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We analyze the “vacuum” polarization induced by a quantum charged scalar field near the inner horizon
of a charged black hole in quantum states evolving from arbitrary regular in states. Contrary to naive
expectations, we find that near an inner horizon, the transversal component of the expected current density
can have either sign depending on the black hole and field parameters. Thus, the inner horizon can be
charged or discharged. But we find that it is always discharged close to extremality. We also find that
quantum effects dominate in that the strength of the blow up of the quantum current at the inner horizon is
state independent and stronger than that of the current of a classical solution.
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Introduction.—It is well known that black hole (BH)
interiors, such as, e.g., in the Kerr- or Reissner-Nordström
(-de Sitter) spacetimes, pose interesting questions regarding
determinism. A common feature of these spacetimes is the
existence of an “inner" or “Cauchy” horizon CH, beyond
which the evolution of classical or quantum fields cannot
be predicted from their initial data on a Cauchy surface Σ at
early times, see Fig. 1.
The strong cosmic censorship (SCC) conjecture [1]

proposes that the issue is academic because local observ-
ables are expected to diverge at CH. A more precise
formulation of this idea due to [2] states that SCC holds
if the stress tensor of a classical field, such as a scalar or a
linearized gravitational field, is locally not integrable near
CH for generic smooth initial data on Σ, thus preventing one
from continuing the solution beyond CH. Hence, one must
understand the strength of the singularity of physical fields
near CH to decide whether SCC saves determinism or not.
Estimates for the degree of divergence of an (uncharged)

classical Klein-Gordon (KG) field Φ near the Cauchy
horizon of a subextremal Reissner-Nordström–de Sitter
(RNdS) spacetime were suggested already in the 1990s
[3–5] and have been revisited in recent years [6–11]: [9] have
characterized the singular behavior of an arbitrary solution
Φ arising from smooth initial data on Σ by its membership
in the Sobolev space Hβþð1=2Þ near CHR. Here, β ¼ α=κ−
where α is the spectral gap of quasinormal modes and κ− is
the surface gravity of CH. By tracing the dependency of β on
the BH massM, charge Q, and cosmological constant Λ, it
was found that β can become > 1=2 [11]. This implies that
the stress tensor of the classical field Φ is locally integrable
(meaning roughly that TVV ∼ V−2þ2β in terms of a Kruskal
coordinate locating CHR atV ¼ 0, see Fig. 1), constituting a
violation of SCC.
Given this state of affairs it is of interest to understand

whether expectation values of quantum fields diverge near

CHR and how the degree of divergence compares to
classical fields.
It was already argued heuristically in the 1970s [12] that

the expected stress tensor in a generic quantum state should
diverge at CHR. This was recently proven [13] for the real
KG field in RNdS, in the following sense: in any state Ψ

FIG. 1. Penrose diagram for Reissner-Nordström–de Sitter
spacetime. I and III constitute the exterior region, with III the
region out of causal contact with the BH. Regions II and IV are
the BH interior, which are separated from the exterior by the
event horizon HR and from each other by the Cauchy horizon
CHR. The wiggled line represents the curvature singularity. The
green line indicates a Cauchy surface Σ for the region I ∪ II ∪ III,
whereas the red lines indicate the direction of the electric field on
time slices in the interior region. The blue arrows indicate the
range of the coordinates u, v introduced below.
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which is regular (i.e., “Hadamard”) in a neighborhood of a
Cauchy surface Σ as in Fig. 1, one has, for β > 1=2,

hTVViΨ ∼ CV−2; ð1Þ

withC a constant which only depends on the parametersM,
Q,Λ of the spacetime and the mass μ of the field, but not on
the quantum state Ψ. The state dependence only enters
through subleading terms, which are no more singular than
the stress tensor for the classical field. The constantC has to
be determined numerically and was found to be generically
nonzero [14] (see also previous work [15] on Reissner-
Nordström and special states). Interestingly, both signs
of C can occur. Assuming that the expected stress tensor
backreacts onto the metric via the semiclassical Einstein
equation

