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The current work presents a natural orbital functional (NOF) for electronic systems with any spin value
independent of the external potential being considered, that is, a global NOF (GNOF). It is based on a new
two-index reconstruction of the two-particle reduced density matrix for spin multiplets. The emergent
functional describes the complete intrapair electron correlation, and the correlation between orbitals that
make up both the pairs and the individual electrons. The interorbital correlation is composed of static and
dynamic terms. The concept of dynamic part of the occupation numbers is introduced. To evaluate the
accuracy achieved with the GNOF, calculation of a variety of properties is presented. They include the total
energies and energy differences between the ground state and the lowest-lying excited state with different
spin of atoms from H to Ne, ionization potentials of the first-row transition-metal atoms (Sc-Zn), and the
total energies of a selected set of 55 molecular systems in different spin states. The GNOF is also applied to
the homolytic dissociation of selected diatomic molecules in different spin states and to the rotation barrier
of ethylene, both paradigmatic cases of systems with significant multiconfigurational character. The values
obtained agree with those reported at high level of theory and experimental data.
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In the nonrelativistic limit, for time-independent and spin-
free Hamiltonians, the ground state of a many-electron
system with spin S is a multiplet, that is, a mixture of pure
states with all possible spin projections. Such an ensemble
is represented by its associated density matrix DN which
allows describing quantum observables through statistical
averages. Unfortunately, the number of variables involved in
determiningDN grows astronomically with the numberN of
electrons, and actually contains significantly more informa-
tion than is necessary to calculate energies and properties.
Appropriate representations of the electronic structure

of atoms, molecules, and solids without explicit recourse
to DN can alternatively be obtained by the one-particle
reduced density matrix (1RDM) functional theory [1].
Here, the 1RDM Γ, a much simpler object than DN , is
used directly for ground-state variational calculations.
Valone proved [2] the existence of the functional E½Γ�
for ensembles by extending Levy’s functional [3] to all
ensemble N-representable 1RDMs [4]. E½Γ� is defined
independently of the external potential under consideration
and is therefore a universal functional. Regrettably, com-
putational schemes based on the exact constrained search
formulation are too expensive; so the 1RDM functional
requires a practical approach.
It is well known that the ground-state energy of an

N-particle quantum system with a Hamiltonian involving
not more than two-body interactions can be cast as an exact

functional E½D� of the two-particle reduced density
matrix (2RDM) D. Hence, the 1RDM functional E½Γ�
must match the 2RDM functional E½D�. Actually, we must
only reconstruct the electron-electron potential energy
Vee in terms of the 1RDM since the noninteracting part
of the electronic Hamiltonian is a one-particle operator.
Unfortunately, the explicit reconstruction Vee½Γ� has resu-
lted in an unattainable goal so far, and we have to settle for
making approximations.
The typical approach is to employ the exact Vee½D� but

using solely a reconstruction functional D½Γ�. In general,
the exact ground-state energy is not completely recon-
structed, and approximate 2RDMs lead to functionals that
are still implicitly dependent on D. An unwanted impli-
cation of this 2RDM dependence is that the functional
N-representability problem arises [5,6], i.e., a reconstructed
D must be ensemble N representable [7,8] as well.
Otherwise, the approximate functional Vee½Γ� can lead to
nonphysical energy values.
The functionals currently in use are constructed in the

basis where the 1RDM is diagonal which is the definition
of a natural orbital functional (NOF). Hence, the electronic
energy is expressed in terms of the natural orbitals (NOs)
and their occupation numbers (ONs) fnig,

E ¼
X
i

niHii þ
X
ijkl

D½ni; nj; nk; nl�hkljiji ð1Þ
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In Eq. (1), Hii denotes the diagonal one-electron matrix
elements of the kinetic energy and external potential
operators, hkljiji are the matrix elements of the two-
particle interaction, and D½ni; nj; nk; nl� represents the
reconstructed 2RDM from the ONs. Restriction on the
ONs to the range 0 ≤ ni ≤ 1 represents a necessary and
sufficient condition for ensemble N representability of the
1RDM under the normalization condition

P
i ni ¼ N [4].

