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We prove the Lieb-Schultz-Mattis theorem on the energy spectrum of a general two- or three-
dimensional quantum many-body system with the U(1) particle number conservation and translation
symmetry. Especially, it is demonstrated that the theorem holds in a system with long-range interactions. To
this end, we introduce approximate magnetic translation symmetry under the total magnetic flux Φ ¼ 2π
instead of the exact translation symmetry, and explicitly construct low energy variational states. The energy
spectrum at Φ ¼ 2π is shown to agree with that at Φ ¼ 0 in the thermodynamic limit, which concludes the
Lieb-Schultz-Mattis theorem.
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Introduction.—Understanding the low energy spectrum
of a quantum many-body system is a central issue in
condensed matter physics [1]. The spectrum can be either
gapless in some systems or it can be gapped in other systems
with spontaneously broken discrete symmetry and an
intrinsic topological order [2,3], in addition to trivial uni-
quely gapped systems. In this context, the Lieb-Schultz-
Mattis (LSM) theorem is a fundamental theorem which can
put strong constraints on possible energy spectra and
provide a guiding principle for searching exotic quantum
states including topological states with long-range entan-
glement [4–18]. Especially, the original LSM theorem for
one dimension holds in a system with long-range density-
density interactions, and provides a lower bound of ground
state degeneracy (D), D ≥ q, for a gapped system with the
filling per unit cell ρ ¼ p=q [4–6]. Thewide applicability of
the theorem is fundamentally important, since long-range
interactions naturally exist in real systems [19–33] and they
can have significant impacts on energy spectra. For example
in three dimensions, the Coulomb interaction gaps out the
collective charge excitations in metals and plays a crucial
role in the Anderson-Higgs mechanism in superconductors
[22–24]. Exotic quantum phases can be realized in various
systems where long-range interactions are essential, such as
in Coulomb interacting electrons [25–28] and dipolar
systems [29–33]. Besides, D is closely related to the nature
of ground states for both broken discrete symmetry [34,35]
and a topological order [36–38], which might be affected by
long-range interactions.
Unfortunately, however, the original proof cannot be

applied to a higher-dimensional system with an isotropic
system size, and higher-dimensional extensions were made
possible more than thirty years after the original work [8–
12]. Based on local twist of a short-range Hamiltonian [9–
12], it was shown that D ≥ q for a gapped system under an

assumption on matrix elements of local operators. This may
be generalized to some rapidly decaying long-range inter-
acting systems, but exact conditions are not yet known. On
the other hand, the higher-dimensional LSM theorem was
proved also in a different approach under an hypothesis that
an excitation gap does not close when a 2π-flux quanta
piercing a hole of the torus system is adiabatically inserted
[8]. Although this approach is formally applicable to a
system with long-range interactions, the adiabatic hypoth-
esis is a subtle issue especially in such a system and its
validity is still under debate [8–11,39,40]. Therefore, it is
still not clear whether or not the LSM theorem holds in a
higher-dimensional system with long-range interactions.
In this study, we discuss the LSM theorem in higher

dimensions, especially focusing on long-range interacting
systems. With the use of approximate magnetic translation
instead of the conventional one, we can prove the theorem
and extend its applicability to a wider class of systems.
Technically, our proof may be regarded as a simple
generalization of the original one-dimensional LSM argu-
ment and therefore long-range interactions can be treated in
a straightforward way, which is an advantage of our
approach. To be concrete, we consider a simple model
of spinless particles (either fermions or bosons) on a two-
dimensional square lattice of a linear size Lx ≃ Ly ≃ L ¼ffiffiffiffiffiffiffiffiffiffi
LxLy

p
with the periodic boundary condition. Our proof is

applicable also to a three-dimensional system with a size
Lz ≃ L. The Hamiltonian is given by

