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Spin-orbit photonics, involving the interaction between the spin angular momentum (SAM) and orbital
angular momentum (OAM) of light, plays an important role in modern optics. Here, we present the spin-
orbit mapping of light in a few-mode fiber that originates from the mode degeneracy lifting (TM01 and
TE01) property. We demonstrate two kinds of spin-orbit mapping phenomena, i.e., mapping from intrinsic
SAM to OAM and mapping from polarization direction rotation to field pattern rotation. The demonstrated
spin-orbit mapping shows high efficiency, large bandwidth, availability for short pulses, and scalability to
high-order OAM states.
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The spin-orbit optical phenomenon is a common electro-
magnetic effect arising from the interaction between the
polarization (spin) and spatial (orbit) degrees of freedom
of light [1–3]. Generally, the continuous polarization
rotation of light can carry the spin angular momentum
(SAM) [4–7], while the helical phase structure or field
pattern rotation of light can produce the orbital angular
momentum (OAM) [6–9]. The spin-orbit interaction of
light generally originates from the fundamental properties
of Maxwell’s equations. Two important fundamental con-
cepts, known as the angular momentum and geometric
phase, form the basis of spin-orbital interaction of light [3].
The SAM and OAM, as well as the spin-orbit interaction of
light, play crucial roles in modern optics [2,3,10–15]. They
have greatly promoted the understanding of the fundamen-
tals of light and also facilitated various emerging applica-
tions [2,3,15–17], such as optical manipulation [18–21],
optical imaging [22,23], optical metrology [24–27], quan-
tum information processing [28–31], and optical commu-
nications [32–37].
The common spin-orbit interaction of light can be

generally summarized as spin-dependent splitting in
Fig. 1(a) and spin-orbit conversion in Fig. 1(b). The
spin-dependent splitting in Fig. 1(a) is ruled by the geo-
metric phase, resulting in the splitting or deflection of the
propagation of light. Such a phenomenon can be regarded
as the photonic spin-Hall effect [10,15,38,39], which is
analogous to the classical Stern-Gerlach effect in a field
gradient [40–42]. The medium in Fig. 1(a) typically
contains polarization gratings, metasurfaces, fibers, and
various optical interfaces, such as air-glass and metal-
dielectric interfaces [3,15,38,39,43,44]. The spin-orbit
conversion in Fig. 1(b) is usually associated with the
geometric phase induced by any inhomogeneous trans-
formation of the optical polarization [1,45]. In this case, an
inhomogeneous anisotropic medium, such as q-plate and

metasurfaces [1,29,45], is usually used for spin-orbit
conversion. In the process of such spin-orbit conversion,
the incident SAM-carrying light beam is converted to
the output light beam carrying both OAM and inversed
SAM after passing through the inhomogeneous anisotropic
medium, i.e., there still exists SAM in the output light
beam [1]. Note that the conventional spin-orbit conversion
does not simply follow the angular momentum conserva-
tion for the input and output light beams, since the
inhomogeneous anisotropic medium also gives an addi-
tional angular momentum to the light beams. Recently, all-
fiber OAM mode generators are also exploited by means of
the pressure-induced birefringence for mode synthesis [46]
and the coupling of vector modes [47–50]. For the latter,
i.e., the conversion from the input SAM-carrying light
beam to the output light beam carrying both OAM and
SAM [47–50], it can be also categorized as the case in
Fig. 1(b).
Beyond the spin-dependent splitting and spin-orbit

conversion, here we present another new spin-orbit optical
phenomenon in an isotropic medium, namely, spin-orbit

FIG. 1. Spin-orbit optical phenomena. (a) Spin-dependent
splitting. (b) Spin-orbit conversion. (c) Spin-orbit mapping.
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mapping. As shown in Fig. 1(c), the spin-orbit mapping
means that the SAM carried by the incident light beam is
completely converted or transferred to the OAM of the
output light beam, i.e., there is no SAM in the output light
beam. It should be emphasized that this spin-orbit mapping
in an isotropic medium satisfies the angular momentum
conservation for the input and output light beams.
In this work, we propose and demonstrate the spin-orbit

