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Understanding how atoms interact with hot dense matter is essential for astrophysical and laboratory
plasmas. Interactions in high-density plasmas broaden spectral lines, providing a rare window into
interactions that govern, for example, radiation transport in stars. However, up to now, spectral line-shape
theories employed at least one of three common approximations: second-order Taylor treatment of
broadening operator, dipole-only interactions between atom and plasma, and classical treatment of
perturbing electrons. In this Letter, we remove all three approximations simultaneously for the first time
and test the importance for two applications: neutral hydrogen and highly ionized magnesium and oxygen.
We found 15%–50% change in the spectral line widths, which are sufficient to impact applications
including white-dwarf mass determination, stellar-opacity research, and laboratory plasma diagnostics.
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Introduction.—Understanding atomic behavior in hot
dense matter (HDM) is essential for understanding astro-
physical [1–3] and laboratory [4–6] plasmas, but calcu-
lations of perturbed atomic structure in the complex
environments of HDM plasmas are challenging. High
temperature introduces randomness into this perturbation.
HDM properties depend on the ensemble average of these
random perturbations. This affects ionization and equation
of state because the perturbations dissolve atomic states
into the continuum, an effect known as ionization-potential
depression [7–9]. The perturbations also broaden spectral
lines. This leads to convenient plasma diagnostics and
affects radiation transport and opacity because photon
transport at energies between lines depends on how broad
the lines are [1,10].
Inaccuracies of line-shape models could have conse-

quences inmany astrophysics and laboratory plasma physics
applications. For example, inconsistencies in Balmer line
shapes [11–14] create uncertainties in the determination of
white-dwarf masses, which is important for a variety of
applications, including cosmochronology [15] and type Ia
supernovae, and high-density accretion disks around black
holes [16,17]. For laboratory applications, true disagreement
between measured and modeled solar iron opacity [18] may
be obscured by uncertainties in plasma conditions diagnosed
by unverified line shapes [19–21].
There are many competing line-shape models [22–28];

their calculational accuracies are inconclusive due to various
untested approximations. Line-shape theory is multidisci-
plinary, requiring atomic physics, plasma physics, collision

physics, and statistical mechanics. There are three common
approximations: second-order approximation for the broad-
ening operator, dipole approximation for Coulomb interac-
tion between atoms and plasma particles, and classical
approximation for perturbing electrons. Some line-shape
calculations remove one or two of the three approximations,
but their calculational superiorities are unclear due to the
remaining approximation(s). The three aspects, i.e., broad-
ening operator, Coulomb interaction, and treatment of
electrons, are fundamentally related, and we cannot fully
investigate the importance of one approximation without
removing the other two approximations.
Ideally, models would be validated by benchmark experi-

ments [29–33], but since they are few and far between,
continued theoretical scrutiny is needed. Benchmark experi-
ments must have uniform plasma conditions with accurate
line-shape measurements and independent diagnostics; this
is challenging to achieve. Different physics becomes impor-
tant depending on element, conditions, and transitions, and
the existing data are far from sufficient to validate all relevant
physics at various conditions. Thus, continued theoretical
work aimed at simultaneously removing known approxima-
tions is valuable.
Simultaneous removal of the three approximations has

been the next step, but has not been realized for many
decades due to technical challenges. Simultaneous removal
of second-order and classical approximations has been
difficult. All approaches without the second-order approxi-
mation [26–28,34–37] rely on a classical-electron assu-
mption, and there is no easy extension for quantum
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electrons. All order with quantum electron formulation was
formulated in 1963 [23], but has only been evaluated with
second order. Incorporation of higher orders significantly
complicates the calculation. The path toward simultaneous
removal of the three approximations—while critical—has
not been clear until now.
In this Letter, we present the first line-shape calculation

that simultaneously removes all three approximations by
extending our recent work and adopting the technique
developed in another field. Our recent work revived the
state-of-the-art quantum line-shape calculation [38] and
was refined to include missing physics [39]. Adopting a
numerical technique used in collision physics [40] helps
resolve the longstanding technical problem. These refine-
ments allow us to perform line-shape calculations without
the three approximations. We test the validity of decade-old
approximations for K-shell transitions of neutral hydrogen
and highly ionized magnesium and oxygen. We find that,
for hydrogen, the second-order approximation overpredicts
Lyβ line width by a factor of 2 at some conditions. Also,
classical calculations severely underestimate Lyα line width
at low temperatures. Mg Heγ line shapes calculated for
stellar-opacity measurements [18,21] revealed that full-
Coulomb interaction was essential for accurate density
diagnostics, while second-order approximation was found
reasonably accurate. Understanding the validity of each
approximation is essential for efficient and accurate radiation
transport and plasma diagnostics. This Letter not only
significantly advances the line-shape theory, but also empha-
sizes the importance of continued theoretical scrutiny, bench-
mark experiments, and cross talk between relevant fields for
efficient scientific breakthroughs.
Line-broadening fundamentals.—In HDM, the lines are