Gνρ þ Λgνρ ¼ 8πðhTνρiΨ þ EνρÞ; ð2Þ

with Eνρ the stress tensor of the electromagnetic field, the
two signs of C correspond to distinct behavior (infinite
stretching respectively squeezing) of freely falling observ-
ers crossing CHR [13,15].
As the formation of charged BHs necessitates the

presence of charged matter, it is actually more natural to
consider a charged scalar field Φ with the usual minimal
coupling ∇ν → Dν ¼ ∇ν − iqAν, where q is the charge of
the field. It is known [16–19] that for certain values of
ðM;Q;ΛÞ and ðμ; qÞ, there are classical instabilities (expo-
nentially growing modes) already in the exterior region I.
Excluding such unstable spacetimes, we have a positive
spectral gap α > 0 and again Φ ∈ Hβþð1=2Þ locally near
CHR [20]. The dependence of β ¼ α=κ− on the parameters
is influenced by the field charge q. There is nevertheless a
parameter range—though considerably smaller than for
the uncharged scalar field—for which β > 1=2 [18,20].
A proof that (1) also holds for the charged scalar field (with
constant C now also q dependent) is presented in
Supplemental Material [21].
In the presence of a charged quantum field, backreaction

should also take place via the semiclassical Maxwell
equation

∇ρFρν ¼ −4πhJνiΨ; ð3Þ

due to vacuum polarization, i.e., an expectation value for
the current Jν. At the event horizon HR, this current is
responsible for the discharge of the BH via Hawking
radiation [24–26]. While vacuum polarization always
discharges the event horizon, its influence on the
Cauchy horizon is not obvious. It has been argued invoking
the Schwinger process [27] that pair creation in the interior
(region II) should discharge the Cauchy horizon, i.e., there
should be a net current from the left Cauchy horizon ðCHLÞ
to the right one ðCHRÞ [28,29].

Their arguments are, however, not completely convinc-
ing. The BH interior is not stationary, so the very notion of
particle is ambiguous there. Furthermore, already at the
classical level the behavior of fields at CHR is due to a very
nonlocal effect: a competition between decay (in region I)
and blue shift (region II). Hence, Schwinger’s formula for
pair creation seems not applicable or relevant and a first
principle calculation of hJνiΨ at the Cauchy horizon is
needed to settle this important question. This is the main
novelty presented in our Letter. Most interestingly, we find
that the relevant component of the current hJViΨ can have
either sign at CHR, depending on the parametersQ,M,Λ of
the spacetime and μ, q of the field. It follows that, via
backreaction, the Cauchy horizon can also be charged by
quantum effects, contrary to naive expectations [28,29].
More precisely, we argue that, in any quantum state Ψ

which is initially Hadamard near Σ, the expectation value of
the current diverges at CHR, with leading divergence

hJViΨ ∼ C0V−1; ð4Þ

where C0 is independent of Ψ and can have either sign.
The state dependence again enters through subleading
terms which behave as the current of a classical field,
i.e., roughly as JV ∼ V−1þβ. Hence, as for the stress tensor,
quantum effects dominate over classical effects close to the
Cauchy horizon.
Our results thus show that the leading divergence of

relevant observables near the Cauchy horizon is of quantum
origin and state independent (so that no appeal to “generic”
initial data is necessary), but also that the ensuing back-
reaction effects can differ drastically from classical expect-
ations (“mass inflation”) [30]: not only is a tidal stretching
of observers possible (corresponding to “mass deflation”),
but also “charge inflation.” These possibilities clearly
correspond to drastically different forms of the terminal
singularity replacing the Cauchy horizon.
Geometric setup and backreaction.—The metric g and

vector potential A of the RNdS spacetime (Fig. 1) are given
in natural units ℏ ¼ c ¼ GN ¼ 4πϵ0 ¼ 1 by

g ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð5aÞ

fðrÞ ¼ −
Λ
3
r2 þ 1 −

2M
r

þQ2

r2
; ð5bÞ

A ¼ −
Q
r
dt; ð5cÞ

with dΩ2 the area element of the unit sphere. The function
fðrÞ has three positive roots rc > rþ > r−, corresponding
to the cosmological (Hc), event (H) and Cauchy, horizon
(CH) of the BH.
A useful alternative radial coordinate is the tortoise

coordinate r�, defined by fðrÞdr� ¼ dr. One defines radial
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null coordinates v≡ tþ r� and u≡ t − r�. Their ranges
are indicated by blue arrows in Fig. 1, pointing from −∞ to
þ∞. To extend the metric smoothly across the horizons, we
use the Kruskal coordinates U≡ ∓ e−κþu, Vc ≡ −e−κcv,
and V ≡ −e−κ−v, where κi ¼ 1

2
jf0ðriÞj are the surface

gravities on the corresponding horizons. For U, we use
the − sign in the exterior, and theþ sign in the interior, and
the V coordinates are defined in the exterior (Vc) and
interior (V), respectively. Note that V ¼ 0 on CHR and that,
by the tensor transformation law, the constants C, C0 in (1)
and (4) are given by C ¼ κ−2− hTvviΨ and C0 ¼ −κ−1− hJviΨ,
where the expectation values are computed on the inner
horizon. In the following, we present our results in terms of
hTvviΨ and hJviΨ.
Before presenting our arguments in favor of (4), let us

briefly discuss backreaction effects. We proceed heuristi-
cally and assume that the main contribution to backreaction
is spherically symmetric, as the leading divergence in (4).
Thus, for the metric g and the field strength tensor F,
involving backreaction, we make the ansatz

g ¼ −eσdudvþ r2dΩ2; F ¼ −
Q
2r2

eσdu ∧ dv; ð6Þ

where σ, r, and Q are functions of u and v. By Gauß’s law,
Qðu; vÞ is the charge contained within the sphere at
u; v ¼ const, which has area 4πr2.
In a first approximation, we now use the expectation

value of the current obtained on the RNdS background and
obtain, from the v component of (3),

∂vQ ¼ −4πr2hJviΨ: ð7Þ

Hence, the sign of hJviΨ, evaluated on CHR, determines
whether quantum effects discharge (hJviΨ > 0) or charge
(hJviΨ < 0) the BH interior. The resulting behavior of
the field strength Q=r2 near CHR is discussed in [21],
see also [15].
The scalar field and its current.—The charged scalar

field Φ obeys the KG equation

½DνDν − μ2�Φ ¼ 0; ð8Þ

The mode ansatz

Φlm ¼ ð4πjωjÞ−1=2r−1Ylmðθ;ϕÞe−iωtHωlðrÞ; ð9Þ

with Ylmðθ;ϕÞ the spherical harmonics, reduces (8) to a
one-dimensional problem

�
∂2
r� þ

�
ω −

qQ
r

�
2

−W

�
Hωlðr�Þ ¼ 0; ð10aÞ

W ¼ fðrÞ
�∂rfðrÞ

r
þ lðlþ 1Þ

r2
þ μ2

�
: ð10bÞ

Using gauge transformations of the form

A → Aþ Q
r0
dt Φ → ei

qQ
r0
tΦ ð11Þ

we can set the potential to zero at any chosen r0. If
r0 ∈ frþ; r−; rcg, the solutions hωlðr�; tÞ ¼ e−iωtHωlðr�Þ
will behave as free waves in that gauge when approaching
the corresponding horizon. We will denote the gauge where
A ¼ 0 at ri, i ∈ f−;þ; cg, by an (i) superscript.
Following standard procedures [31], we quantize the

field Φ by choosing a set of positive frequency mode
solutions. It is convenient to choose these as corresponding
to the Unruh vacuum, which in turn corresponds to certain
initial conditions on Hc

− ∪ H− ∪ HL. There are two types

of modes, hðcÞinωl ∼ e−iωVc onHc
−, and ∼0 onH− ∪ HL, and

hðþÞup
ωl ∼ e−iωU on H− ∪ HL and ∼0 on Hc

−. The field
operator is then given by an expansion in the positive
frequency solutions,