HðϕÞ ¼ HtðϕÞ þHV

¼ −
X
hi;ji

tijðϕÞc†i cj þ
1

2

X
i;j

Vijñiñj; ð1Þ
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where j ¼ ðxj; yjÞ is a site position and hi; ji represents a
nearest neighbor pair of sites. The hopping integral
includes the vector potential tjkðϕÞ ¼ teiAjk with t ∈ R
corresponding to a uniform magnetic flux per plaquette
ϕ ¼ P

hi;ji∈plaquette Aij. The second term HV describes the

density-density interaction with ñj ¼ c†jcj − ρ at the filling
ρ ¼ p=q and the potential Vij ¼ V ji−jj can include long-
range interactions in addition to short-range interactions.
The Hamiltonian possesses translation symmetry when
Aij ¼ 0. We consider a class of general interactions with
stability of the Hamiltonian and extensiveness of energy
eigenvalues, including stable tempered interactions and
Coulomb interaction [19,20]. Then, we prove the following
statement.
Theorem.—Consider the Hamiltonian Hðϕ ¼ 0Þ. When

the filling per unit cell is ρ ¼ p=q with coprime p; q ∈ N,
either there exist gapless excitations or the ground states are
at least q-fold degenerate in the thermodynamic limit.
The proof consists of two steps. (i) We first construct

approximate magnetic translation operators T x;y in the
presence of ϕL ¼ 2π=LxLy ¼ 2π=L2 and show that the low
energy states of HðϕLÞ are nearly q-fold degenerate in a
finite size system as a consequence of a nontrivial com-
mutation relation of T x, T y corresponding to a projective
representation of Z × Z. (ii) Next, we demonstrate that the
energy difference δEnðΦ0Þ ¼ ½EnðΦ0Þ − Enð0Þ� vanishes
in the thermodynamic limit, where EnðΦ0Þ is the nth
eigenvalue of HðϕLÞ with the total magnetic flux,
Φ0 ¼ LxLy × ϕL ¼ 2π. By combining these two results,
we can complete the proof of the main theorem [41]. The
proof can be generalized to a wide class of models with
hopping beyond the nearest neighbors, lattices other than
the square or cubic lattice, spins, and orbitals, and some
other long-range interactions. In the following, we discuss
the two steps for the Hamiltonian Eq. (1) and generaliza-
tions will be presented elsewhere.
Step (i) approximate magnetic translation and low

energy states.—First, we give an explicit construction of
the approximate magnetic translation operators for the
Hamiltonian Eq. (1) and also of low energy variational
states under the small magnetic field ϕL. We consider the
string gauge with the period Lx, Ly which realizes the
smallest flux per plaquette ϕ ¼ ϕL ¼ 2π=L2 and the total
flux in the system Φ ¼ Φ0 ¼ 2π under the periodic
boundary condition [42–44]. In this study, the gauge
configuration is fixed as in Fig. 1 and straightforwardly
generalized for arbitrary Lx, Ly [45].
One can define an approximate magnetic translation

operator in the string gauge by introducing appropriate
scalar functions Xj, Yj,

T x ¼ TxUy ¼ Tx exp

�
i
X
j

Yjñj

�
; ð2Þ

T y ¼ TyUx ¼ Ty exp

�
i
X
j

Xjñj

�
; ð3Þ

where Tx;y are the conventional translation operators
without a magnetic field. We can determine the functions
Xj, Yj by trying to require translational symmetry of the
Hamiltonian as follows. The hopping Hamiltonian is
transformed as

T μc
†
je

iAjkckT −1
μ ¼ c†jþμ̂e

iZμ
j eiAjke−iZ

μ
k ckþμ̂

≡ c†jþμ̂e
iAjþμ̂;kþμ̂ckþμ̂ ð4Þ

in the μ direction, where Zx
j ¼ Yj, Z

y
j ¼ Xj. In the second

equality, we have required the magnetic translation sym-
metry. This leads to the condition Aiþμ̂;jþμ̂ ¼ Aij þ dZμ

ij

with dZμ
ij ¼ Zμ

i − Zμ
j . This is basically a gauge trans-

formation Aij → A0
ij ¼ Aiþμ̂;jþμ̂ by the unknown scalar

function Zμ
j . Unfortunately, however, there is no solution

for Zμ
j that satisfies the simple periodic boundary condition,

Zx;y
j ¼ Zx;y

jþLμμ̂
. We have to introduce a singular gauge

transformation to satisfy Eq. (4) and correspondingly
decompose Zμ

j into a singular term and regular term
Zμ
j ¼Zsμ

j þZμr
j . An example of Xj and Yj for Lx¼Ly¼3

is shown in Fig. 2, and they are obtained in a similar way

FIG. 1. The string gauge for a Lx ¼ Ly ¼ 3 system. Each
number on the bonds corresponds to Aij in unit of ϕL¼3 ¼ 2π=9
and is given in mod 9.

