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Our calculation shows that negative refractive index (NRI), which was known to exist only in
metamaterials in the past, can be found in Dirac semimetals (DSM). Electrons in DSM have zero effective
mass and hence the system carries no nominal energy scale. Therefore, unlike those of ordinary materials,
the electromagnetic responses of the electrons in DSM will not be overwhelmed by the physical effects
related to electron mass. NRI is induced by the combination of the quantum effect of vacuum polarization
and its finite temperature correction, which is proportional to T4 at low temperature. It is a phenomenon of
resonance between the incident light and the unique structure of Dirac cones, which allows numerous states
to participate in electron-hole pair production excited by the incident light with a similar dispersion relation
to that of Dirac cones. The NRI phenomenon of DSM manifests in an extensive range of photon
frequencies and wave numbers and can be observed around the gigahertz range at room temperature.
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Introduction.—The theoretical prediction of the possibil-
ity of negative index materials (NIM) was first proposed by
Veselago in 1968 [1]. Veselago demonstrated that, without
violating Maxwell’s equations, there is no reason to rule
out the existence of materials that have negative electric
permittivity ϵ and magnetic permeability μ. In 2000, Smith
and coworkers displayed in their pioneering work that it
was possible to fabricate artificial materials with negative
refractive index (NRI) [2]. In 2003, two experiments were
performed that confirmed the existence of NRI systems in
support of Veselago’s hypothesis. Parazzoli et al. con-
structed a wedge sample that was appropriate for free-space
measurements [3]. Based on a ring and wire structure,
the sample in Ref. [3] clearly illustrated NRI. Right after
Parazzoli’s work, Houck and colleagues successfully
implemented NIM at certain frequency ranges by using
a planar waveguide configuration to map the field pattern of
microwaves that transmitted through wedge-shaped sam-
ples [4]. More recent works have proposed that NIM may
happen in chiral materials [5–7]. However, up to now there
is no experimental report of NRI in natural materials [8,9].
In order to seek out NRI in natural materials, we

investigate massless electron systems that are rarely studied
for physical systems and may contain unexpected electro-
magnetic effects. It was not until the discovery of Dirac
semimetals (DSM) that massless electrons found their
positions in condensed matter systems. A physical system
is typically surrounded in a finite temperature (FT) envi-
ronment; therefore, we study the finite temperature cor-
rection (FTC) of the massless electron system, following
the methodology in the study of massive particle systems
[10,11]. Zero effective mass theory at the Lagrangian level

is scaleless by and in itself, and this leaves the temperature
as the sole nominal energy scale. As there is no nominal
scale incurred by mass, physical effects, no matter how
small, are not necessarily overwhelmed by effects whose
size is related to mass if mass exists. Therefore, it will be
interesting to investigate the physical properties of massless
electrons at FT. DSM, in which electrons have zero
effective mass and already exhibit intriguing optical proper-
ties such as an inverse Faraday effect [12], are perfect
candidates; see [13] and the references therein.
In condensed matter systems, the electron behaviors are

affected by numerous mechanisms such as the potential
of lattice structures and electron-electron interactions. In
DSM, all of the aforementioned effects result in zero band
gap and linear dispersion near the Dirac cones [13], and
the material properties are consolidated in vF, the Fermi
velocity. The electromagnetic properties induced by elec-
trons can best be studied by calculating vacuum polariza-
tion (VP), of which links with ϵ and μ were given by
Weldon’s article [14] and the successive work [15]. The VP
is the first-order correction of the photon properties by
photon-electron interaction. It describes a virtual process in
which a photon produces an electron-hole pair and the pair
recombines to give off a photon. The fact that the electrons
and holes are massless has a profound effect on photon
behaviors. We found that the VP contains a term with
logarithmic divergence at ω ≈ kvF. The logarithm diver-
gence comes from the resonance between the incident
light and the electrons on Dirac cones. As the electrons are
massless and have linear dispersion, the conditions of
resonance (energy and momentum conservation) can be
met by numerous states. These initial states can have energy
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and momentum −aðω; kÞ where 0 < a < 1 is an arbitrary
constant. Those of the final state after absorbing a photonwill
be ð1 − aÞðω; kÞ. Hence, the resonance becomes prominent.
In contrast, for electrons with mass gaps or gapless electrons
without linear dispersion (with energy form such asp2=2m),
only in specific states can they have resonance with an
incomingphoton. It is this divergence thatmakes thenegative
ϵ and μ possible. Thus, DSM that have Dirac cones can have
NRI. In this article, we study the FTC to vacuum polarization
of massless quantum electrodynamics. As a result of the
competitions among zero temperature (ZT) quantum loop
effects and the FTC associated with it, the frequency and
temperature ranges of NRI are identified, as will be shown
below.
Vacuum polarization.—In DSM, the electrons are mass-

