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We discuss spontaneously broken quantum field theories with a continuous global symmetry group via
the constraint effective potential. Employing lattice simulations with constrained values of the order
parameter, we demonstrate explicitly that the path integral is dominated by inhomogeneous field
configurations and that these are unambiguously related to the flatness of the effective potential in the
broken phase. We determine characteristic features of these inhomogeneities, including their topology and
the scaling of the associated excess energy with their size. Concerning the latter we introduce the
differential surface tension—the generalization of the concept of a surface tension pertaining to discrete
symmetries. Within our approach, spontaneous symmetry breaking is captured merely via the existence of
inhomogeneities, i.e., without the inclusion of an explicit breaking parameter and a careful double limiting
procedure to define the order parameter. While here we consider the three-dimensional O(2) model, we also
elaborate on possible implications of our findings for the chiral limit of QCD.
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Introduction.—Spontaneous symmetry breaking is one
of the most important general concepts of quantum field
theories, see, for example, the recent reviews [1,2]. It is
responsible for prominent features of quantum chromody-
namics as well as the electroweak sector of the standard
model, including the characteristics of the spectrum of the
theory and, in general, how the mass of the visible matter in
our Universe is generated. Via the Peccei-Quinn mecha-
nism, it also provides a possible explanation for the strong
CP problem in terms of axions.

While in the standard picture the Higgs and chiral
condensates are homogeneous in space, the possibility of
inhomogeneous symmetry breaking has been discussed in
the literature for both sectors. Impurities in the Higgs
condensate [3] might generally arise via phase transitions in
the early Universe [4], through false vacuum decay after
inflation [5] or via further mechanisms [6]. An inhomo-
geneity in the chiral condensate has been discussed in the
context of the mismatch between the contribution to the
vacuum energy and experimental constraints on the cos-
mological constant [7-9]. In the QCD sector, further types
of inhomogeneities might emerge, e.g., the so-called chiral
spiral, see the recent review [10]. These are expected at
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high chemical potentials, as predicted by low-dimensional
soluble models [11,12] and numerical simulations [13,14]
or in a possible quarkyonic phase [15]. Inhomogeneous
axion fields might lead to the formation of so-called axion
miniclusters, see, e.g., [16].

Here, we do not intend to investigate such inhomoge-
neities induced by external parameters like a chemical
potential, or the interactions with a gauge symmetry.
Instead, we will discuss the inhomogeneity of order
parameters in the general context of spontaneous symmetry
breaking in quantum field theories with a continuous global
symmetry group. The standard approach to constructing the
order parameter amounts to including an explicit symmetry
breaking parameter / in an arbitrary direction in internal
space and performing the limit 72 — 0 in the infinite
volume. The so-defined order parameter is homogeneous
and approaches the value ¢,;, from above in this double
limit. In contrast, our present approach—based on the
constraint effective potential [17]—operates directly at & =
0 and enables exploring arbitrary values of the average
order parameter ¢ with || < Pin-

In this region the local order parameter is anticipated to
be inhomogeneous, in line with the flatness of the effective
potential. This can be understood simply for discrete
symmetries. Since the local order parameter prefers ampli-
tudes around ¢,,, averages below this value are only
possible if the field occupies one discrete minimum in one
fraction of the volume and another one in the rest [18]. Such
bubbles carry an action that scales with their surface,
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becoming negligible compared to volume averages in the
thermodynamic limit, ensuring the flatness of the effective
potential. The formation of bubbles may be thought of as a
natural consequence of the first-order nature of the phase
transition that takes place in the broken phase as 4 crosses
zero and the order parameter flips sign.

Similar inhomogeneities are expected to appear for |¢| <
@min fOr continuous symmetries as well [19,20]. In this case
the different orientations of the field in internal space will
be connected continuously by spin-wave-like configura-
tions. In this Letter we discuss how such inhomogeneities
emerge in the constrained path integral and study their
properties, uncovering finer details of the hidden structure
of the flat potential. Furthermore, employing the excess
energy associated with inhomogeneous configurations, we
extend the definition of a surface tension from the bubble
formation in the discrete case to systems with continuous
symmetry, and provide first results for it. Our simulations
are carried out in the three-dimensional O(2) model, but
similar results are expected in general for continuous,
spontaneously broken systems.