FIG. 2. The gauge transformation Aiþŷ;jþŷ − Ai;j ¼
dXs

ij þ dXr
ij and Aiþx̂;jþx̂−Ai;j¼dYs

ijþdYr
ij for Lx ¼ Ly ¼ 3.

The red numbers inside the circles represent Xs;r
j and Ys;r

j . All the
numbers are defined in unit of ϕL¼3 ¼ 2π=9 and are in mod 9.
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for other general system sizes. A singular gauge trans-
formation is often treated with an introduction of a branch
cut and it can be explicitly implemented in our system, but
we will take a different approach in this study.
Here, instead of the full magnetic translation symmetry,

we consider only the regular parts Xr
j, Y

r
j which approxi-

mately realize the magnetic translation, and neglect the
singular parts Xs

j, Y
s
j. For simplicity, the same notation T x;y

is used for the approximated magnetic translation operator.
We stress that the regular parts alone satisfy a desired
commutation relation of T x;y, even when we ignore the
singular parts correspond to a uniform singular vector
potential As

jþμ̂;j ¼ ϕμ with ϕx ¼ −ϕL, ϕy ¼ ϕL which does
not contribute to the out-of-plane flux. Indeed, one can
easily derive the commutation relation of the approximate
magnetic translation operator T x;y,

T −1
y T −1

x T yT x ¼ eiϕLN; ð5Þ

where N ¼ P
j nj ¼ ρLxLy at the filling ρ. Therefore these

operators give a projective representation of Z × Z, which
is a key in our discussion.
Now we consider the ground state of the Hamiltonian

Eq. (1) and low energy variational states. In constructing
the variational states, we use the following relations which
are derived straightforwardly,

T xHðϕL; 0; 0ÞT −1
x ¼ HðϕL; 0;−ϕyÞ; ð6Þ

T yHðϕL; 0; 0ÞT −1
y ¼ HðϕL;−ϕx; 0Þ; ð7Þ

where HðϕL;ϕx;ϕyÞ is the Hamiltonian with the magnetic
field ϕL along the z direction and the constant vector
potential As

jþμ̂;j ¼ ϕμ along the μ direction with ϕx ¼ −ϕL,
ϕy ¼ ϕL [48]. These equations mean that T x;y describe
magnetic translation symmetry up to the small quantity
ϕμ ¼ OðL−2Þ, and H and T μHT −1

μ are unitary equivalent
with the same spectra. In the following, we regard T y as a
twist operator and T x as a near symmetry operator. Given
the ground state which satisfies HðϕL; 0; 0ÞjΨ0i ¼
E0ðΦ0ÞjΨ0i for the total flux Φ0 ¼ 2π, the variational
states are defined by jΨ0ki ¼ ðT yÞkjΨ0i with k ∈ Z.
Then, it follows from Eq. (7) that E01ðΦ0Þ ¼
hΨ01jHðϕL; 0; 0ÞjΨ01i ¼ hΨ0jHðϕL;ϕx; 0ÞjΨ0i is evalu-
ated as

E01 ¼ E0 þ ϕxh1 þ ϕ2
xh2 þ � � � ; ð8Þ

where we have Taylor expanded HðϕL;ϕx; 0Þ with res-
pect to ϕx ¼ OðL−2Þ and hl ¼ hΨ0j∂l

ϕx
HðϕL; 0; 0ÞjΨ0i=l!.