ΦðxÞ¼
Z

∞

0

dω
X
λ;l;m

½Φλ
ωlmðxÞaλωlmþΦλ

−ωlmðxÞbλ†ωlm�; ð12Þ

where the coefficients aλωlm and bλωlm act as annihilation
operators on the Unruh vacuum, aλωlmj0iU¼bλωlmj0iU¼0,
and λ runs over the types of modes, in and up. That this
defines a proper quantum field/state in the absence of
classical instabilities, i.e., α > 0, can be shown as in [13],
see [21].
The observable driving backreaction onto the electro-

magnetic field is the current density given by

JνðxÞ ¼ iq½ΦðxÞðDνΦÞ�ðxÞ −Φ�ðxÞDνΦðxÞ�: ð13Þ

It is local and nonlinear in the field, so it requires
renormalization in quantum field theory. To evaluate its
expectation value in the state Ψ, we proceed analogously to
recent treatments of the stress-energy tensor: as in [13], the
expectation value in the Unruh state hJViU is already found
to give the leading contribution to (4), because the Ψ-
dependent contributions are subleading. In [21], this is
shown rigorously for β > 1=2, analogously to [13], but is
expected to hold also for β < 1=2 in a large class of states.
To evaluate hJviU we use a Hadamard point-

split renormalization, similar to the one performed in
[13,15,32,33] for the stress tensor. By a suitable point-split
prescription, all singularities of the coinciding point limit
vanish, so that Hadamard point-split renormalization
amounts to the subtraction of a finite part, which actually
vanishes on the horizons [34]. We then calculate the v
component of the current on CHL, which coincides with the
value on CHR because the state is stationary, by taking the
limit of [Ref. [34], Eq. (39)] onto the horizon CHL.
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The “Boulware modes” defined in [34] behave as

h̃ðþÞin;I
ωl ¼ T I

ðω−ωIÞl
ω

ω − ωI
e−iðω−ωIÞv on HR; ð14aÞ

h̃ðþÞup;I
ωlm ¼ RI

ωle
−iωv on HR; ð14bÞ

h̃ð−Þin;IIωlm ¼ T II
ωle

−iðω−ωIIÞv on CHL; ð14cÞ

h̃ð−Þup;IIωlm ¼ RII
ωle

−iðω−ωIIÞv on CHL; ð14dÞ

where ωI ¼ qQðr−1þ − r−1c Þ and ωII ¼ qQðr−1− − r−1þ Þ.
This follows from the differential equation (10a), and the
relation of the modes. Here, T N

ωl and RN
ωl are the trans-

mission and reflection coefficients of the h̃up;Nωl modes
[Ref. [34], Eqs. (16), (17)]. The scattering coefficients of
the in-type modes have been expressed in terms of these by
comparing the behavior of the modes for r� → �∞.
Inserting this into [Ref. [34], Eq. (39)], one finds

hJviU¼−
X∞
l¼0

qð2lþ1Þ
16π2r2−

Z
∞

0

dω½FlðωÞþFlð−ωÞ�; ð15aÞ

FlðωÞ ¼
ωðωþ þ ωIÞ

ðωþÞ2 coth

�
π
ωþ þ ωI

κc

�
jT I

ωþlj2jT II
ωþlj2

þ
ω coth ðπ ωþ

κþ
Þ

ωþ ½jRII
ωþlj2 þ jRI

ωþlj2jT II
ωþlj2�

þ
2ωcschðπ ωþ

κþ
Þ

ωþ ReðRI
ωþlT

II
ωþlR

II
ωþlÞ; ð15bÞ

with ωþ ¼ ωþ ωII. A similar result for hTvviU is given
in [21].
Numerical results.—To compute the scattering coeffi-