broadened primarily by a radiating atom being perturbed by
nearby electrons and ions. Because of the mass differences,
ion perturbation is often approximated as a static electric
microfield ϵ. Every atom feels a different microfield, and its
probability distribution is denoted by WðϵÞ and can be
calculated by Refs. [41,42]. The total spectral line shape
IðωÞ is then computed by probability-weighted integration
of the electron-broadened line shapes over ϵ [43],

IðωÞ ¼ Im
−1
π

Z
∞

0

dϵWðϵÞ
X
ββ0αα0

hβ0jDjα0ihαjDjβi

× hα0β0j½ω −HðϵÞ þH�ðϵÞ −HðωÞ�−1jαβi; ð1Þ

where Im denotes the imaginary part, D is the dipole
operator of the atom, α, α0 and β, β0 denote upper and lower
states, respectively, HðϵÞ and H�ðϵÞ are the atomic
Hamiltonians for the upper and lower state, respectively,
and HðωÞ is the electron-broadening operator.
HðωÞ is defined as thermal average of collision ampli-

tudes, called T matrices [22–24]. HðωÞ contains upper-
state, lower-state, and interference terms [see Eq. (55) of

Fano [23] ]. For K-shell transitions considered here, the
lower-state and interference terms are negligible. The
thermal average is calculated by integrating the T matrix
over the perturbing free-electron states k, weighted by its
probability fðkÞ (i.e., often Boltzmann),

hαβjHðωÞjα0β0i

¼ δββ0ne

Z
dkfðkÞhαkjTðωþ Eβ þ EkÞjα0ki; ð2Þ

where ne is the electron density and Tðωþ Eβ þ EkÞ is the
T-matrix operator. It is important to note here that the T
matrix has a frequency dependence, which makes the line
profile non-Lorentzian and potentially asymmetric.
Electron broadening is therefore reduced to the evaluation
of the T matrix, which is formally defined as [44,45]

TðEÞ ¼ 1

1 − VðE −H0Þ−1
V: ð3Þ

This is a function of the energy E ¼ ωþ Eβ þ Ek, the
noninteracting Hamiltonian H0, and the atom-electron
interaction V. The V is a screened Coulomb interaction

V ¼
XN
a¼1

e−jra−rpj=λscr

jra − rpj
−
e−jrpj=λscr

jrpj
þ VEx: ð4Þ

The first term is the Coulomb repulsion between the N
atomic electrons and the perturbing electron. The second is
the nuclear potential felt by the perturbing electron. The
third contains electron-exchange terms between atomic
electron(s) and the perturbing electron [40]. λscr is the
screening length [46]. The electron states jki are usually
plane waves for neutrals and Coulomb waves for charged
radiators.
Approximations.—Here, we elaborate each approxima-

tion and explain how we remove these approximations:
second-order, dipole, and classical.
Second order: The calculation of the T matrix is

simplified with a second-order approximation. Since
inverting ½1 − VðE −H0Þ−1� is challenging, it is common
to Taylor expand the T matrix to second order in V,

TðEÞ ≈ V þ V
1

E −H0

V: ð5Þ

This approach is accurate only when the interaction V
is small.
Dipole: The Coulomb interaction V is often approxi-

mated by the dot product of the atomic dipole moment with
the microfield by the perturbing electrons ϵp [47,48],