Clearly, the second correction term behaves as ϕ2
xh2 ¼

OðL−4Þ ×OðL2Þ ¼ OðL−2Þ in two dimensions. The first
correction term ϕxh1 is odd in ϕx and its sign can be flipped
by considering another variational state T −1

y jΨ0i in

addition to T yjΨ0i. The absolute value of ϕxh1 must be
smaller than that of ϕ2

xh2 so that the variational energies of
HðϕL; 0; 0Þ for the two states T �1

y jΨ0i are greater than or
equal to E0, which is a variant of Bloch’s theorem for the
persistent current [49,50]. The higher order corrections are
even smaller, and we end up with E01 ¼ E0 þOðL−2Þ. One
also obtains E0k ¼ E0 þOðL−1Þ in three dimensions.
Next, we discuss approximate orthogonality of these

states based on Eq. (6) which is now regarded as a near
symmetry ofHðϕL; 0; 0Þ. We first consider a case where the
ground state is uniquely gapped and later move on to a
multiply degenerate case. Following the previous study [8],
we introduce a unitary evolution operator F y which adi-
abatically inserts a flux Φy ¼

P
yj A

s
jþŷ;j ¼ Lyϕy through

the noncontractible hole of the torus in y direction [51].
Since jΨnðΦyÞi ¼ F yðΦyÞjΨnð0Þi [52,53], Eq. (6) leads
to Hð0ÞT xF yjΨ0ð0Þi ¼ E0ðΦyÞT xF yjΨ0ð0Þi, where
E0ðΦyÞ is the ground state energy with the flux,
HðΦyÞjΨ0ðΦyÞi ¼ E0ðΦyÞjΨ0ðΦyÞi. When the spectrum
ofHð0Þ has a gapΔð0Þ ¼ OðL0Þ ¼ Oð1Þ above the unique
ground state, the gap does not close for a flux Φ0

y ∈ ½0;Φy�
essentially because the inserted flux Φ0

y ¼ OðL−1Þ is
vanishingly small [54], which implies that E0ð0 ≤ Φ0

y ≤
ΦyÞ stays at the lowest energy. Because the spectra ofHð0Þ
and HðΦyÞ are unitary equivalent, this means E0ð0Þ ¼
E0ðΦyÞ and hence jΨ0ð0Þi is an eigenstate of the com-
bined unitary operator T xF y. Therefore, with use of
the commutation relation Eq. (5), hΨ0ð0ÞjΨ01ð0Þi ¼
e−iϕLNhΨ0ð0ÞjðF−1

y T −1
x ÞT yðT xF yÞjΨ0ð0Þi þOðL−1Þ, we

obtain in two dimensions

hΨ0jΨ01i ¼ ei2πρhΨ0jΨ01i þOðL−1Þ: ð9Þ

To be consistent with the preassumed unique gapped
ground state, ρ must be an integer. The contraposition
corresponds to a part of the LSM theorem. In three
dimensions, the corresponding factor is ei2πρLz , which also
requires an integer ρ for suitably chosen Lz similarly to the
previous study [8].
The above discussions can be extended to a gapped

system with general degeneracy D, from which we can
concludeD ≥ q for ρ ¼ p=q. A fractionally filled system is
either gapless or gapped with D > 1 as shown above, and
here we consider the latter case with a gap Δ ¼ Oð1Þ from
the D-dimensional ground state sector to excited states for
HðϕL; 0; 0Þ. The ground state sector consists of the states
fjΨnigD−1

n¼0 whose energies agree in the thermodynamic
limit and we neglect possible vanishingly small energy
differences for brevity. Then we construct variational states
jΨnki ¼ ðT yÞkjΨni for k ¼ 1;…; K and evaluate their
energy expectation values Enk. We can just repeat the
same argument as above and obtain Enk ¼ E0 þOðLd−4Þ
in d dimensions. To discuss their (near) orthogonality, we
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introduce a vector I¼ðI0;…;ID−1ÞT with In ¼ hΨnjΨnki ¼
hΨnjT k

yjΨni. Then, one obtains I ¼ ei2πkρI in two dimen-
sions similarly to Eq. (9) [55] and it suggests 1 ≤ ∃ k0 ≤ K
such that k0ρ ∈ Z when K ¼ D since the number of
linearly independent variational states must be smaller
than or equal to D. This implies D ≥ q.
Step (ii) stability of many-body eigenvalues to magnetic