Spontaneous symmetry breaking.—We consider the
three-dimensional O(2) model involving the scalar field
¢4(x) (@ =0, 1), described by the Lagrangian density

£ =15 S0+ 25 | S50+ 50

with the coupling g and the squared mass m?, which we
take to be negative. For homogeneous fields, ¢,(x) = ¢,,
the Lagrangian equals the spontaneously breaking classical
potential Q () taking its minimum along the valley || =
_frllin and being concave on the disk inside that. The
canonical partition function reads

2= [lapaexo{~ [ exice0-nmelf. )

where we also included an explicit symmetry breaking
term, proportional to the magnetic field /4, chosen to point
in the O direction in internal space without loss of
generality.

In the direction specified by the explicit symmetry
breaking parameter we have

B lalogZh

<¢0>h - Vv Oh ’

(2)
where the expectation value is understood according to the
partition function Z;, from Eq. (1) and V denotes the
volume of the system. In the 2 — 0 limit (¢,), vanishes in
finite volumes. The standard approach to define the order

parameter at the symmetric point is via the double limit
procedure

¢min = }E}% ‘;1_1;20 <¢O>h’ (3)

often found in textbooks. In this approach, values of the
average order parameter inside the disk || < ¢y are
inaccessible. We will refer to this as the coexistence disk.

Next we consider an alternative approach based on the
constrained path integral,

Z; = /[d(lﬁa(x)]e_fd}xux)(S(z) <%/d3x¢b(x) - 42551)0)’
(4)

and the constraint potential Q(¢) = —log Z;/V associated
with it. Again without loss of generality, we can choose the
constrained field to lie in the O direction. Expectation values
according to Z; will be denoted by () ;. Most importantly,

the derivative with respect to ¢ gives the magnetic field as
an observable, via the explicit formula [21],

(h)y = 8‘;((;) = m’p + % < / d3xza¢5(X)¢o(X)>$-
(5)

A related quantity is the Legendre transform of the
canonical free energy

I(¢) = sup (héﬁ - ‘i,log Zh> : (6)

It is well known that in the thermodynamic limit the two
potentials are equal: Q(¢) = I'(¢) [17,22,23]. Moreover,
I'(¢) is convex and, in particular, flat on the coexistence
disk in the infinite volume limit. [Even though here I" and Q
are functions of a scalar variable, they can be extended to
the O(2) plane via their invariance under rotations.]
Carrying out the supremum in Eq. (6) also defines 4(¢),
whose inverse equals the function (¢,),. From the equality
of the two potentials it also follows that (h); = h(¢) holds
in the thermodynamic limit.

Simulations are, in turn, performed in a finite volume.
While I' retains its convexity by construction, € can be
concave for V < co. How the convexity is recovered as the
volume increases was already discussed in [17]. A more
specific question is what type of configurations dominate
the path integral as the volume increases. As we already
argued above, we expect to see spin-wave-like configura-
tions for |¢| < Pmin-

Simulation results.—We perform constrained simula-
tions of the three-dimensional O(2) model with parameters
m? = —15.143 and g = 102.857, corresponding to the
broken symmetry phase. The simulated values of ¢ range
over the full coexistence disk and slightly outside of it on

three different volumes 403, 60°, and 803. We employed
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two algorithms: first, a Metropolis-like approach, where
randomly chosen pairs of spins are updated so as to keep ¢
fixed and second, a constrained hybrid Monte Carlo
algorithm based on Ref. [21]. The two algorithms were
cross-checked and gave the same result.

