynting vector direction (arrows) and magnitude (arrow colors) in the
generated optical vortex lattice in (a) with background color representing the phase distribution of the total Hertz potential. Red and
yellow dots denote the center of the anticlockwise Poynting vector vortices in two sublattices, where the phase of the Hertz potential is
singular; blue dots denote the center of clockwise ones. Green dots show the junction of different Poynting vector vortices where P ¼ 0
with nonzero Hertz potential. The scale bar is λr. Note that the thin vertical line in each vortex is an artifact of the color representation
where the phase is the same on both sides. (c) Optical spin orientation distribution corresponding to the lattice in (a) and (b) showing a
spin-skyrmion lattice. The arrows indicate the direction of a unit spin vector. (d) Two sublattices of the skyrmion lattice forming the spin
distribution in (c). The central “up” state in each subset can be referred to the red and yellow dots in (b), respectively.
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depending on the symmetry of the lattice, the in-plane
Poynting vector forms different types of vortex distribu-
tions. For a hexagonal lattice, the Poynting vector distri-
bution has a rotational symmetry with a characteristic angle
of π=3 as R̂ðπ=3ÞPðrÞ ¼ P½R̂ðπ=3Þr�, where R̂ðθÞ is the
rotation matrix along z axis. A hierarchical structure of the
Poynting vector vortices is obtained with two sublattices,
due to the multiple vortex centers in each unit cell of the
lattice [Fig. 1(b)], which can be considered as an optical
analogue of the Abrikosov vortex lattice [26]. The appear-
ance of two subsets of the Poynting vector vortex lattice can
be attributed to the different compositions of the wave
numbers [24]. While for a square lattice, the Poynting
vector distribution has a rotational symmetry of π=2 as
R̂ðπ=2ÞPðrÞ ¼ P½R̂ðπ=2Þr�. The energy flow in each unit
cell exhibits a vortex with winding number �1 [Fig. 2(b)],
which is an optical analogue of the so-called staggered flux
in condensed matter systems [27,28]. The junction of the
vortices in Figs. 1(b) and 2(b) can be found where the
Poynting vector is zero but the Hertz potential is nonzero.
These two types of vortices in the Poynting vector distri-

butions determine the topology of the spin textures. The topo-
logical invariantQ, which is known as the skyrmion number,
can be obtained as Q ¼ ð1=4πÞ∬ n · ð∂xn × ∂ynÞdxdy,
where n ¼ S=jSj represents the unit vector in the direction
of a three-component spin. Since each vortex center of the
Poynting vector is the phase singularity of the Hertz vector,
where thePoyntingvector is zero, only the z component of the
SAM is present in the center of the vortex [Eq. (4)], with sign
of Sz determined by the rotation direction of the Poynting
vector vortex. For a hexagonal lattice, two skyrmion sub-
lattices are observed, according to the structure of the
Poynting vector distribution, with skyrmion number Q ¼ 1
for each unit cell of the sublattice where the spin vectors vary
progressively from the central “up” state to the edge “down”
state, manifesting a Néel-type photonic spin-skyrmion
[Figs. 1(c) and 1(d)] without increased spin flux. For other
angular momenta with nonzero SAM (l ¼ 2, 4, 5), the two
skyrmion sublattices will emerge with different signs of

skyrmion numbers, demonstrating four realizations of spin-
skyrmion topology [24].
On the other hand, the staggered-flux configuration

of the Poynting vector observed in a square lattice gives
rise to the formation of a photonics spin-meron lattice.
From Eq. (4), the SAM distribution can be obtained as
S∝ ½kz sinðkrxÞcosðkryÞ;kz cosðkrxÞ sinðkryÞ; kr cosðkrxÞ×
cosðkryÞ�, which possesses distinct domains where the z
component of the local spin orientation goes to zero and
merons are confined in a unit cell [Fig. 2(c)]. In each unit
cell, the spin vector tilts progressively from the central “up”
or “down” state to the edge where z component of SAM
Sz ¼ 0. The skyrmion number calculated for each unit
cell in the spin texture is Q ¼ �½, corresponding to
the Néel-type photonic “core-up” or “core-down” spin-
meron topology with a nonzero spin flux [24]. These
spin configurations in each unit cell can be smoothly
mapped on a paraboloid z ¼ −r2=2 by converting the
in-plane spin vector to an infinite circle with substitution
ðkz=krÞ tanðkrxÞ ¼ r cosφ and ðkz=krÞ tanðkryÞ ¼ r sinφ
[Fig. 2(d)]. Similar spin configurations can be obtained
for l ¼ 3 with opposite signs of skyrmion numbers in each
unit cell [24]. The obtained square spin-meron lattice
with alternating Poynting vector vorticities is in analogy
with the lowest-energy multimeron configuration in frus-
trated magnets [29,30].
It is worth noting that in the case of l ¼ 0, the SAM

vanishes and, in the absence of spin-orbit coupling, the spin
skyrmion and meron are not present. In this case, the
considered sixfold and fourfold symmetry lattices of the
Hertz potential result in the oscillating electric field patterns
which exhibit field topologies corresponding to a field-
skyrmion lattice for D6 and a field-meron lattice for D4

symmetry [24] (see Fig. S1 in the Supplemental Material
[24]). This provides connection between the concepts of
spin skyrmions formed due to the spin-orbit coupling [12]
and dynamic, time-dependent field skyrmions formed due
to the interference effects [13,14].
The configuration of a square meron lattice can be under-