fields.—Here, we discuss stability of eigenvalues EnðΦ ¼
0Þ ofHðϕ ¼ 0Þ to a small magnetic field in z direction, and
show that δEnðΦ0Þ ¼ ½EnðΦ0Þ − Enð0Þ� → 0 as L → ∞.
One of the difficulties in discussing such stability is that the
uniform magnetic field ϕL is not a small perturbation in the
usual sense, and jeiAjk − 1j is not vanishing for a large
number of bonds, which prevents us from Taylor expanding
the Hamiltonian only up to a small finite order in ϕL. It is
nontrivial whether or not ϕL ¼ 2π=L2 can be simply
regarded as the ϕ → 0 limit, since the corresponding total
flux Φ0 ¼ 2π is Oð1Þ, which could potentially lead
to δEnðΦ0Þ ¼ Oð1Þ.
On the other hand, one may naively expect the stability

of the many-body eigenvalues, δEnðΦ0Þ → 0, as has been
assumed in numerical calculations [56]. To explicitly
demonstrate it, we use the stability of single-particle
eigenvalues εnðϕ ¼ 0Þ to a magnetic field, which was
mathematically proved in the literature [57–59]. To use this
result, we have to appropriately modify our Hamiltonian by
introducing an on-site potential term HU ¼ P

i Uini which
can lift the degeneracy of the single-particle eigenvalues.
Here, we choose Uj to be a fixed random potential in
½−u; u� for a given system size so that the degeneracy of
εnðϕ ¼ 0Þ due to spatial (rotation, inversion, and trans-
lation) symmetries is lifted. Besides, the corresponding
single-particle eigenfunctions will be nonzero any-
where in the system, because of the random potential
which suppresses accidental zeros. Then, one has
δεnðϕLÞ ¼ ½εnðϕLÞ − εnð0Þ� ∼ ϕ2

L ¼ OðL−4Þ possibly with
a u-dependent coefficient [57–59].
This immediately leads to eigenvalue stability of the non-

interacting Hamiltonian HtUðϕL; uÞ ¼ HtðϕLÞ þHUðuÞ,
namely, δEnðΦ0;u;V¼0Þ∼ϕ2

LN¼OðLd−4Þ in d dimen-
sions. We keep u > 0 to show δEnðΦ0; uÞ → 0 in the ther-
modynamic limit, and then turn off the random potential,
u → 0 [60], which eventually implies δEn → 0 in absence
of the artificial potential Uj. We can also see that corre-
sponding changes in eigenvectors ofHtUðϕL; uÞ are vanish-
ingly small; a direct calculation gives kjδΨnðϕL;uÞik2 ¼
kjΨnðϕL;uÞi− jΨnð0;uÞik2 ¼Oðϕ2

LNÞ¼OðLd−4Þ. There-
fore the eigenvalue stability implies that the resolvent
RtUðϕL;u;EÞ¼½HtUðϕL;uÞ−E�−1 approaches RtUð0;0;EÞ
in the above mentioned limit.
Now we consider eigenvalue stability of the interacting

Hamiltonian HðϕL; uÞ ¼ HtUðϕL; uÞ þHV . We can see
that the eigenvalues and eigenvectors ofHðϕL; uÞ approach
those at ϕ ¼ 0 in a similar manner. This follows from the
resolvent equation

½HtUðϕL; uÞ þHV − E�−1
¼ ½HtU − E�−1½1þHV ½HtU − E�−1�−1; ð10Þ

where ½HtUðϕL;uÞ−E�−1→ ½HtUð0;uÞ−E�−1 as already dis-
cussed. Therefore, we conclude ½HtUðϕL;uÞþHV−E�−1→
½HtUð0;uÞþHV−E�−1, which means stability of the eigen-
values and eigenvectors ofHðϕL; uÞ ¼ HtUðϕL; uÞ þHV to
the small magnetic field ϕL at u ≠ 0. Finally, we take the
limit u → 0 and conclude that the eigenvalues of the clean
many-body Hamiltonian for the sufficiently large system
approach EnðΦ ¼ 0Þ. Since the eigenvectors ofHðϕLÞ also
converge to those ofHð0Þ, the (near) orthogonality Eq. (9) is
kept down to ϕ ¼ 0. This completes our proof of the LSM
theorem.
In summary, with use of the approximate magnetic

translation symmetry, we have extended the LSM theorem
to higher-dimensional long-range interacting systems and
derived the lower bound, D ≥ q, for gapped ground state
degeneracy at a fractional filling ρ ¼ p=q.