We first examine the typical configurations that domi-
nate Zj. Since the field is strongly constrained in the
radial direction by the classical potential, its magnitude is
expected to stay close to ¢, and a constrained expectation
smaller than that can only be achieved by inhomogeneous,
spin-wave type configurations. Indeed, starting from homo-
geneous initial states ¢, (x) = ¢d,9, our constrained sim-
ulations are quickly driven toward inhomogeneous
configurations. The direction of the emerging, coherently
rotating spin waves is selected spontaneously so that the
associated momentum is minimal. For our cubic lattices
with periodic boundary conditions, this prefers one of the
coordinate axes which, without loss of generality [24],
can be taken to be x;. In the two-dimensional slices
perpendicular to x;, the direction of the field has only
random fluctuations, thus the nontrivial change of the field
angle is restricted to the x; direction. This implies the
spontaneous breakdown of the translational and rotational
symmetry of the system—we stress, however, that expect-
ation values of the field respect both of these symmetries
as the waves can be shifted and rotated without changing
the action. The spontaneous breaking of the spacetime-
symmetries could be explicitly seen by simulating systems
that are slightly elongated in the x; direction or by
including magnetic fields localized to a single x; slice.
Defining the theory via the limit where such small explicit
breakings are gradually removed, in the thermodynamic
limit, selects one minimum, just as the 47 — O limit of the
canonical theory selects one ¢ orientation.

We characterize the dominant configuration types based
on their behavior in the inhomogeneous direction. Defining
slices of the field in the previously specified x; direction as

%, (x) = L2 / Py )5y —x) (T)

configurations can be characterized through the smooth
precession of the O(2) vector X as a function of x;, while its
length remains very close to ¢,;,. In particular, we assign
an integer winding number w to each configuration based
on how many times the O(2) group is mapped to the circle
corresponding to the periodic x; coordinate. We find that
while higher w’s are also possible, the dominant contribu-
tions to the path integral have either w = 0 or w = 1. Since
practically only these two are present we will refer to w =
1(0) as (non)winding configurations. Note that w = —1
appears with the same probability as w = 1, however, is
physically equivalent, therefore we only discuss the pos-
itive sector. To facilitate the understanding of this topo-
logical classification, example configurations taken from

eemeemreeLm el
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FIG. 1. Visualization of the typical configurations dominating
the constrained path integral for ¢ < ¢, in comparison to a
homogeneous one. The curves on the torus represent the vector X
from Eq. (7) in O(2) space as a function of the x; coordinate. All
lines are solid (dashed) when they are in front of (behind) the
torus. Notice that the winding configuration is topologically
different from the homogeneous one, while the nonwinding one
is topologically equivalent to it.

simulations at ¢» ~ 0.5 in V = 80 are shown and compared
to a homogeneous one in Fig. 1 and further visualized in
Supplemental Material [26].

For w=1, the angle a(x;)=atan[Z;(x;)/Z(x;)]
rotates around the complete internal space (with non-
constant velocity), while for w = 0 it oscillates between
the limiting angles +ay;,,, see Fig. 1. The constraint that the
average field be equal to ¢ is therefore achieved in different
ways in the two cases. The exact functional form of a(x;)
depends strongly on ¢ for any w. We use an ansatz for a(x,)
motivated by one-dimensional solutions of the classical
equations of motion, which can be written as

¢<W)(x1> = q_ﬁmin(cosaw(xl)7Sinaw(xl))T’ (88_)

27wxy

aw(xl) =

2
+ g, Sin <”Txl> . (8b)

The two sectors are found to be dominant in different
regions of the parameter space: w =0 is the relevant
configuration type near the edge of the coexistence disk,
while w =1 becomes dominant near ¢ =0. At some
intermediate value ¢, a very sharp (already for moderate
volumes) transition takes place between the sectors.
Because of their topological difference, the subdominant
sector is metastable and, accordingly, jumps between the
two sectors take long in Markov time, even when the
difference between the corresponding actions is large. This
renders the discussion of the transition between the sectors
at ¢, difficult and prompted us to measure observables in
fixed topological sectors. This algorithm therefore works
only outside the immediate vicinity of ¢,.