V ≈
XN
a¼1

ra · ϵp; ϵp ¼ rp
1

jrpj3
�
1þ jrpj

λscr

�
e−jrpj=λscr : ð6Þ
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This is called the dipole approximation. While this is a very
common approximation for line-shape calculations, its
accuracy is not sufficiently studied.
Classical: Perturbing electrons are often treated classi-

cally [28,34,36,37,47,49]. In this approximation, the per-
turbing electron wave function is replaced by a point
particle moving on a classical trajectory, such as

hrjki ¼ 1ffiffiffiffiffiffi
2π

p
3
eiðk·rþEktÞ ⇒ rpðtÞ ¼ r0 þ vt: ð7Þ

The accuracy of this approximation becomes questionable
at low temperature and high density, where quantum effects
become important.
While the three approximations (5)–(7) make calcula-

tions efficient [47], their potential inaccuracies have been
raised repeatedly. For example, second-order approxima-
tion does not preserve unitarity of the scattering S matrix
[44]. Ad hoc strong-collision corrections are introduced to
remedy this problem [4,50], but its accuracy and univer-
sality are unknown. The dipole approximation breaks down
when the plasma electrons get close to the radiator.
However, past investigations on this found conflicting
results: Woltz and Hooper [51] found a reduction in the
width, Alexiou [52] found an increase in the width, and
Junkel et al. [53] found additional redshifts. These con-
flicting results are likely caused by differences in residual
approximations. Also, some literature warns that neglected
quantum effects [39,54] may underestimate the broadening.
Despite the plausibility of these investigations, the accuracy
of their claims is unclear because these investigations were
done without removing other fundamentally related
approximations. This situation then makes it imperative
that a calculation includes all-order (3), full-Coulomb (4),
and quantum electrons simultaneously.
We removed all three approximations by extending our

recent work and adopting a technique from collision physics.
Our previous investigations [38,39] already removed
classical and dipole approximations, leaving only second-
order to be removed. Direct inversion of ½1 − VðE −H0Þ−1�
is too computationally expensive to be practical.We recently
learned that Bray and Stelbovics [40] solved this problem
two decades ago by using efficient linear Ax ¼ b solvers,
where A ¼ ½1 − VðE −H0Þ−1�, x ¼ TðEÞ, and b ¼ V. To
perform our calculations, we incorporate the techniques
of [40,46,51,55–57], which are summarized in the
Supplemental Material [58].
Results.—The rest of the Letter demonstrates the impor-

tance of all-order T matrix, Coulomb interaction, and
quantum electrons for three cases: neutral hydrogen, He-
like magnesium, and H-like oxygen lines. These cases are
chosen due to recent concerns [14,19,20,54]. Additionally,
these cases give insight on which approximations are valid
for neutral and highly ionized radiators.
First, accuracy of hydrogen line shapes is investigated

for its importance for stellar modeling, in particular, white

dwarfs [59]. There are inconsistences between measured
and modeled line shapes [60,61], which questioned the
accuracy of the existing calculations. Additionally, there is
some uncertainty in modeling Lyα line shapes [62]. Lastly,
Iglesias [54] suggested that quantum line-shape calculation
might be necessary even for neutral hydrogen.
Figure 1(a) shows Lyβ hydrogen line shapes calculated

under different approximations: second order þ dipole
(dot-dashed orange), second order þ Coulomb (dotted
green), all order þ dipole (dot-long-dashed blue), and all
order þ Coulomb (solid red); all calculations used quantum
electrons. The red curve is the most accurate one without
the three approximations. By comparing the three approxi-
mated line shapes to the one without (red), we found that
second order is inaccurate, having twice the width of all
order. The comparison also suggests that dipole approxi-
mation is sufficiently accurate as long as it is computed in
all order.
Next, we investigate the importance of quantum effects

for Lyα. In Fig. 1(b), we compared our best calculations
(red) with classical calculations (black and green).
According to the correspondence principle [63], quantum
effects would be important for low quantum number (e.g.,
Lyα) at low temperatures. The black curve is computed with
the Vidal-Cooper-Smith (VCS) model [49], which is semi-
analytic calculation donewith classical electrons. The green
curve is a classical particle simulation Xenomorph [36,37].
Both classical calculations give identical results at all
temperatures considered here. At Te ¼ 80 000 K, our quan-
tum calculation agrees with the classical calculations.
However, as the Te drops, the quantum calculations be-
comesmuch broader than the classical calculations, proving
the importance of quantum effects at low temperatures.
Figure 2(a) shows that, at Te ¼ 10 000 K, the wing of

the Lyα opacity is higher than VCS by up to 50% due to the
extra broadening caused by the quantum effects. The line

(a) (b)