mapping using a piece of few-mode fiber, which can be
regarded as an isotropic medium (homogeneous along
azimuthal direction). It can be the conventional few-mode
fiber with a center core or the ring-core fiber supporting
TM01 and TE01 eigenmodes with slight effective refractive
index difference [51–54]. As illustrated in Fig. 2, there are
two kinds of spin-orbit mapping phenomena. One is the
mapping from intrinsic SAM to OAM of light beams, as
shown in Fig. 2(a); while the other is the mapping from
polarization direction rotation to field pattern rotation of
light beams, as shown in Fig. 2(b). For the former one, the
SAM carried by the incident circularly polarized light beam
is fully transferred to the OAM carried by the output
helically phased light beam (fixed linear polarization). For
the latter one, the polarization direction rotation of the
incident light beam (fixed field pattern) is converted to the
field pattern rotation of the output light beam (fixed
polarization direction). Note that the polarization direction
rotation and field pattern rotation in Fig. 2(b) also give
SAM and OAM, respectively [6,7,9]. Hence, the latter one
with the mapping from polarization direction rotation
(SAM) to field pattern rotation (OAM) also belongs to
the category of spin-orbit mapping.
We consider a proof-of-concept experimental study on

the two kinds of spin-orbit mapping phenomena in Fig. 2.
The experimental configuration is shown in Fig. 3 (see
more details in the Supplemental Material [55]), where a
proper length of weakly guiding few-mode fiber is
employed. A home-made all-fiber fused mode-selective
coupler (MSC) is adopted to generate the light beam with
two lobes [50]. For the mapping from intrinsic SAM to

OAM in Fig. 2(a), a quarter-wave plate (QWP) is used to
produce the incident circularly polarized light beam carry-
ing SAM. For the mapping from polarization direction
rotation to field pattern rotation in Fig. 2(b), a half-wave
plate (HWP) is used to control the polarization rotation of
the incident light beam.
Before presenting the experimental results, we first

describe the underlying mechanisms and give theoretical
analyses of spin-orbit mapping phenomena.
We exploit the spatial modes in the first-order mode

group of the few-mode fiber, which can be described by
either vector eigenmode basis ðTM01;TE01;HEeven

21 ;HEodd
21 Þ

or angular momentum mode basis (jσ;li ¼ j−1;þ1i;
jþ1;−1i; jþ1;þ1i; j−1;−1i with σ for SAM and l
for OAM). It is worth noting that the angular momentum
mode basis and vector eigenmode basis can be deduced
from each other as j−1;þ1i¼TM01þ iTE01, jþ1;−1i¼
TM01− iTE01, jþ1;þ1i¼HEeven

21 þ iHEodd
21 , and j−1;−1i¼

HEeven
21 − iHEodd

21 (see more details in the Supplemental
Material [55]).
Generally, the incident light beam synthesized by the

linear combination of four angular momentum modes
in the first-order mode group can be expressed as
Ein¼α1j−1;þ1iþα2jþ1;−1iþα3jþ1;þ1iþα4j−1;−1i,
which is simply written by

Ein ¼ ½α1; α2; α3; α4�T; ð1Þ

where α1, α2, α3, and α4 are the coefficients, and the symbol
T denotes the transposition. Remarkably, in the first-order
mode group, the HEeven

21 and HEodd
21 modes are highly

degenerated with almost the same mode effective refractive
index, while the TM01 and TE01 modes have slightly
different mode effective refractive index (mode degeneracy
lifting). Hence, the fiber propagation under the angular
momentum mode basis can be described by a transfer
matrix

MðzÞ ¼

2
666664

cosðδβzÞ i sinðδβzÞ 0 0

i sinðδβzÞ cosðδβzÞ 0 0

0 0 1 0

0 0 0 1

3
777775
; ð2Þ

FIG. 2. Spin-orbit mapping using a piece of few-mode fiber.
(a) Mapping from intrinsic SAM to OAM. (b) Mapping from
polarization direction rotation (SAM) to field pattern
rotation (OAM).