cients, (10a) has to be solved numerically. Following [35],
in the case of a conformal mass μ2 ¼ 2Λ=3, one can bring
the equation into the form of a Heun differential equation
by a special choice of ansatz. The solutions to the Heun
equation have been implemented inMathematica as special
functions [36]. For a general μ2, the same ansatz yields a
slightly more general equation, that can however be solved,
near any of the horizons, by a power series as described in
[14]. By comparing the solutions around different horizons,
one can calculate the scattering coefficients [14].
For small enough μ, the integrand in (15a) is rapidly

decreasing both in ω and l. We thus calculate the scattering
coefficients and the corresponding FlðωÞ, cf. (15b), for
different values of ω and l up to some maximal values
beyond which the contribution to (15a) is negligible. Then,
the integral in (15a) is estimated by a Riemann sum, which
is also used to estimate the errors of this procedure.
Figure 2 shows the results for the current component Jv

on CHR as a function ofQ=M (nearly up to extremality) for
different charges of the scalar field. The most remarkable

feature is that the current can have either sign, depending
on the charge of the BH and of the field. As discussed
above, hJviU > 0 corresponds to the discharge of the
Cauchy horizon, while for hJviU < 0 backreaction effects
increase its charge. We see that, close enough to extrem-
ality, backreaction effects discharge the Cauchy horizon, so
that it is driven away from extremality. However, away
from extremality, a sign change may occur, so that quantum
effects can tend to charge Cauchy horizons of BHs which
are far enough away from extremality. One may also check
that, for charges q small enough and all other parameters
fixed, the current is proportional to q2, i.e., the fine-
structure constant, compatible with expectations.
The possibility of a sign change of the current at the inner

horizon is in stark contrast to the situation at the outer
horizon, where vacuum polarization always tends to
discharge the BH [25,34] in physically reasonable states.
We attribute the phenomenon to the scattering of modes
entering the BH through the event horizon off the potential
barrier (10b). Note, however, that it is impossible to clearly
distinguish the contributions from the inflow of a current
through the event horizon and the creation of a current in
the BH interior, as the up modes in the interior, which are
responsible for the latter effect, are entangled with the up
modes in the exterior region, leading to interference effects,
manifest in the last term in (15b).
Evaluation of the stress tensor at CHR [21] yields results

compatible with those obtained for the real scalar field in
[14,15], see Fig. 3 and [21] for a detailed discussion.
Combining the results for the current and the stress tensor,
we find that, for the parameters considered in Fig. 2
and in the weak backreaction regime, where ∂vr ¼
−4πr−=κ−hTvviΨ [15,21], backreaction effects can increase
the field strength, ∂vðQ=r2Þ > 0, as one approaches CHR,
even for parameters for which backreaction discharges the
inner horizon [21].
We note that the parameter range considered in Fig. 2

does not capture semirealistic BH and field parameters. To
achieve comparability with [11,14], a reasonable perfor-
mance of the numerical code, and to avoid the classical

FIG. 2. hJviU evaluated on CHR as a function of Q=M for
different values of qQ and μ2 ¼ 2Λ=3, Λ ¼ 0.14 M−2.
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instability [18], Λ was chosen unrealistically high, so that
the event horizon rþ of the BH is of the same order of
magnitude as the cosmological horizon rc. For our fixed
value of Λ, the bound Q=M > 0.755 is necessary to
achieve rþ < rc. But astrophysical BHs are expected to
be only weakly charged [25], i.e., Q ≪ M. Furthermore, if
we identify q with the elementary charge e, we find that for
near-extremal BHs qQ ∼ 1036M=M⊙, which is beyond the
regime accessible to our numerical code for realistic BH
masses. Similarly, the assumption of a conformal mass for
Φ is unrealistic, but semirealistic masses μ are not acces-
sible by our code (however, we checked stability of our
results under deviations from the conformal mass). Hence,
our results unfortunately cannot be used to infer the fate of
the Cauchy horizon of semirealistic BHs. However, they
are sufficient to demonstrate that the naive expectation that
quantum effects will always discharge the BH interior is
false. It would be interesting to see whether a similar effect
occurs for rotating (Kerr) black holes where (dis-)charging
would now correspond to (down-)upspinning of the
Cauchy horizon and Jv would correspond to Tvϕ.
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