FIG. 1. (a) Comparison of different approximations for H Lyβ
at Te ¼ 1 eV and ne ¼ 1018 e=cm3: SOþ D is second order
with dipole; AOþ D is all order with dipole; SOþ FC is second
order þ full Coulomb; and AOþ FC is all order þ full Coulomb.
(b) Comparison of Lyα calculations between this Letter and VCS
[49] and Ref. [37] at ne ¼ 1018 e=cm3 with different temper-
atures; correspondence is achieved at high temperatures, but not
at low temperatures.
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wings are important for Rosseland-mean-opacity calcula-
tions, and this may have notable impact on stellar modeling
and spectroscopy [10]. Preliminary investigations with the
TLUSTY atmosphere code [64] show that the increase in
the opacity of Lyα changes the model spectra by more than
the uncertainties for spectral calibrations [65,66]; see
Fig. 2(c). Detailed analysis is beyond the scope of this
Letter, but should be investigated in the near future.
We also investigated the impact of each approximation

for a highly ionized radiator. The magnesium Heγ line
(n ¼ 1 → 4) is of particular interest due to its use as a
density diagnostic in the iron-opacity experiments [18].
Nagayama et al. [20] showed that the inferred densities
depend significantly on the choice of line-shape models.
Two of the most commonly used line-shape codes, TOTAL
and MERL, infer electron densities that differ by nearly 70%.
TOTAL and MERL use different electron-broadening models,
Lee [67] and O’Brien and Hooper [68] (hereafter OH),
respectively, which use different approximations.
To understand the impact of the electron-broadening

models, Iglesias [19] investigated how much difference is
caused by the electron-broadening models. Iglesias [19]
showed that the Lee electron-broadening model better
reproduces neutral hydrogen experimental data [29], while
OH overpredicts the measured widths. This extra broad-
ening could be caused by OH neglecting strong collisions
[4,50]. However, the result is not conclusive because both
calculations still use both second-order and dipole
approximations.
Our work here can refine this investigation by removing

the limiting approximations used by Lee and OH. For this
comparison, we use the same basis set as Iglesias [19], so
that any differences are solely due to electron-broadening
models.
First, we test our understanding of Lee (dashed purple)

and OH (dashed black) from Iglesias [19] by reproducing
them [Fig. 3(a)] with similar approximations. These were
computed at Te ¼ 180 eV and ne ¼ 3.1 × 1022 e=cm3,
and the line shapes are convolved with the instrument

width (λ=Δλ ¼ 1000). To reproduce the Lee model in [19],
we used second-order approximation and retained only the
dipole term of the full-Coulomb interaction. For our
implementation of the OH model, we used second order,
the dipole interaction (6), and set the screening length to
infinity. We show that our model can reproduce Lee and
OH results by introducing similar approximations.
Now, we remove the remaining approximations and

compare our best calculations (red) with the Lee and
OH models. We find that the width of the calculation is
between those of Lee and OH. Also, our calculation
exhibits the redshift previously explored in Junkel et al.
[53], which is not present in either Lee or OH.
Based on our preliminary investigation of the Heγ line,

the true density could be roughly 30% higher than reported
in [18]. Determination of the temperature and density of
[18] requires careful analysis involving multiple lines with
multiple sources of errors to be propagated, which is the
beyond the scope of this Letter. However, it is likely that the
refined line shapes suggest the true density to be signifi-
cantly higher than Ref. [18]. The model-data iron-opacity
discrepancies need to be revisited at the refined temperature
and density to understand the radiation-transport puzzle in
the Sun.
To understand what approximations are important for

highly ionized radiators, we compared calculations with
different approximations [Fig. 3(b)] with the same color
scheme as Fig. 1(a). Contrary to hydrogen, we found that
the second-order calculation is sufficiently accurate for
highly ionized line shapes; this is confirmed for the very
first time. Additionally, we found that the dipole approxi-
mation is inaccurate; full-Coulomb treatment is needed.
The redshift and asymmetries are introduced by the
monopole contribution to the Coulomb interaction.

(b)

(c)(a)

FIG. 2. (a) Comparison of wing behavior between our new
calculation and VCS. (b) Emergent white-dwarf spectrum with
new Lyα line shapes. (c) Same as (b) but focusing on the visible.
The visible flux is raised beyond previously estimated uncer-
tainties because of the broader Lyα profile.