less and have linear dispersion and constant velocity,
denoted as vF, the Fermi velocity. The Lagrangian density
of electrons carrying charge e reads

L ¼ iψ̄ ½γ0∂t þ vFγj∂j�ψ − eψ̄γμAμψ ; ð1Þ

where ℏ is set to 1. The VP shall be calculated as it is
closely related to electric permittivity ϵ and magnetic
permeability μ. For a system in contact with a heat bath
at rest, the real-time electron propagator is

SFðpÞ ¼
=pþm

p2 −m2 þ iη
þ 2πi

ð=pþmÞδðp2 −m2Þ
eβjp·uj þ 1

; ð2Þ

where u is the four-vector velocity of the system and =p
denotes γμpμ [16]. This is a general form of Lagrangian for
arbitrary mass value. We will set m ¼ 0 for DSM when we
start to evaluate VP. It is evident that u ¼ ð1; 0; 0; 0Þ in the
rest frame of the heat bath. The appearance of p implies
that the poles of the propagator are at p2 ¼ m2v4F or
p0 ¼ �vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2v2F
p

in general. For massless electrons,
we have p0 ¼ �jpjvF.
We first consider the contribution of free electrons to the

ϵ and μ by calculating the VP tensor. The contribution
arising from lattice shall be dealt with later. The VP tensor
is the integral of the product of two massless electron
propagators,

πμνðk;ωÞ ¼ ie2
Z

d4p
ð2πÞ4 Tr½γμð=pþ =KÞγνð=pÞ�

�

1

ðpþ KÞ2

þ 2πi
δ½ðpþ KÞ2�
eβjðpþKÞ·uj þ 1

��

1

p2
þ 2πi

δðp2Þ
eβjp·uj þ 1

�

;

ð3Þ

where K ¼ ðω; vFkÞ is the photon 4 momentum of the
incident light and K2 ¼ ω2 − v2Fk

2. Following Ref. [14],
Eq. (3) can be decomposed into

πμνðk;ωÞ ¼ πTðk;ωÞPμν þ πLðk;ωÞQμν; ð4Þ

where πL and πT are respectively the longitudinal and
transverse part of the polarization form factors. The
definitions of Pμν and Qμν are given by

Pμν ≡ gμν − uμuν þ
KμKν

v2Fk
2
;

Qμν ≡ −
1

K2v2Fk
2
ðv2Fk2uμ þ ωK̃μÞðv2Fk2uν þ ωK̃νÞ; ð5Þ

where K̃μ ≡ Kμ − ωuμ. πμνðk;ωÞ is symmetric under the
exchange of μ ↔ ν and the VP should obey the gauge
condition Kμπμν ¼ 0. The relations between πμν, πL, and
πT are