FIG. 3. Experimental configuration for spin-orbit mapping. PC:
polarization controller; MSC: mode-selective coupler; Pol.:
polarizer; QWP: quarter-wave plate; HWP: half-wave plate;
Col.: collimator; OL: objective lens.
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where δβ ¼ Δβ=2 ¼ ðβTM01
− βTE01

Þ=2 with βTM01
and

βTE01
the propagation constants of TM01 and TE01 modes,

respectively. The output light beam after propagating
through the fiber can be written by

Eout ¼ MðzÞ ·Ein: ð3Þ

For the spin-orbit mapping from intrinsic SAM to OAM,
we employ the incident light beam carrying only SAM
expressed as ½0; 1;�1; 0�T (left-handed circularly polarized
light beam with σ ¼ þ1 and l ¼ 0) or ½1; 0; 0;�1�T (right-
handed circularly polarized light beam with σ ¼ −1 and
l ¼ 0). After propagating through a proper fiber length
[L ¼ ð2nþ 1Þπ=jΔβj, n ¼ 0, 1, 2,…] with the accumu-
lated phase shift between TM01 and TE01 of ð2nþ 1Þπ, the
output light beam becomes ½1; 0;�1; 0�T (linearly polarized
OAM-carrying light beam with σ ¼ 0 and l ¼ þ1) or
½0; 1; 0;�1�T (linearly polarized OAM-carrying light beam
with σ ¼ 0 and l ¼ −1). Note that the output is still
linearly polarized OAM-carrying light beam even consid-
ering the relative phase shift between TM01=TE01 and
HEeven

21 =HEodd
21 . From the input ½0; 1;�1; 0�T (σ ¼ þ1,

l ¼ 0) or ½1; 0; 0;�1�T (σ ¼ −1, l ¼ 0) to the output
½1; 0;�1; 0�T (σ ¼ 0, l ¼ þ1) or ½0; 1; 0;�1�T (σ ¼ 0,
l ¼ −1), it is easy to understand the spin-orbit
mapping phenomenon, where the SAM is, in principle,
completely transferred to the OAM. Actually, from the
perspective of angular momentum superposition [56–58],
we can deduce the mean SAM per photon carried by the
propagating light beam along the fiber, approximately
expressed as

SSAMðzÞ ≈
1

2
σ½1þ cosðΔβzÞ�ℏ; ð4Þ

and the mean OAM per photon

LOAMðzÞ ≈
1

2
½l − σ cosðΔβzÞ�ℏ; ð5Þ

where σ ¼ þ1, l ¼ þ1 or σ ¼ −1, l ¼ −1 and ℏ
is the reduced Plank constant. The total angular momentum
per photon can be given by SSAMðzÞ þ LOAMðzÞ≈
ðlþ σÞ · ℏ=2 ¼ J, which is propagation independent. It
proves that the total angular momentum is conserved
during light propagation along the fiber (see more details
in the Supplemental Material [55]).
For the spin-orbit mapping from polarization

direction rotation to field pattern rotation, we employ the
linearly polarized incident light beam expressed as
½1; 1; 1; 1�T (similar principles for other linearly polarized
incident light beams: ½1;−1; 1;−1�T , ½1;−1;−1; 1�T ,
½1; 1;−1;−1�T). The incident light beam with linear polari-
zation rotation (by rotating the HWP in Fig. 3) can be
expressed as ½ei2θ; e−i2θ; e−i2θ; ei2θ�T , where θ ¼ Ωt is the

rotating angle of the HWP and Ω is the angular velocity of
the rotating HWP. After fiber propagation with a proper
length of L ¼ ð2nþ 1Þπ=jΔβj (n ¼ 0, 1, 2,…), the
incident polarization direction rotation (fixed field pattern)
is mapped to the output field pattern rotation (fixed
polarization direction) [59]. In fact, both the polarization
direction rotation and field pattern rotation can produce
SAM and OAM [6,7,9]. For the incident light beam with
linear polarization rotation and fixed field pattern, the mean
SAM and OAM per photon can be approximately quanti-
fied as SSAM ≈ −2Ω · ℏ=ω and LOAM ¼ 0, respectively,
where ω denotes the frequency of light. For the output
light beam with field pattern rotation and fixed linear
polarization, the mean SAM and OAM per photon
can be approximately quantified as SSAM ¼ 0 and LOAM≈−2Ω · ℏ=ω, respectively [55]. It indicates that, for the spin-
orbit mapping from incident polarization direction rotation
to output field pattern rotation, the SAM is also, in
principle, completely transferred to the OAM.
On the basis of theoretical analyses, we experimentally