A detailed account of the state of the art of the NOF theory
(NOFT) can be found elsewhere [9–13].
Several approximate functionals have been proposed

[14–20], but none of them guarantee that physical conditions
such as 2RDM antisymmetry are preserved [21]. Solely piris
natural orbital functionals (PNOFs) [22–24], which are
based on the reconstruction of D subject to necessary N-
representability conditions, can guarantee this. These func-
tionals are capable of producing a qualitatively correct
description of systems with a multiconfigurational nature,
one of the greatest challenges for density functionals, achiev-
ing chemical accuracy in many cases [25,26]. Nevertheless,
they also suffer froman important lack of dynamic correlation.
To recover this correlation, second-order perturbative correc-
tions have been implemented with significant results [27–30].
In this work, however, it is intended to recover the missing
dynamic correlation within the NOFT framework only.
The goal is to design an accurate NOF for all electronic

structure problems, that is, a global NOF (GNOF). We limit
ourselves to two-index reconstruction D½ni; nj�, aimed at
obtaining the least possible scaling with the size of the
system. It is worth noting that the adjective “global” is used
instead of “universal” to differentiate our multipurpose
approximate NOF from the Valone’s exact.
Consider that NI single electrons determine the spin of

the system, S ¼ NI=2, and the rest of the electrons, NII ¼
N − NI , are spin-paired providing zero spin. We focus on
the mixed state of highest multiplicity: 2Sþ 1 ¼ NI þ 1.
Then, hŜzi ¼ 0 for the whole ensemble [31], so we can
adopt the spin-restricted formalism in which a single set of
orbitals is used for α and β spins. All spatial orbitals will be
then double occupied, so that ONs for particles with α and β
spins are equal: nαp ¼ nβp ¼ np.
Next, divide the orbital space Ω into two subspaces:

Ω ¼ ΩI ⊕ ΩII. Both ΩI and ΩII are composed of NI
and NII=2 mutually disjoint subspaces Ωg, respectively.
Each subspace Ωg ∈ ΩI contains only one orbital g with
ng ¼ 1=2 which is individually occupied, but we do not
know whether the electron has α or β spin. In contrast, each
Ωg ∈ ΩII is double occupied and contains one orbital with
g ≤ NII=2, and Ng orbitals fϕpg ¼ fϕp1

;ϕp2
;…;ϕpNg

g
with p > NΩ ¼ NII=2þ NI. An illustrative example of
splitting into subspaces can be found in the Supplemental
Material (SM) [32], Fig. 1. Taking into account the spin, the
trace of the 1RDM is verified [31] equal to the number of
electrons (2

P
np ¼ N).

Nowit is time torebuild the2RDMfromtheONs.Wedivide
D into intra- and intersubspace contributions. For intrasub-
space blocks, we consider only intrapair contributions:

Dαβ
pq;rt ¼

�
npδpr þ Πprð1 − δprÞ

2

�
δpqδrtδpΩg

δrΩg

Πpr ¼ − ffiffiffiffiffiffiffiffiffiffi
npnr

p ðδpg þ δrg − δpΩaδrΩaÞ; g ≤ NII=2:

ð2Þ

Note that Dαβ
pp;pp ¼ 0 if p ∈ ΩI since there can be only one

electron with α or β spin in each pure state jSMsi of
the ensemble [31]. Kronecker deltas have an obvious
meaning, for instance, δpΩg