stood from the thermodynamic perspective considering the

FIG. 2. (a) Schematic and the distribution of the Hertz potential amplitude for the evanescent optical vortex lattice of square symmetry
with a lattice constant λr. (b) Poynting vector direction (arrows) and magnitude (arrow colors) for the square lattice in (a). The scale bar
is λr=2. (c) Optical spin orientation distribution corresponding to the lattice in (a) and (b). The dashed red and blue squares indicate unit
cells of the spin-meron lattice with skyrmion number Q ¼ �½, which can be smoothly mapped on a paraboloid in (d).
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lowest-energy theorem. For magnetic skyrmions, the energy
Hamiltonian is given by the nonlinear sigma model together
with the Dzyaloshinskii-Moriya interactions for the antisym-
metric exchange between two neighboring magnetic spins
[8,31]. A meron lattice can be stabilized in chiral magnets
with anisotropy [32,33]. Considering the generalized pho-
tonic quantum spin-Hall effect for transverse spin which
reveals an analogy between photonic and electron spin [18],
the energy for a photonic skyrmion texture is described by the
Hamiltonian in the classical nonlinear sigma model [34]

H ¼ 1

2

Z
ð∇nÞ2dxdy; ð5Þ

where n represents the unit spin vector. The individual spin-
skyrmion solution can be obtained in the system with the
rotational symmetry as θðrÞ ¼ 2 arctanðrÞ byusing theEuler-
Lagrange equation for the lowest energy [24] and applying
boundary conditions nzð0Þ ¼ 1 at the core and nzð∞Þ ¼ −1
at infinity [Fig. 3(a)]. If we chose the boundary conditions
corresponding to a square spin lattice: nzð0Þ ¼ �1 at the
core and nzð∞Þ ¼ 0 at the edge of the unit cell
[Fig. 3(b)], the exact numerical solution for a meron state
can be obtained behaving as θðrÞ ≈ arctanðrÞ or θðrÞ≈
π − arctanðrÞ [Fig. 3(c)]. These solutions correspond to the
SAM configuration of a square lattice in Fig. 2(c) (Ref. [24]).
Itwas not possible to find an analytical solution toEq. (5) for a
skyrmion lattice because of the difficulties with defining
boundary conditions due to the composite sublattice structure.
We experimentally demonstrated the spin lattices of

the evanescent vortex beams on the example of surface
plasmon polaritons (SPPs) sustained at a dielectric-metal
interface [35]. A radially polarized laser beam with helical
wavefront (topological charge l¼1, wavelength λ¼532 nm)
is tightly focused onto a thin silver film surface, which
provides an excitation of SPPs with OAM at air-silver
interface. Under such conditions, individual photonic spin

skyrmions are formed on the metal interface in the case if
rotational symmetry is not broken [12]. Tobreak the rotational
symmetry, the incident beam was modulated with intensity
masks comprised of either sixfold or fourfold symmetry
apertures. The spin-skyrmion or spin-meron textures are
formed in the case of sixfold or fourfold symmetry, respec-
tively, due to interference of the SPPs in the presence of the
spin-orbit interaction [Fig. 4(a)]. A spin-resolved near-field
scanning optical microscope was used with a dielectric
nanosphere as a near-field probe to characterize the spin
texture of thevortex lattice [36] (seeRef. [24] for the details of
the experiment). The measured Sz distributions and the
retrieved local spin vector orientation exhibit a skyrmion-
type lattice for the field of sixfold symmetry and reveal
spin-meron lattice for fourfold symmetry [Figs. 4(b)–4(e)].
These distributions correspond well to the simulation
results for respective symmetries of the plasmonic field

FIG. 4. (a) Schematic diagram of the experiment. SPPs are
excited on a surface of a thin silver film by a tightly focused,
radially polarized beam modulated by the intensity masks
comprised of sixfold or fourfold symmetry apertures. A dielectric
nanosphere is employed as a near-field probe to characterize the
spin texture of the spin lattice, formed at the center area induced
by the spin-orbit interaction in SPPs. (b)–(e) Measured Sz
component (b),(d) and local spin orientation (c),(e) in the lattice
obtained with the field of sixfold (b),(c) and fourfold (d),(e)
symmetry. The scale bar in (b) and (d) is the SPP wavelength. In
(c) and (e), the arrows indicate the orientation of the normalized
spin vectors, with the z direction color coded to the same color
scale as (b) and (d).

FIG. 3. (a) Isolated skyrmion configuration in a cylindrical
system derived from the lowest energy theorem in the nonlinear
sigma model. (b) Coordinate transformation from an infinite
circle to a confined square when a square spin lattice is formed.
(c) Two meron configurations confined in a square corresponding
to two solutions of Eq. (5) with Q ¼ �½, forming the spin lattice
in Fig. 2(c).
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[cf. Figs. 4(c), 4(e) and 2(c), 3(c)], revealing two interleaved
skyrmion sublattices for a hexagonal lattice and square lattice
of positive or negative merons.
In conclusion, we demonstrated the formation of pho-

tonic spin-skyrmion and spin-meron lattices in real space
based on spin-orbit coupling in the evanescent waves in the
environment with broken rotational symmetry. We showed
that the field symmetry is the key for determining the
photonic spin topology, resulting in either sixfold sym-
metry spin-skyrmion lattices or fourfold symmetry of spin-
meron lattices. These two kinds of spin-lattice topologies
were verified on the example of SPP waves in the presence
of spin-orbit coupling in the broken rotational symmetry
conditions. In the absence of spin-orbit coupling, the spin
lattices are degenerated to time-dependent field-skyrmion
or field-meron lattices. Thermodynamic considerations
confirm stability of spin-textures of the evanescence waves.
These new topological features of electromagnetic waves
may provide new insights on the properties of skyrmion
and meron topological structures and their transformations
in condensed matter physics, where they may be difficult to
realize, as well as new applications in metrology (e.g., for
magnetic domain observations [37]), topological and
quantum photonics, and spin optics.
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