(b)(a)

FIG. 3. Comparison of Mg Heγ (n ¼ 1 → 4) line-shape models
at Te ¼ 180 eV and ne ¼ 3.1 × 1022 e=cm3. (a) Comparison of
our work against Lee [67] and OH [68], plus our attempts to
reproduce each calculation, indicated by the * for each model;
line shapes here are Doppler and instrument [18] convolved.
(b) Same as Fig. 1(a) but for Mg Heγ (same legend). Contrary to
hydrogen, second order is valid, but the full Coulomb is
necessary, causing the redshift that is not present in either
Lee or OH.
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It has been well established that including the frequency
dependence of the broadening (equivalent to including “off
shell” [69] components in the T matrix, as we have done
here) affects line shapes in a measurable way [29]. Figure 4
demonstrates how neglecting the frequency dependence
can alter the spectrum of H-like oxygen at solar interior
conditions (Te ¼ 180 eV, ne ¼ 3 × 1023 e=cm3). This
example was chosen due to its potential importance for
the stellar-opacity problem [18]. The frequency-dependent
T matrices gives structure to the wings of Lyα.
Additionally, the opacity is raised between Lyα and Lyβ
and affects the intensity of the high-n lines. This example
suggests potential impact on the solar-opacity work
because oxygen is the biggest opacity contributor and
the Rosseland-mean weighting function peaks around
700 eV [70].
Summary.—We removed three long-standing line-shape

approximations (dipole, semiclassical, and second order)
simultaneously for the first time and investigated its impact
on neutral hydrogen and high-ionized magnesium line
shapes. These calculations not only provide the most
theoretically sound line shapes but also revealed that
different approximations are important for the two cases.
For neutral hydrogen, second-order and semiclassical
approximation can change the line width by 50% at some
conditions, which can affect white-dwarf modeling and
diagnostics. For highly ionized magnesium, commonly
used dipole approximation with an ad hoc strong-collision
correction would underestimate the magnesium Heγ width
by 15% without introducing the necessary line shift. This
can have notable impacts on the determination of the
density of laboratory plasmas [20]. We also demonstrate
the need for detailed line-shape calculations on oxygen
opacity, where off shell T matrices lead to substantial
changes in the spectra. While we only explore these
examples, the importance of detailed line-shape calcu-
lations extend to other elements and transitions [71].
While we removed three major approximations, other

improvements could still be made. For example, in this
Letter, we use Debye screening; this will fail at high plasma
coupling and a more accurate screening prescription will be
needed. Line-shape theory refinements and benchmark
experiments should continue to refine our understanding
of atomic interaction with HDM.
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[33] R. J. Peláez, C. Pérez, V. R. González, F. Rodríguez, J. A.

Aparicio, and S. Mar, J. Phys. B 38, 2505 (2005).
[34] M. A. Gigosos, V. Cardenoso, and F. Torres, J. Phys. B 19,

3027 (1986).
[35] M. A. Gunderson, G. C. Junkel-Vives, and C. F. Hooper, J.

Quant. Spectrosc. Radiat. Transfer 71, 373 (2001).
[36] T. A. Gomez, T. Nagayama, D. P. Kilcrease, M. H.

Montgomery, and D. E. Winget, Phys. Rev. A 94,
022501 (2016).

[37] P. B. Cho, T. A. Gomez, M. H. Montgomery, M. Fitz Allen,
B. Hobbs, I. Hubeny, and D. E. Winget, Simulations of
Stark-Broadened Hydrogen Balmer Line Shapes for DA
White Dwarf Synthetic Spectra (to be published).

[38] T. A. Gomez, T. Nagayama, D. P. Kilcrease, M. H.
Montgomery, and D. E. Winget, Phys. Rev. A 98,
012505 (2018).

[39] T. A. Gomez, T. Nagayama, C. J. Fontes, D. P. Kilcrease,
S. B. Hansen, M. C. Zammit, D. V. Fursa, A. S. Kadyrov,
and I. Bray, Phys. Rev. Lett. 124, 055003 (2020).

[40] I. Bray and A. T. Stelbovics, Phys. Rev. A 46, 6995
(1992).

[41] C. A. Iglesias, H. E. DeWitt, J. L. Lebowitz, D. MacGowan,
and W. B. Hubbard, Phys. Rev. A 31, 1698 (1985).

[42] C. J. Hooper, Phys. Rev. 165, 215 (1968).
[43] L. A. Woltz and C. F. Hooper, Jr., Phys. Rev. A 38, 4766

(1988).
[44] B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469

(1950).
[45] N. Mott, H. Massey, and H. Massey, The Theory of Atomic

Collisions, The International Series of Monographs on
Physics (Clarendon Press, Oxford, 1965).