¼ 1 if p ∈ Ωg or δpΩg
¼ 0

otherwise. Ωa ¼ Ωa
II denotes the subspace composed of

orbitals above the level NΩ (p > NΩ). Reconstruction (2)
in Eq. (1) leads to PNOF5 [35], a sum ofNII=2 pair energies
accurately described by the Löwdin’s venerable two-electron
functional.
For intersubspace contributions (Ωf ≠ Ωg), the spin-

parallel blocks are assummed to be Hartree-Fock (HF) like,

Dσσ
pq;rt ¼

npnq
2

ðδprδqt − δptδqrÞ δpΩf
δqΩg

; σ ¼ α; β ð3Þ

whereas the spin-antiparallel blocks are taken as

Dαβ
pq;rt ¼

�
npnq
2

δprδqt −
δpΩI

δqΩI

8
δptδqr

�
δpΩf

δqΩg

−
Πs

pr þ Πd
pr

2
δpqδrtδpΩf

δrΩg

Πs
pr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 − npÞnrð1 − nrÞ

q h
δpΩbδrΩa þ δpΩa

· δrΩb þ δpΩaδrΩa þ 1

2
ðδpΩb

II
δrΩI

þ δpΩI
δrΩb

II
Þ
i

Πd
pr ¼

� ffiffiffiffiffiffiffiffiffiffi
ndpndr

q
− ndpndr ÞðδpΩb

II
δrΩa þ δpΩaδrΩb

II

�

−
� ffiffiffiffiffiffiffiffiffiffi

ndpndr
q

þ ndpndr
�
δpΩaδrΩa ð4Þ
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where Ωb ≡ p ≤ NΩ and Ωb
II ≡ p ≤ NII=2. Observe that

interactions between orbitals belonging to Ωb
II are not

considered in Π matrices. It is worth noting that
Eqs. (2)–(4) satisfy some analytical conditions necessary
for the ensemble N representability of the 2RDM, as in the
preceding PNOFs.
Πs and Πd are responsible for the static and dynamic

correlation between subspaces, respectively, in accordance
with the Pulay’s criterion that establishes an occupancy
deviation of approximately 0.01 with respect to 1 or 0 for a
NO to contribute to the dynamic correlation, while larger
deviations contribute to the nondynamic correlation. For
Πs, the PNOF7 functional form [24] has been adopted,
hence its square root has significant values only when the
ONs differ substantially from 1 and 0.
Taking into account that Π in Eq. (2) is capable of

recovering the whole intrapair correlation, the functional
form of Πd is expected to be proportional to the product of
the square roots of the ONs when these correspond to very
small deviations. Let us define the dynamic part of np as

ndp ¼ np ·
hdg
hg

; p ∈ Ωg; g ¼ 1; 2;…; NII=2: ð5Þ

The hole hg ¼ 1 − ng, while its dynamic part reads as

hdg ¼ hg · e
−ðhghcÞ

2

; g ¼ 1; 2;…; NII=2: ð6Þ

In Fig. 1, hdg is shown for hc ¼ 0.02
ffiffiffi
2

p
. The maximum

value is around 0.012, in accordance with the Pulay’s
criterion. Considering real spatial orbitals and np ≈ ndp, it is
not difficult to verify that the terms proportional to the
product of the ONs in Dαβ will cancel out with the
corresponding terms of Dσσ in the energy expression (1),

so that only those terms proportional to
ffiffiffiffiffiffiffiffiffiffi
ndpndr

q
will

contribute to the energy.
Substituting in Eq. (1) the expressions (2), (3), and (4)

for the 2RDM blocks, the GNOF is obtained:

E ¼ Eintra þ Einter
HF þ Einter

sta þ Einter
dyn ð7Þ

Eintra¼
XNII=2

g¼1

Egþ
XNΩ

g¼NII=2þ1

Hgg

Eg¼
X
p∈Ωg

npð2HppþJppÞþ
X

q;p∈Ωg

Πqpð1−δpqÞLpq ð8Þ

Einter
HF ¼

X0
NB

p;q¼1

nqnpð2Jpq − KpqÞ ð9Þ

Einter
sta ¼ −

�XNΩ

p¼1

XNB

q¼NΩþ1

þ
XNB

p¼NΩþ1

XNΩ

q¼1

þ
XNB

p;q¼NΩþ1

�0

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nqhqnphp

q
Lpq

−
1

2

�XNII=2

p¼1

XNΩ

q¼NII=2þ1

þ
XNΩ

p¼NII=2þ1

XNII=2

q¼1

�0

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nqhqnphp

q
Lpq −

1

4

XNΩ

p;q¼NII=2þ1

Kpq ð10Þ

Einter
dyn ¼ −

�XNII=2

p¼1

XNB

q¼NΩþ1

þ
XNB

p¼NΩþ1

XNII=2

q¼1

�0

×
� ffiffiffiffiffiffiffiffiffiffi

ndqndp
q

− ndqndp

�
Lpq

þ
X0
NB

p;q¼NΩþ1

� ffiffiffiffiffiffiffiffiffiffi
ndqndp

q
þ ndqndp

�
Lpq ð11Þ

where Jpq¼hpqjpqi, Kpq¼hpqjqpi, and Lpq ¼ hppjqqi
are the Coulomb, exchange, and exchange-time-inversion
integrals [36], respectively. NB denotes the number of basic
functions considered. In the summations, the prime indi-
cates that only the intersubspace terms are taking into
account (p ∈ Ωf; q ∈ Ωg; f ≠ g).
The GNOF has the ability to retrieve the complete

intrapair electron correlation and introduces interaction terms
between orbitals that make up both the pairs and the
individual electrons. The interorbital correlation is in turn
composed of the sum of the static and dynamic terms. It is
not difficult to verify [31] that hŜ2i ¼ SðSþ 1Þ as well. The
solution is established by optimizing the energy with respect
to the ONs and to the NOs, separately. Therefore, orbitals
vary along the optimization process until the most favorable
orbital interactions are found. All calculations have been
carried out using the DONOF code [37] where the GNOF has
been implemented. The procedure is simple, showing a
formal scaling of N5

B (NB: number of basis functions).
To measure the success of the GNOF, calculation of a

variety of properties is presented. The correlation-consistent
valence triple-ζ basis set (cc-PVTZ) [38] was used through-
out, except in some cases that will be specified. For
comparison, coupled cluster singles and doubles level of
theory with perturbative triples (CCSD(T)) values are
reported obtained using the GAUSSIAN03 program package
[39]. The experimental data come from the National Institute
of Standards and Technology (NIST) database [40]. For
experimental dissociation energies, it was also combinedwith
the Ref. [41]. It is not intended to reproduce the experimental
data in this work, since it requires large basis sets.
Table I collects the total energies and energy differences

between the ground state (GS) and the lowest-lying excited
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state (ES) with different spin for atoms from H to Ne.
The aug-cc-PVTZ basis set was used [38]. Experimental
data is from Ref. [42]. According to the mean absolute
error (MAE), the GNOF provides GS total energies with
respect to CCSD(T) ones within the chemical accuracy
(1 kcal/mol) for these atoms, whereas for excitation
energies, both theoretical methods present MAEs with
respect to the experiment that differ from each other by
less than 1 kcal/mol too. Hence, the GNOF provides these
excitation energies with respect to experimental data
comparably to CCSD(T). Recall that CCSD(T) employs
an unrestricted formalism for nonsinglet states, while the
GNOF preserves the total spin of the multiplet, therefore,
excitation energies between states with different spin
provided by both methods differ, namely, for Li, N, F,
and Ne, the GNOF provides values closer to the experi-
ment, while CCSD (T) does better for He, Be, B, C, and O.
Figure 2 shows the calculated ionization potentials (IPs)

of the first-row transition-metal (TM) atoms (Sc-Zn). The
IPs were calculated by the energy difference between the
positive ions and the neutral atoms. The datasets for these
graphs can be found in Table I of the SM [32,33]. The

inspection of Fig. 2 reveals that calculated GNOF IPs
are close to the CCSD(T) values, although they deviate
from the latter and are closer to the experimental values
for early TMs (Sc-V). Note that the MAE with respect to
the experiment is similar for both methods, 7.9 and
7.3 kcal/mol, respectively, which is an outstanding result
considering the size of the basis sets employed.
Table II shows the mean absolute differences with