verify the proposed two kinds of spin-orbit mapping
phenomena. The few-mode fiber employed in the experi-
ment is a conventional step-index fiber with the core
and cladding radii of 7.4 and 62.5 μm, respectively. It
supports six modes including two fundamental ones in the
zero-order mode group and four high-order ones in the first-
order mode group. The optimal fiber length in the experi-
ment, considering the possible deviation of practically
fabricated fiber, is about L ¼ 0.31 m.
We then demonstrate the spin-orbit mapping from

intrinsic SAM to OAM. We use the optical elements
(Laser, MSC, PC, QWP) in Fig. 3 to generate four kinds of
incident light beams at 1550 nm carrying only SAM, i.e.,
½0; 1; 1; 0�T , ½0; 1;−1; 0�T , ½1; 0; 0; 1�T , and ½1; 0; 0;−1�T .
The measured results (intensity profiles, interferograms
by the tilt interference with a reference Gaussian beam,
retrieved phase distributions) for the corresponding
output light beams are shown in Figs. 4(a)–4(c), 4(d)–4(f),
4(g)–4(i), and 4(j)–4(l), respectively. From the obtained
doughnut-shaped intensity profiles with measured linear
polarization, forklike interferograms, and helical phase
structures, we can confirm that the incident SAM-carrying
light beams are successfully converted to the output
OAM-carrying light beams. We measure the efficiency
of the spin-orbit mapping by characterizing the weight
coefficient (x-/y-polarized l ¼ �1) of the output light
beam. Note that the propagation loss of the very short
piece (∼0.31 m) of few-mode fiber is negligible. Hence,
the measured weight coefficient of the output linearly
polarized OAM-carrying light beam can be also regarded
as the mapping efficiency. From the practically measured
mapping efficiencies in Figs. 4(m)–4(p), i.e., above 90%
for all four kinds of incident light beams (minimum,
90.50%; maximum, 96.76%), we can conclude that the
intrinsic SAM of the incident light beam is nearly
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completely mapped to the OAM of the output light beam,
which is in good agreement with the theory [55].
We also demonstrate the spin-orbit mapping from

polarization direction rotation (SAM) to field pattern
rotation (OAM). We use the optical elements (Laser,
MSC, PC, HWP) in Fig. 3 to generate the linearly
polarized incident light beam, i.e., ½1; 1; 1; 1�T . As shown
in Fig. 5(a), when rotating the HWP (linear polarization
rotation with fixed field pattern of the incident light
beam), the field pattern of the output light beam (fixed
x polarization) rotates accordingly. Note that there is
negligible y-polarization component of the output light
beam, which indicates high mapping efficiency. We
characterize the linear relationship between the output
field pattern rotation and the input linear polarization
rotation, as shown in Fig. 5(b). The measured results in
Fig. 5 agree well with the theory, indicating the successful

implementation of the spin-orbit mapping from polariza-
tion direction rotation (SAM) to field pattern rotation
(OAM). Similar results are also obtained for other linearly
polarized incident light beams [55].
We further measure the working bandwidth and dem-

onstrate the availability for short pulses of the proposed
spin-orbit mapping phenomena. Taking the mapping from
intrinsic SAM to OAM as an example, the measured results
show a large bandwidth. For an efficiency above 80%, the
measured bandwidth is larger than 100 nm; while even for a
high efficiency above 90%, the measured bandwidth is
larger than 50 nm (see more details in the Supplemental
Material [55]). The large bandwidth can be attributed
to the fact that the mode degeneracy lifting property (mode
effective refractive index difference) of TM01 and TE01

modes has negligible dependence on the wavelength. We
also demonstrate the spin-orbit mapping from intrinsic
SAM to OAM for nanosecond or even shorter picosecond
pulses in the experiment. The measured results show
similar operation performance (high efficiency above
90%) compared to the continuous wave situation (see
more details in the Supplemental Material [55]). This is
easy to understand based on the measured results that the
proposed spin-orbit mapping shows a large bandwidth.
The demonstrated spin-orbit mapping phenomena in