[46] M. C. Zammit, D. V. Fursa, and I. Bray, Phys. Rev. A 82,
052705 (2010).

[47] H. R. Griem, A. C. Kolb, and K. Y. Shen, Phys. Rev. 116, 4
(1959).

[48] H. Bethe, Ann. Phys. (Berlin) 397, 325 (1930).
[49] C. R. Vidal, J. Cooper, and E.W. Smith, J. Quant. Spectrosc.

Radiat. Transfer 11, 263 (1971).
[50] S. Alexiou, Phys. Rev. Lett. 75, 3406 (1995).
[51] L. A. Woltz and C. F. Hooper, Jr., Phys. Rev. A 30, 468

(1984).
[52] S. Alexiou, High Energy Density Phys. 23, 188 (2017).
[53] G. C. Junkel, M. A. Gunderson, C. F. Hooper, Jr., and D. A.

Haynes, Jr., Phys. Rev. E 62, 5584 (2000).
[54] C. A. Iglesias, High Energy Density Phys. 35, 100743

(2020).
[55] C. A. Iglesias, High Energy Density Phys. 38, 100921

(2021).
[56] R. D. Cowan, The Theory of Atomic Structure and Spectra,

Los Alamos Series in Basic and Applied Sciences
(University of California Press, Berkeley, 1981).

[57] T. Gomez, T. Nagayama, C. Fontes, D. Kilcrease, S.
Hansen, M. Montgomery, and D. Winget, Atoms 6, 22
(2018).

[58] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.235001 for brief
description of calculational details.

[59] P. Bergeron, in NATO Advanced Science Institutes (ASI)
Series C, NATOAdvanced Science Institutes (ASI) Series C
Vol. 403, edited by M. A. Barstow (1993), p. 267.

[60] P. E. Tremblay and P. Bergeron, Astrophys. J. 696, 1755
(2009).

[61] M. H. Montgomery, R. E. Falcon, G. A. Rochau, J. E.
Bailey, T. A. Gomez, A. L. Carlson, D. E. Bliss, T.
Nagayama, M. Stein, and D. E. Winget, High Energy
Density Phys. 17, 168 (2015).

[62] E. Stambulchik, High Energy Density Phys. 9, 528 (2013).
[63] N. Bohr, Z. Phys. 2, 423 (1920).
[64] I. Hubeny and T. Lanz, Astrophys. J. 439, 875 (1995).
[65] G. Narayan et al., Astrophys. J. Suppl. Ser. 241, 20

(2019).
[66] R. C. Bohlin, I. Hubeny, and T. Rauch, Astron. J. 160, 21

(2020).
[67] R.W. Lee, J. Quant. Spectrosc. Radiat. Transfer 40, 561

(1988).

PHYSICAL REVIEW LETTERS 127, 235001 (2021)