πLðk;ωÞ¼
−K2uμuνπμν

v2Fk
2

; πTðk;ωÞ¼
−πLþgμνπμν

2
; ð6Þ

in which the FTC part of the longitudinal polarization in
massless electrons is

πL;βðk;ωÞ ¼
−4e2

ð2πÞ3
�

1 −
ω2

v2Fk
2

�
Z

d4p

�

δðp2Þ
ðpþ KÞ2 fðpÞ

þ 2
δ½ðpþ KÞ2�

p2
fðpþ KÞ

�

× ½2ðp0 þ K0Þp0 − p · ðpþ KÞ�; ð7Þ

where fðpÞ ¼ 1=ðeβjp·uj þ 1Þ is the Fermi-Dirac distribu-
tion function and the subscript β denotes the FT part of
the one-loop effect. The calculation can be advanced by
expanding fðpÞ in power series of expð−βp0Þ.
The power series of expð−βp0Þ converges quickly, and

one can derive that the temperature dependence is propor-
tional to T4 when T → 0. More specifically, we have

πL;β∼
−56απ3

45K2
T4; πT;β∼

−56απ3

45K2

�

1þ ω2

v2Fk
2

�

T4; ð8Þ

where α is the fine structure constant in quantum electrody-
namics. In general, the FTC to loop amplitude will be in form
of an even power of T, as is evident from the Sommerfield
expansion [17].Typically, the leadingFTCof a loop amplitude
will start from T2 in a massive electron theory. In the current
massless case, however, the leading FTC starts only from T4.
It is the result of cancellation of T2 terms between the
contributions of two electron propagators of like forms.
In principle, a T4 FTC is negligibly small if the system

exists certain energy scales such as electron mass. Typically
the energy scale of a system is defined by the trace of
energy-momentum tensor (EMT). In a massless theory,
there is no intrinsic energy scale at the Lagrangian level as
the trace of EMT of the Lagrangian is set by the mass and
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m ¼ 0 for a massless theory. Therefore, it appears that the
T4 FTC has a chance to become manifest. But in a massless
theory there will be an energy scale induced by the ZT
VP [11]. The energy scale so induced is dubbed a “trace
anomaly” as massless theory originally has zero trace of
EMT, and the VP tensor gives rise to nonzero trace; it
defines the energy scale of the system, including one-loop
effects. Note that, at the same one-loop level, the electron
self-energy diagram will induce a mass-correction term
[10,14]. It seems that this effect may also exhibit a new
energy scale. However, this effect does not contribute to the
trace of EMT at the one-loop level. Even if it induces an
energy scale, the effect will emerge only at a higher-loop
calculation and hence can be safely neglected in the one-
loop study.
Despite the energy scale emerging from the ZT VP,

the leading term for this effect is, fortunately, a one-loop
amplitude, and this allows FTC, which is also a one-loop
effect, and its size could vary by tuning ω and k, to compete
with the ZT VP effect. We conclude that the T4 dependence
of FTC will manifest only in a massless electron theory.
Negative refractive index.—We are going to show that

there exists a fine-tuned region of frequencies and wave
numbers allowing the existence of negative ϵ and μ in the
DSM at FT. We follow Eq. (2.26) in [14], which reads

ϵðk;ωÞ ¼ 1 −
πL
K2

;
1

μðk;ωÞ ¼ 1þ K2πT − ω2πL
v2Fk

2K2
: ð9Þ

The full expression πLðTÞ is πLðTÞ ¼ π0 þ πLðTÞ;β, where π0
is the ZT part of VP amplitude. The signs of ϵ and μ, which
give drastically different physical properties [9], depend on
both ω and k.
The ZT part of the VP amplitude π0 is given by

π0ðk;ωÞ ¼
α

3π
ðω2 − k2v2FÞ ln

�

ω2 − k2v2F
μ2m

�

; ð10Þ

where μm is the infrared cutoff energy [11]. We choose the
cutoff energy μm being cm−1 (≈0.1 meV), depending on
the size of samples. The physical reason is that the infrared
cutoff is to cut off soft photons, which means the low
energy ones. The above ZT properties can be found in the
ZT part of ϵ, shown in Fig. 1(a). If only the ZT part of the
VP is considered, both ϵ and μ cannot have negative value.
This can be seen easily by substituting Eq. (10) into Eq. (9)
with K2 being greater than the infrared cutoff. It is by
definition true because the infrared cutoff is the resolution
limit of measurements. Furthermore, the numerical result is
not sensitive to the choice value of μm.
The equations in Eq. (9) were calculated numerically