Figs. 3–5 are for low-order OAM states with l ¼ �1.
Actually, the proposed spin-orbit mapping can be also
scalable to higher-order OAM states with jlj > 1. To
achieve this, instead of four eigenmodes in the first-order
mode group, one can employ only two mode degeneracy
lifted eigenmodes in the first-order mode group (i.e., TM01

and TE01) and the other two highly degenerated eigen-
modes in the higher-order mode group (i.e., HEeven

jljþ1;1 and
HEodd

jljþ1;1 or EH
even
jlj−1;1 and EHodd

jlj−1;1, jlj > 1) to synthesize
the incident light beam. The theoretical results show that
the input SAM can be also completely transferred to the
output OAM after passing through a proper length of fiber.
This is applicable to higher-order OAM states with jlj > 1
for both of the two kinds of spin-orbit mapping phenomena,
i.e., mapping from intrinsic SAM to OAM and mapping
from polarization direction rotation (local polarization
rotation) to field pattern rotation (see more details in the
Supplemental Material [55]).
Remarkably, the rigorous separation of the total angular

momentum into SAM and OAM is gauge dependent.
However, when considering the canonical Noether momen-
tum and spin densities in the Coulomb gauge, this problem
of gauge dependence can be solved by a postulate that the
vector potential is just evaluated in the transverse part.
Although the vector potential is subject to gauge trans-
formations, the quantities defined in terms of the transverse
part of the vector potential are gauge invariant [12,60,61].
In the demonstrated spin-orbit mapping phenomena in
weakly guiding few-mode fiber, the involved spatial modes
are paraxial transverse fields. Therefore, we can consider

FIG. 4. Measured results for the spin-orbit mapping from
intrinsic SAM to OAM. (a)–(c),(m) Mapped output x-polarized
l ¼ þ1. (d)–(f),(n) Mapped output y-polarized l ¼ þ1. (g)–(i),
(o) Mapped output x-polarized l ¼ −1. (j)–(l),(p) Mapped output
y-polarized l ¼ −1. (a),(d),(g),(j) Doughnut-shaped intensity
profiles. (b),(e),(h),(k) Forklike interferograms. (c),(f),(i),(l) Re-
trieved helical phase structures. (m)–(p) Measured weight co-
efficients (mapping efficiencies).

FIG. 5. Measured results for the spin-orbit mapping from
polarization direction rotation to field pattern rotation. (a) Mea-
sured output field pattern (fixed linear polarization) rotates
accordingly when rotating the input linear polarization (fixed
field pattern). (b) Measured linear relationship (output field
pattern rotation vs input linear polarization rotation). Blue dots:
experiment. Red line: theory.
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the SAM and OAM quantified in the spin-orbit mapping
phenomena as gauge invariant.
Generally, the angular momentum is a 3D pseudovector

with three spatial components [12,62]. For spatial modes in
the weakly guiding few-mode fiber under paraxial approxi-
mation condition, there are negligible longitudinal compo-
nents of electromagnetic fields, which give rise to nearly
zero transverse SAM and OAM normal to the direction of
propagation. Hence, here we only consider the dominant
longitudinal SAM and OAM.
In summary, we theoretically and experimentally dem-

onstrate new spin-orbit mapping phenomena (mapping
from intrinsic SAM to OAM and mapping from polariza-
tion rotation to pattern rotation) in the weakly guiding
few-mode fiber (isotropic medium and homogeneous
along azimuthal direction), which are different from the
conventional spin-orbit conversion in an inhomogeneous
anisotropic medium. The underlying mechanism of the
spin-orbit mapping relies on the inherent mode degeneracy
lifting (TM01 and TE01). Meanwhile, it also involves the
other two highly degenerated eigenmodes. The obtained
results show impressive performance (high efficiency, large
bandwidth, availability for short pulses, scalability to high-
order OAM states). The spin-orbit mapping may find wide
interesting applications. For example, the generated OAM
light beams (spin-orbit mapping from intrinsic SAM to
OAM) can be used in manipulation, trapping, tweezers,
microscopy, imaging, sensing, quantum science, and opti-
cal communications [16,17]; the generated pattern-rotating
light beams (spin-orbit mapping from polarization rotation
to pattern rotation) can be used in metrology to detect a
rotating particle and determine its rotation direction based
on the Doppler effect [24,27]. With future improvement,
on-chip devices, spin-orbit transferring at single-photon
level, and large OAM single-photon sources [29,30,45,63]
are of great significance for the spin-orbit mapping.
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