Owing to translational invariance on the level of expect-
ation values, (¢, (x)) = (¢,), inhomogeneities are invisible
in one-point functions but may be observed in two-point
functions of the field. In particular, we consider the slice
correlator,
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FIG. 2. Slice correlators as measured in the winding and
nonwinding sectors for V = 80%, at ¢~ 0.25. The respective
lines following closely the two datasets are the correlators
calculated from the classical ansatz, where the parameter oy,
was optimized in a least squares fashion.

Cap(x1) = (Za(x1)Z5(0)) - ©)

We show examples of C, measured on both topologies in
Fig. 2. A comparison to the correlator calculated from the
ansatz of Eq. (8) reveals that the latter approximates the
simulation results remarkably well. We note that only
the nonwinding configurations can be continuously con-
nected to the homogeneous ones, which can be seen as the
limit oy, = O.

Next, we investigate how the presence of inhomogene-
ities is related to the flatness of the effective potential ().
Since the potential itself cannot be expressed as an
observable, we determine it via the so-called integral
method. First, we measure the magnetic field (4); based
on Eq. (5). This is done separately for the two relevant
winding number sectors and the respective observables are
marked by a w subscript. The results are shown in Fig. 3,
revealing how the magnetic field approaches zero in the
thermodynamic limit from opposite directions for w = 0
andw = 1. The edge of the coexistence disk is determined by
the point where (/1) turns positive and in the thermody-
namic limit we obtain ¢, = 0.6899(6).

Having measured (%), ,,, next we integrate it back in ¢ to
reconstruct the constraint potential via Eq. (5),

@)= [ P a1yt (10)

where c,, is an integration constant to be set later. As we
explained above, not too close to ¢,, the potential equals
either Q, or ;, whichever is smaller. Since the configu-
rations of the w = 0 sector connect continuously to the
homogeneous configurations at ¢,,;,, we can simply set
Qo(hmin) = 0, which fixes the value of c,.

0.14 + w=1,L=80 +  w=1,L=60 ro  w=1L=40 =1 -
w=0,L=80 -  w=0,L=60 r4  w=0,L=40
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FIG. 3. The constrained simulation results for (h); as a
function of ¢. The gold (purple) points correspond to measure-
ments on winding (nonwinding) configurations. Also shown is
the thermodynamic limit extrapolation of ¢,,;, obtained from the
intersect of the results with (%) = 0. The inset shows a close-up

of the region around ¢y;,.

For the winding case this approach is not viable and we
opted for an alternative method. To explain it, we first
introduce a generalization of the surface tension, well
known in the context of bubble formation for discrete
symmetries. There it is defined via the excess free energy of
a two-phase configuration containing a bubble wall, com-
pared to a homogeneous, one-phase configuration, per unit
wall surface. It characterizes the timescales and bubble nu-
cleation rates at a first-order phase transition, see, e.g., [27].
We can generalize this concept for our continuous sym-
metry via the kinetic energy of the sliced fields (remember
that the spin waves are assumed to point in the x; direction),

Ex@) =57 (0,5 00P) ()

a.x

and the excess potential density due to the inhomogeneity
at |¢| < Pmin, parametrized as

Q(q_ﬁ) _ 6EZ(¢) j2EZ(¢min) , (12)

min

where we used that we set Q(¢p,,) = 0, hence no sub-
traction is necessary on the left hand side. In the case of a
discrete symmetry with a domain wall of characteristic
width A separating phases with +¢,,;,, and —¢,;,, the same
formula gives VQ = ¢L?, where ¢ o 1/A and the propor-
tionality factor depends on the precise profile of the wall.
Thus, Eq. (12) properly generalizes the notion of a surface
tension to continuous symmetries and we will refer to it as
differential surface tension. Since o is defined via average
quantities, we expect it to be insensitive to the precise form
of the preferred spin waves and, thus, independent of ¢.
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FIG. 4. The differential surface tension as defined in Eq. (12)
for three different volumes in both relevant topological sectors,
together with the infinite volume limit (gray band). The insets
show each volume separately to reveal more clearly the inde-
pendence of ¢ of the topological sector. Some of the points are
shifted horizontally for better visibility.