with the energy range within a few meV apart from k ¼ 0
since DSM show a linear dispersion relation only near the
Dirac point. The most interesting part is the existence of
NIM, for which the ϵ and μ are both negative. The plots of ϵ

and μ with respect to incident light frequency ω under
different temperatures are shown in Figs. 1(b)–(d). The
region marked between two dashed lines is where NRI
takes place, which becomes larger when temperature is
raised. The fact shows that temperature plays a crucial role
in the occurrence of NRI. One can also see that the product
ϵμ ≥ 1; however, the refractive index n ¼ � ffiffiffiffiffi

ϵμ
p

should
take a negative sign to preserve causality [1].
Figure 2(a) gives the phase diagram of DSM where

phase 1 (ϵ < 0, μ < 0), phase 2 (ϵ < 0, μ > 0), and phase 3
(ϵ > 0, μ > 0) near room temperature are shown. Recall
that at ZT the system exhibits no NRI. We have calculated
the range where negative ϵ is allowed numerically. The
accuracy of δ ¼ ω − kvF is 10−7 meV. We found that for
ω > ω0 ≈ 12.9 meV, ϵ has no chance to be negative; see
Fig. 2(b).
We now express analytically the NIM property of

massless electrons. When kvF is close to ω, we can derive
the asymptotic behavior of permittivity, which reads

ϵ≈1þCω;kþ
2π3α

3k2v2Fβ
2
ln
βðω−kvFÞ

2
ðkvF→ωÞ; ð11Þ

where the symbol Cω;k is a ω and k dependent summation
but converges to a finite value. A detailed derivation of
Eq. (11) can be found in the Supplemental Material [18].
Because of the logarithmic term, ϵ can be negative and

(a) (b)

(c) (d)

FIG. 1. We choose kvF ¼ 2.0 meV for the convenience of
demonstration. (a) At T ¼ 0, the ϵ is positive in the frequency
range of interest. The condition of NRI cannot be satisfied.
(b)–(d) are the frequency responses of ϵ and μ at different
temperatures. These clearly show that the range of NRI expands
when T increases.
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large in magnitude when kvF is very close to ω.
We can also derive that πT;β ≈ 2απ=3β2 when kvF ≈ ω.
By Eqs. (9) and (11),

1

μ
≈ 1þ Cω;k þ

2πα

3k2v2Fβ
2
þ 2π3α

3k2v2Fβ
2
ln
βðω − kvFÞ

2
: ð12Þ

From Eqs. (11) and (12), we conclude that both ϵ and μ can
be negative when kvF ≈ ω.
The above results come from the VP of free electrons.

We now apply our calculation to realistic systems. Taking
Cd3As2 as an example, Eq. (11) has to be modified to
account for the lattice contribution to the permittivity:

ϵ≈ϵLþCω;kþ
2π3α

3k2v2Fβ
2
ln
βðω−kvFÞ

2
ðkvF→ωÞ; ð13Þ

where ϵL contains the lattice effects. Experiments showed
that ϵL ≈ 17 for Cd3As2 [19]. On the other hand, the
permeability is modified very little by lattice effects such as
phonons and high frequency polarizations and hence does
not need to be revised. The resulting NRI regions become
smaller than that of free electrons. They are plotted in Fig. 3
at β ¼ 30 eV−1 for ϵ, μ, phase diagram, and the critical
region. One novelty is now a new phase appears (phase 4)
due to the shift of the ϵ boundary.
Clearly the negativity of ϵ and μ and hence the NRI

originate from the logarithmic divergence at ω ≈ kvF. A
massless electron with linear dispersion occupying a state
in a Dirac cone can absorb a photon and make a transition
to a higher energy state in the Dirac cones and, hence,
induce the resonance. Though the resonance can occur only
if the vF is close to the light speed in the matter, once it
occurs, there will be numerous states that can contribute.
Therefore, the resonance is prominent. We thus conclude
that the negative ϵ and μ is due to the very existence of
Dirac cones, the unique band structure of DSM. The
broadening phenomenon in Fig. 1 is due to the spillover
of the Fermi-Dirac distribution function when temperature