respect to the CCSD(T) values for electronic energies of
55 selected molecules in different spin states calculated at
the experimental geometries using the MP2, CCSD, and
GNOF methods. The energies of the 30 singlets and 25
multiplets considered can be found in Tables II and III of
the SM [32], respectively. For the whole set, the average
differences in the MP2, CCSD, and GNOF energies from
CCSD(T) are 29.7, 14.4 and 7.7 mhartree, respectively.
These differences reveal the good performance of the
GNOF for molecular energies, and no important differences
are observed in relation to the spin of the system.
The performance of the GNOF has also been tested in the

dissociation of diatomic molecules. Representative poten-
tial energy curves (PECs) of six dimers with different
values of total spin are depicted in Fig. 3. The zero energy
for each curve has been set at 10 Å. At the equilibrium,
these dimers comprise different types of bonds, from single
to triple bonds. However, in all cases the correct dissoci-
ation limit implies a homolytic cleavage of the bonds with
high degree of degeneracy effects depending on the
multiplicity of the dissociated atoms (see Table I). It is
well known that density functionals tend to dissociate to

TABLE I. Total energies (hartrees) and the excitation energies
(eV) of the lowest-lying excited state with different spin.

At GS GNOF CCSD(T) ES GNOF CCSD(T) Exp

H 2S −0.49983 −0.49983 � � � � � � � � � � � �
He 1S −2.90084 −2.90084 3S 19.91 19.88 19.82
Li 2S −7.45318 −7.45338 4P 57.00 56.86 57.47
Be 1S −14.63382 −14.63565 3P 2.76 2.72 2.72
B 2P −24.60751 −24.60912 4P 3.83 3.55 3.58
C 3P −37.79635 −37.79712 1D 1.52 1.43 1.26
N 4S −54.52947 −54.53421 2D 2.20 2.72 2.38
O 3P −75.00049 −74.99967 1D 2.28 2.21 1.97
F 2P −99.65391 −99.65218 4P 13.33 13.34 12.70
Ne 1S −128.8442 −128.8440 3P 17.70 17.78 16.62

MAE 0.0012 � � � 0.37 0.36 � � �
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FIG. 2. Ionization potentials of transition-metal atoms.

TABLE II. Mean absolute differences (mhartrees) with respect
to CCSD(T) values for total electronic energies.

Molecules MP2 CCSD GNOF

Singlets (30) 30.58 18.67 7.66
Multiplets (25) 28.43 9.39 7.83
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FIG. 3. Potential energy curves.
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atoms with spurious fractional charge [43], especially in
heteronuclear species. In contrast, the GNOF produces
correct PECs with dissociation limits that have integer
numbers of electrons in the dissociated atoms in all cases.
Illustrative comparisons between GNOF and CASPT2
methods for CF and CO dimers can be found in the
SM, Figs. 2 and 3 [32,34].
In Table III, selected electronic properties, including

equilibrium distances (Re), dissociation energies (De), and
harmonic vibrational frequencies (ωe) can be found. In
general, it can be seen that the GNOF underestimates the
equilibrium distances and overestimates the frequencies,
while giving a better agreement for the binding energies.
The quality of the electronic structure description in the
equilibrium region can be seen in CO, for which the GNOF
predicts a dipole moment of 0.107D with the correct sign,
in good agreement with the experimental value of 0.112D,
contrary to HF or CASSCF results.
The performance of the GNOF has also been inves-

tigated in the treatment of near-degeneracy effects in
reactions in which diradicals are formed. A paradigmatic
case is ethylene torsion, where a full degeneracy of the π
orbital system is observed for 90° torsion angle. In terms of
relative energies, single-reference methods greatly over-
estimate the barrier height, which decreases when near-
degeneracy effects are considered. The GNOF predicts a
barrier of 3.19 eV using the cc-pVDZ basis set [38], in
outstanding agreement with the result of the SF-CIS(D)
method [44]. Furthermore, the GNOF ONs at a 90° torsion
angle for the valence π orbitals are equal to 1.000,
corresponding to the correct description of these fully
degenerate orbitals.
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