Our results for the differential surface tension are shown in
Fig. 4, which demonstrates the independence of ¢ of w and
of ¢, apart from the region close to ¢,,;,, where the ratio it
involves becomes of the 0/0 type and error bars blow up.
Incorporating the slight downward trend toward the infinite
volume limit, we obtain ¢ = 0.427(8).

Owing to the constancy of o, the parametrization
Eq. (12) enables us to match the effective potentials
measured in the two topological sectors. Since Q; = Q,
at ¢, and o is the same constant for both, the sliced kinetic
energies must also be equal here. Identifying the point
where this happens fixes the overall value of Q(¢,)
compared to Q(¢.) and hence that of ¢,. The so obtained

0.014 | N 5. L=40 — |

L=60 —
0.012 | winding nonwinding L=80— -

Omin ®
0.01 - |
0.008 R

G
0.006 g
0.004 g
0.002 J
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
¢
FIG. 5. The constraint potential for different volumes. Re-

gions are labeled based on which configuration type is
dominant there, and correspondingly lines are solid (dashed)
in the regions where they are (sub)dominant. The larger the
volume the more it approaches the flat effective potential of the
thermodynamic limit.

potentials are shown for three different volumes in Fig. 5.
The thermodynamic limit of Q (assuming 1/L? scaling) is
found to be consistent with zero for all values of ¢,
demonstrating the flatness of the effective potential.
However, for all volumes the cusp associated with the
abrupt change of dominant configurations remains.
According to our estimate this occurs at ¢, = 0.2818(2).

Conclusions.—In this Letter we discussed the sponta-
neously broken phase of the three-dimensional O(2) model
using the constraint effective potential Q(¢). For large
values of ¢ this approach reproduces the findings of
standard simulations at fixed magnetic field 4. In addition,
inside the coexistence disk (¢ < ¢,,;,), it reveals hidden
structures of the effective potential and gives insights about
the mechanism responsible for flattening toward the
thermodynamic limit and the physical realization of infi-
nitely many ground states in thermodynamics [28]. In
particular, we find that the relevant configurations resemble
spin waves labeled by a winding number w according to
their O(2) topology. Even though the corresponding wave-
lengths scale with the linear size of the system, a sharp
transition takes place between the w = 0 and w = 1 sectors
at an intermediate critical value ¢, on each volume. An
algorithm capable of efficiently tunneling between the two
sectors is yet to be developed. Incidentally, we point out
that our setup provides a counterexample for the conjecture
[29] that the breaking of translational invariance is only
possible for path integrals with a sign problem.

In finite volumes the constraint potential is concave due
to the excess energy carried by the spin waves. This can be
parametrized by a differential surface tension o, general-
izing the concept of a usual surface tension relevant for
discrete symmetries. We provide a first determination of ¢
and show that it is a local property of the quantum field
related to its response to torsion and does not depend on the
global structure of the waves. These findings might be
relevant for phenomenological studies of the impact of
inhomogeneous structures for phase transitions, similar to
the discussion of bubble formation for discrete symmetries.
We note that similar inhomogeneities can also be discussed
employing boundary conditions instead of constraints, see,
e.g., [30,31].

It is also worth mentioning that our constrained simu-
lations enable an efficient determination of ¢, involving
an interpolation in ¢ followed by an extrapolation to the
thermodynamic limit—as opposed to the double extrapo-
lation procedure of the standard approach. Our method can
also be applied to QCD in the chiral symmetry broken
phase in 3 + 1 dimensions, where the roles of the order
parameter and the magnetic field are played by the
chiral condensate and the light quark mass, respectively.
In this case the path integral will be dominated by
configurations with inhomogeneous chiral condensates
inside the coexistence disk. Their specific structure,
topological properties, and associated differential surface
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tensions can be investigated using the methods we intro-
duced in the present work.
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