increases; the higher the temperature is, the more states
become available for such a resonance.
As shown above, both the ϵ and μ have ω and k

dependencies. The latter dependency has often been referred
to as the spatial dispersion or nonlocal effect. Since the
relation between ω and k of electromagnetic waves in media
is determined by the ϵ and μ, they have both dependencies
naturally. However, we note that this is different from the
nonlocal effect in the metamaterials [20]. Because of the size
of constitutive components and inhomogeneity of metama-
terials, the ϵ and μ cannot be simply taken as averaged
quantities. Instead, they have to be calculated to account for
the nonlocal effect. This additional effort is not required in
natural materials. Therefore, DSM can provide a straightfor-
ward experimental demonstration.
In order to realize NRI in real systems, one more

requirement has to be satisfied. The light speed in the
material is ω=k. Both ϵ and μ are negative when kvF ≈ ω

and hence c=
ffiffiffiffiffiffijϵμp j has to be close to vF. Typically, vF ≈

c=100 in materials. Hence,
ffiffiffiffiffi

ϵμ
p

has to be around 100, very
large in magnitude. The requirement can always be
fulfilled. In view of our Eqs. (12) and (13), both ϵ and μ
become negative and large only when ω ≈ kvF. This is
when the logarithmic function becomes negative and
cancels the large and positive term Cω;k. In principle, the
value of ϵ in Eq. (12) can be arbitrarily large. So can the

=
=

(a) (b)

FIG. 2. (a) Near room temperature, the phase diagram of phase
1 (NRI) and the other two phases. These phases are defined by the
signs of ϵ and μ. (b) For ω > ω0 (≈12.9 meV), the ϵ becomes
positive. ω0 denotes the endpoint of phase 1.

(a) (b)

(c) (d)

FIG. 3. With lattice contribution ϵL ¼ 17 [19] and temperature
β ¼ 30 eV−1, (a) and (b) are the plots of frequency responses of ϵ
and μ when kvF ¼ 0.06 and 0.1 meV, respectively. (c) The phase
diagram of phase 1, phase 2, phase 3, and phase 4 (ϵ > 0, μ < 0).
Left (right) of the dashed line shows the sign boundary of ϵ,
which is smaller (greater) than zero. (d) For ω > ω0

(≈3.80 meV), the ϵ becomes positive.
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value of μ if 1=μ approaches zero. Hence, the requirement
mentioned before can be satisfied as long as ω ≈ kvF.
However, any system inevitably has dissipation. Its effect

can be approximated by replacing ω with ωþ i=τ where τ
is the relaxation time [12]. This results in the factor
ln jβðω − kvFÞ=2j in our VP to be substituted by
ln jβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω − kvFÞ2 þ 1=τ2
p

=2j. A recent experiment [21]
showed that the quality factor (Q ≈ 1=ωτ) can be as high
as 3.7. As a result, the value of the logarithmic function can
still be negative and large in magnitude as long as the
temperature is high enough. In view of Eq. (13), we found
that the ϵ (and also μ) sat comfortably in the negative region
if ω=kBT ⪅ 1=40.
Conclusion.—We have calculated the VP of massless

electrons at FT with the real-time propagators’ formalism.
The analytic expression was obtained. Its asymptotic
behavior at low temperature is proportional to T4. Our
calculation has been applied to Cd3As2 to show the
frequency region of NRI at FT. Both negative ϵ and μ
arise from the logarithmic divergence at kvF ≈ ω. Incident
photons with such dispersion relation facilitate the resonant
excitation of electrons in the Dirac cones. This is similar to
the situation in metamaterials where NRI is realized by
approaching a certain resonance frequency from below. It is
the very nature of electrons being massless and with linear
dispersion relations that makes DSM a natural material
candidate exhibiting NRI. Lastly, we found that higher
temperature favors the occurrence of NRI.
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