We are grateful to Y. Yao, M. Oshikawa, A. Ueda, T.
Koma, M. G. Yamada, M. Sato, S. C. Furuya, K. Shiozaki,
and S. Kamimoto for valuable discussions. This work was
supported by JSPS KAKENHI Grant No. JP17K14333.

*ytada@hiroshima-u.ac.jp
[1] T. Cubitt, D. Perez-Garcia, and M. Wolf, Nature (London)

528, 207 (2015).
[2] X. G. Wen, Quantum Field Theory of Many-body Systems:

From the Origin of Sound to an Origin of Light and
Electrons (Oxford University Press, New York, 2004).

[3] X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).
[4] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (Berlin) 16,

407 (1961).
[5] I. Affleck and E. H. Lieb, Lett. Math. Phys. 12, 57 (1986).
[6] M. Yamanaka, M. Oshikawa, and I. Affleck, Phys. Rev.

Lett. 79, 1110 (1997).
[7] T. Koma, J. Stat. Phys. 99, 313 (2000).
[8] M. Oshikawa, Phys. Rev. Lett. 84, 1535 (2000).
[9] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).

[10] M. B. Hastings, Europhys. Lett. 70, 824 (2005).
[11] M. B. Hastings, arXiv:1008.5137.
[12] B. Nachtergaele and R. Sims, Commun. Math. Phys. 276,

437 (2007).
[13] S. A. Parameswaran, A. M. Turner, D. P. Arovas, and A.

Vishwanath, Nat. Phys. 9, 299 (2013).
[14] H. Watanabe, H. C. Po, A. Vishwanath, and M. Zaletel,

Proc. Natl. Acad. Sci. U.S.A. 112, 14551 (2015).
[15] Y.-M. Lu, Y. Ran, and M. Oshikawa, Ann. Phys.

(Amsterdam) 413, 168060 (2020).
[16] Y. Yao and M. Oshikawa, Phys. Rev. X 10, 031008 (2020).
[17] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83,

035107 (2011).
[18] Y. Ogata, Y. Tachikawa, and H. Tasaki, Commun. Math.

Phys. 385, 79 (2021).

PHYSICAL REVIEW LETTERS 127, 237204 (2021)

237204-4

https://doi.org/10.1038/nature16059
https://doi.org/10.1038/nature16059
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1007/BF00400304
https://doi.org/10.1103/PhysRevLett.79.1110
https://doi.org/10.1103/PhysRevLett.79.1110
https://doi.org/10.1023/A:1018604925491
https://doi.org/10.1103/PhysRevLett.84.1535
https://doi.org/10.1103/PhysRevB.69.104431
https://doi.org/10.1209/epl/i2005-10046-x
https://arXiv.org/abs/1008.5137
https://doi.org/10.1007/s00220-007-0342-z
https://doi.org/10.1007/s00220-007-0342-z
https://doi.org/10.1038/nphys2600
https://doi.org/10.1073/pnas.1514665112
https://doi.org/10.1016/j.aop.2019.168060
https://doi.org/10.1016/j.aop.2019.168060
https://doi.org/10.1103/PhysRevX.10.031008
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1007/s00220-021-04116-9
https://doi.org/10.1007/s00220-021-04116-9


[19] D. Ruelle, Statistical Mechanics: Rigorous Results (World
Scientific Pub Co Inc, Singapore, 1999).

[20] E. Lieb and R. Seiringer, The Stability of Matter in Quantum
Mechanics (Cambridge University Press, Cambridge,
England, 2009).

[21] A. Campa, T. Dauxois, and S. Ruffo, Phys. Rep. 480, 57
(2009).

[22] J. R. Schrieffer, Theory of Superconductivity (Westview
Press, Colorado, 1971).

[23] P. W. Anderson, Phys. Rev. 110, 827 (1958).
[24] Y. Nambu, Phys. Rev. 117, 648 (1960).
[25] M. Hohenadler, F. Parisen Toldin, I. F. Herbut, and F. F.

Assaad, Phys. Rev. B 90, 085146 (2014).
[26] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin,

A. E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N.
Rubtsov, and K. Held, Rev. Mod. Phys. 90, 025003 (2018).

[27] M. Hirata, A. Kobayashi, C. Berthier, and K. Kanoda, Rep.
Prog. Phys. 84, 036502 (2021).