235001-6

https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://ui.adsabs.harvard.edu/abs/1980A%26A....86..225H/abstract
https://doi.org/10.1111/j.1365-2966.2005.09359.x
https://doi.org/10.1111/j.1365-2966.2005.09359.x
https://doi.org/10.1111/j.1365-2966.2006.11388.x
https://doi.org/10.1088/0004-637X/712/1/585
https://doi.org/10.3847/1538-4357/ab479d
https://doi.org/10.3847/1538-4357/ab479d
https://doi.org/10.1086/184864
https://doi.org/10.1093/mnras/stw1696
https://doi.org/10.1093/mnras/stw1696
https://doi.org/10.3847/1538-4357/abccd6
https://doi.org/10.1038/nature14048
https://doi.org/10.1016/j.hedp.2015.12.001
https://doi.org/10.1016/j.hedp.2016.05.001
https://doi.org/10.1103/PhysRevLett.122.235001
https://doi.org/10.1103/PhysRev.112.855
https://doi.org/10.1103/PhysRev.131.259
https://doi.org/10.1103/PhysRevA.12.1084
https://doi.org/10.1103/PhysRevA.12.1084
https://doi.org/10.1103/PhysRev.173.317
https://doi.org/10.1103/PhysRev.185.140
https://doi.org/10.1103/PhysRev.185.140
https://doi.org/10.1103/PhysRevA.30.2039
https://doi.org/10.1103/PhysRevA.30.2039
https://doi.org/10.1016/j.jqsrt.2005.05.058
https://doi.org/10.1016/j.jqsrt.2005.05.058
https://doi.org/10.1103/PhysRevA.6.1132
https://doi.org/10.1103/PhysRevA.6.1132
https://doi.org/10.1103/PhysRevA.33.1291
https://doi.org/10.1103/PhysRevA.45.8795
https://doi.org/10.1103/PhysRevA.45.8795
https://doi.org/10.1103/PhysRevA.53.2225
https://doi.org/10.1088/0953-4075/38/14/014
https://doi.org/10.1088/0022-3700/19/19/016
https://doi.org/10.1088/0022-3700/19/19/016
https://doi.org/10.1016/S0022-4073(01)00083-8
https://doi.org/10.1016/S0022-4073(01)00083-8
https://doi.org/10.1103/PhysRevA.94.022501
https://doi.org/10.1103/PhysRevA.94.022501
https://doi.org/10.1103/PhysRevA.98.012505
https://doi.org/10.1103/PhysRevA.98.012505
https://doi.org/10.1103/PhysRevLett.124.055003
https://doi.org/10.1103/PhysRevA.46.6995
https://doi.org/10.1103/PhysRevA.46.6995
https://doi.org/10.1103/PhysRevA.31.1698
https://doi.org/10.1103/PhysRev.165.215
https://doi.org/10.1103/PhysRevA.38.4766
https://doi.org/10.1103/PhysRevA.38.4766
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRevA.82.052705
https://doi.org/10.1103/PhysRevA.82.052705
https://doi.org/10.1103/PhysRev.116.4
https://doi.org/10.1103/PhysRev.116.4
https://doi.org/10.1002/andp.19303970303
https://doi.org/10.1016/0022-4073(71)90013-6
https://doi.org/10.1016/0022-4073(71)90013-6
https://doi.org/10.1103/PhysRevLett.75.3406
https://doi.org/10.1103/PhysRevA.30.468
https://doi.org/10.1103/PhysRevA.30.468
https://doi.org/10.1016/j.hedp.2017.05.003
https://doi.org/10.1103/PhysRevE.62.5584
https://doi.org/10.1016/j.hedp.2020.100743
https://doi.org/10.1016/j.hedp.2020.100743
https://doi.org/10.1016/j.hedp.2021.100921
https://doi.org/10.1016/j.hedp.2021.100921
https://doi.org/10.3390/atoms6020022
https://doi.org/10.3390/atoms6020022
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.235001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.235001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.235001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.235001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.235001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.235001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.235001
https://doi.org/10.1088/0004-637X/696/2/1755
https://doi.org/10.1088/0004-637X/696/2/1755
https://doi.org/10.1016/j.hedp.2015.01.004
https://doi.org/10.1016/j.hedp.2015.01.004
https://doi.org/10.1016/j.hedp.2013.05.003
https://doi.org/10.1007/BF01329978
https://doi.org/10.1086/175226
https://doi.org/10.3847/1538-4365/ab0557
https://doi.org/10.3847/1538-4365/ab0557
https://doi.org/10.3847/1538-3881/ab94b4
https://doi.org/10.3847/1538-3881/ab94b4
https://doi.org/10.1016/0022-4073(88)90136-7
https://doi.org/10.1016/0022-4073(88)90136-7


[68] J. T. O’Brien and C. F. Hooper, Jr., J. Quant. Spectrosc.
Radiat. Transfer 14, 479 (1974).

[69] M. Baranger, B. Giraud, S. K. Mukhopadhyay, and P. U.
Sauer, Nucl. Phys. A138, 1 (1969).

[70] J. E.Bailey et al., inAmerican Institute of PhysicsConference
Series, American Institute of Physics Conference Series
Vol. 1161, edited by K. B. Fournier (2009), pp. 40–40.

[71] Line shapesofmore complex atomic systems canbe computed
with this technique, though the additional number of electrons
means that other techniques such asdistortedwavewill need to
be implemented to reduce the computational effort. One
limiting factor in more complex spectra will be memory
requirements due to the sheer number of states in half-open
atomic shells.

PHYSICAL REVIEW LETTERS 127, 235001 (2021)

235001-7

https://doi.org/10.1016/0022-4073(74)90049-1
https://doi.org/10.1016/0022-4073(74)90049-1
https://doi.org/10.1016/0375-9474(69)90375-3