[28] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod.
Phys. 90, 015001 (2018).

[29] N. Y. Yao, A. V. Gorshkov, C. R. Laumann, A. M. Läuchli,
J. Ye, and M. D. Lukin, Phys. Rev. Lett. 110, 185302
(2013).

[30] S. R. Manmana, E. M. Stoudenmire, K. R. A. Hazzard,
A. M. Rey, and A. V. Gorshkov, Phys. Rev. B 87, 081106
(R) (2013).

[31] N. Y. Yao, M. P. Zaletel, D. M. Stamper-Kurn, and A.
Vishwanath, Nat. Phys. 14, 405 (2018).

[32] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S.
Lhmann, B. A. Malomed, T. Sowiński, and J. Zakrzewski,
Rep. Prog. Phys. 78, 066001 (2015).

[33] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).
[34] M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev.

Lett. 78, 1984 (1997).
[35] S. C. Furuya and Y. Horinouchi, Phys. Rev. B 100, 174435

(2019).
[36] M. Oshikawa and T. Senthil, Phys. Rev. Lett. 96, 060601

(2006).
[37] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405

(2006).
[38] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404

(2006).
[39] G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre,

Eur. Phys. J. B 26, 167 (2002).
[40] H. Watanabe, Phys. Rev. B 98, 155137 (2018).
[41] In this sense, the flux ϕL is regarded as a perturbation to

control the system in two or three dimensions. It would be
an interesting future study to consider a different perturba-
tion controlling a system in dimensions higher than three.

[42] Y. Hatsugai, K. Ishibashi, and Y. Morita, Phys. Rev. Lett. 83,
2246 (1999).

[43] K. Kudo, T. Kariyado, and Y. Hatsugai, J. Phys. Soc. Jpn.
86, 103701 (2017).

[44] Y. Tada, Phys. Rev. Research 2, 033363 (2020).
[45] Compared to the minimum flux per plaquette ϕ ¼ OðL−1Þ

in the Landau gauge corresponding to the magnetic length
lB ¼ 1=

ffiffiffi
ϕ

p
∼

ffiffiffiffi
L

p
[7,15,46,47], ϕL ¼ OðL−2Þ in the string

gauge corresponding to lB ∼ L is even smaller and essen-
tially important in the later discussions.

[46] J. Zak, Phys. Rev. 134, A1602 (1964).

[47] J. Zak, Phys. Rev. 134, A1607 (1964).
[48] The twists in the right hand side arise from the appro-

ximation of neglecting the singular terms. Indeed, with
the application of T x to the Hamiltonian HðϕL; 0; 0Þ,
the hopping term becomes c†jþx̂e

iAjkþidYr
jkckþx̂ ¼

c†jþx̂e
iAjþx̂;kþx̂−idYs

jkckþx̂, where dYs
jk ¼ As

jk ¼ ϕy itself is
well-defined although Ys

j is not. A similar argument holds
for T y.

[49] D. Bohm, Phys. Rev. 75, 502 (1949).
[50] Y. Tada and T. Koma, J. Stat. Phys. 165, 455 (2016).
[51] Note that F y ¼ 1þOðL−1Þ essentially because Φy ¼

OðL−1Þ. Indeed, the F yðΦyÞ can be written as F yðΦyÞ¼
T̂exp½−iRΦy

0 QðΦ0
yÞdΦ0

y�, F yðΦyÞ¼1−i
RΦy

0 QðΦ0
yÞdΦ0

yþ���,
where QðΦyÞ is given by Q ¼ i

P
n ∂Φy

PnPn with the
projection operator PnðΦyÞ ¼ jΨnihΨnj for the nth eigen-
state of HðΦyÞ ¼ Hðϕ; 0;Φy=LyÞ [52,53]. In this expres-
sion, the Hermitian operator Q is an Oð1Þ operator whose
operator norm is simply kQk ¼ Oð1Þ and nearly inde-
pendent of the system size, which implies F y ¼
1þOðΦyÞ ¼ 1þOðL−1Þ. This is in contrast to the 2π-
flux insertion discussed previously [8] for which the
corresponding unitary operator might be nontrivial.

[52] T. Kato, Short Introduction to Perturbation Theory for
Linear Operators (Springer-Verlag, New York, 1982).

[53] T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950).
[54] More precisely, for example in two dimensions, we first

Taylor expand an excited energy eigenvalue as a function of
the Hamiltonian parameter φy by using the Hellmann-
Feynman theorem, Enðφy þ dφyÞ ¼ EnðφyÞ þ JnðφyÞdφyþ
OðL−2Þ with JnðφyÞ ¼ hΨnðφyÞji∂φy

HðφyÞjΨnðφyÞi, from
which we see that energy level crossing between En and E0

requires a net current jJnj=L2 ≳ ðEn − E0Þ. However, the
variational excited energy for T �1

x jΨnð0; uÞi is Evar − E0 ¼
ðEn − E0Þ � Jnϕy þOðL−2Þ ≥ 0 similarly to the Bloch’s
theorem [49,50]. Therefore, such energy level crossing is
impossible and the gap does not close during the adiabatic
process. This is consistent with the natural expectation that
En − E0 is one-sided differentiable atΦy ¼ 0 as a function of
the total flux Φy in the thermodynamic limit.

[55] More precisely, after the adiabatic time evolution where the
gap remains nonzero similarly to the case with D ¼ 1, a
state jΨnimay change to another state

P
D−1
n¼0 PmnjΨni in the

ground state sector with a unitary matrix P. So, we change
the basis states such that the unitary matrix P is diagon-
alized, and rewrite them as fjΨnigD−1

n¼0 using the same
symbols for simplicity. In this basis, one obtains I ¼
ei2πkρI in two dimensions.

[56] F. F. Assaad, in Quantum Simulations of Complex Many-
Body Systems: From Theory to Algorithms, NIC Series,
edited by J. Grotendorst, D. Marx, and A. Muramatsu
(John von Neumann Institute for Computing, Jülich, 2002).

[57] G. Berkolaiko, Anal. PDE 6, 1213 (2013).
[58] G. Berkolaiko and T. Weyand, Phil. Trans. R. Soc. A 372,

20120522 (2014).
[59] Y. C. de Verdière, Anal. PDE 6, 1235 (2013).
[60] More precisely, ∀ u > 0, ∀ ϵ > 0, ∃L0 > 0 such that

jδEnðΦ0; uÞj < ϵ for L > L0. Note that the order of the
double limits limu→0limL→∞δEn is not interchangeable.

PHYSICAL REVIEW LETTERS 127, 237204 (2021)

237204-5

https://doi.org/10.1016/j.physrep.2009.07.001
https://doi.org/10.1016/j.physrep.2009.07.001
https://doi.org/10.1103/PhysRev.110.827
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1088/1361-6633/abc17c
https://doi.org/10.1088/1361-6633/abc17c
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevLett.110.185302
https://doi.org/10.1103/PhysRevLett.110.185302
https://doi.org/10.1103/PhysRevB.87.081106
https://doi.org/10.1103/PhysRevB.87.081106
https://doi.org/10.1038/s41567-017-0030-7
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1103/PhysRevLett.78.1984
https://doi.org/10.1103/PhysRevLett.78.1984
https://doi.org/10.1103/PhysRevB.100.174435
https://doi.org/10.1103/PhysRevB.100.174435
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1140/epjb/e20020078
https://doi.org/10.1103/PhysRevB.98.155137
https://doi.org/10.1103/PhysRevLett.83.2246
https://doi.org/10.1103/PhysRevLett.83.2246
https://doi.org/10.7566/JPSJ.86.103701
https://doi.org/10.7566/JPSJ.86.103701
https://doi.org/10.1103/PhysRevResearch.2.033363
https://doi.org/10.1103/PhysRev.134.A1602
https://doi.org/10.1103/PhysRev.134.A1607
https://doi.org/10.1103/PhysRev.75.502
https://doi.org/10.1007/s10955-016-1629-2
https://doi.org/10.1143/JPSJ.5.435
https://doi.org/10.2140/apde.2013.6.1213
https://doi.org/10.1098/rsta.2012.0522
https://doi.org/10.1098/rsta.2012.0522
https://doi.org/10.2140/apde.2013.6.1235

