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Cosmology relies on a coarse-grained description of the universe, assumed to be valid on large length
scales. However, the nonlinearity of general relativity makes coarse graining extremely difficult. We here
address this problem by extending the Mori-Zwanzig projection operator formalism, a highly successful
coarse-graining method from statistical mechanics, towards general relativity. Using the Buchert equations,
we derive a new dynamic equation for the Hubble parameter which captures the effects of averaging
through a memory function. This gives an empirical prediction for the cosmic jerk.
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General relativity [1–3] is a highly successful theory
which has been used to model the universe on many
different scales. On the “microscopic” scale of individual
stars and stellar black holes, it has been tested and
confirmed to great accuracy by a large number of experi-
ments, ranging from the gravitational deflection of light by
the sun [4] to the recent direct detection of gravitational
waves by the LIGO and Virgo collaborations [5,6].
However, we also use general relativity on “macroscopic”
scales in cosmology, where we interpret it as a coarse-
grained description of the universe on the average.
This methodology is mathematically suspect. Einstein’s

field equations are highly nonlinear, therefore they cannot
hold for averaged quantities the same way as for the
nonaveraged ones. This means if those equations are valid
on the scale of individual stars, then they should have
correction terms on cosmological scales [7]. Finding a
coarse-grained description for the lumpy universe is often
referred to as the “averaging problem” [7–13], and the
effect of inhomogeneities on averaged quantities is known
as “backreaction” [7,14].
Some authors have suggested that backreaction can mimic

effects of (and can therefore constitute an alternative to) dark
energy, but the quantitative importance of such effects has
remained controversial [7,15–17]. Understanding how to
properly average Einstein’s field equations has only become
more pressing with recent observations that indicate a
tension between different measurements of the Hubble
parameter (“Hubble tension”) [18–22]. A large variety of
solutions for this issue have been discussed [23], including
an explanation based on cosmic inhomogeneities [24–26].
Among the most popular theoretical approaches to the

averaging problem are the Buchert equations [27–29],
which provide a simple model for the time evolution of
averaged scalar quantities. With them, an inhomogeneous

universe can be described with an effective (nonequili-
brium) equation of state [17]. Coarse-grained descriptions
of nonequilibrium systems are of importance also in other
fields of physics. There, systematic coarse-graining tech-
niques have been developed, of which the Mori-Zwanzig
projection operator formalism [30–35] is perhaps the most
powerful one.
This formalism, which is the focus of this work, employs

a projection operator to reduce the complete microscopic
dynamics to that of a subset of a priori arbitrary “relevant
variables.” The remaining “irrelevant variables” become
encoded in a generalized Langevin equation as memory
and noise terms. (For an introduction, see Refs. [36–40].)
Applications of the Mori-Zwanzig formalism include the
derivation of dynamical density functional theory [41–46],
hydrodynamics [46,47], glassy systems [48], philosophy
of physics [49–51], solid-state theory [52,53], and spin
relaxation theory [33,54,55]. The formalism has also been
successfully applied in high-energy physics and relativistic
causal hydrodynamics [56–61]. Below, we will extend the
Mori-Zwanzig formalism to general relativity.
We start by introducing the Mori-Zwanzig formalism

following Ref. [37]. The microscopic equation of motion
for an arbitrary variable A obeying Hamiltonian dynamics
can be written as _A ¼ iLA, where the overdot denotes a
derivative with respect to time t, and L is the Liouvillian
defined as the Poisson bracket (or, in the quantum case, the
commutator) with the Hamiltonian of the respective theory.
We can formally integrate this equation to AðtÞ ¼ eiLtA
(assuming that L is time-independent, otherwise one needs
to time-order the exponent [33]). Here, A is the (time-
independent) Schrödinger-picture observable and AðtÞ is
the (time-dependent) Heisenberg-picture observable. At the
reference time t ¼ 0, Schrödinger and Heisenberg-picture
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observables agree [37,62]. Although the distinction
between the Schrödinger picture and Heisenberg picture
is known mostly from quantum mechanics, it can be used
also in the classical case [63].
We then choose an arbitrary set of relevant variables

fAkg and define the projection operator acting on a phase-
space function X as

PX ¼ AjðAj; AkÞ−1ðX; AkÞ; ð1Þ

where ðX; YÞ is a scalar product, often defined as ðX; YÞ ¼
Trðρ̂XYÞ with the trace Tr (denoting an integral over phase
space in the classical and a quantum-mechanical trace in
the quantum case) and a probability distribution ρ̂. Indices
appearing twice are summed over.
Next, we apply the Dyson identity

eiLt ¼ eiQLt þ
Z

t

0

ds eiLðt−sÞPiLeiQLs ð2Þ

with the orthogonal projection operator Q ¼ 1 − P to
the expression QiLAi which gives us the Mori-Zwanzig
equation

_AiðtÞ ¼ ΩijAjðtÞ þ
Z

t

0

dsKijðsÞAjðt − sÞ þ FiðtÞ ð3Þ

with the frequency matrix Ωij ¼ ðAj; AkÞ−1ðiLAi; AkÞ, the
memory matrix KijðtÞ ¼ ðAj; AkÞ−1½iLFiðtÞ; Ak�, and the
random force FiðtÞ ¼ eiQLtQiLAi. Equation (3) is an exact
transport equation for the relevant variable Ai. We set the
lower bound of the time integral in Eq. (3) to t ¼ 0, but
different values are possible [36,64].
We now apply the Mori-Zwanzig formalism to general

relativity. In its standard form, the Mori-Zwanzig formal-
ism is based on solving an initial value problem _A ¼ iLA
with some Liouvillian L in the form AðtÞ ¼ expðiLtÞAð0Þ.
Thus, to apply the Mori-Zwanzig formalism, we first write
the equations of general relativity as a (Hamiltonian) initial
value problem using the Arnowitt-Deser-Misner (ADM)
formalism [65–67], reviewed in Refs. [68,69].
In the ADM formalism, one foliates spacetime into

spacelike hypersurfaces Σt, labeled by a time coordinate
t. The canonical variables (in addition to those for matter) are
the spatial metric on the hypersurfaces γij and its conjugate
momentum πij, which satisfy the dynamic equations _γij¼
iLγij¼δH=δπij and _πij¼iLπij¼−δH=δγij (where iL
denotes the Poisson bracket with the Hamiltonian H), as
well as the functions Ni (shift) and N (lapse) that can be
chosen freely [70]. Hence, the derivation of the Mori-
Zwanzig equation (3) can be used also in general relativity.
However, the ADM formalism also contains the non-

dynamical constraint equations δH=δNi ¼ 0 and δH=δN ¼
0 [70]. These have to be satisfied by the initial conditions in
order for the solution of the initial value problem to be a

solution of Einstein’s field equations; their validity is then
preserved by the time evolution [69,70]. In the Mori-
Zwanzig formalism, the constraints have to be taken into
account not only in the initial conditions, but also in the
definition of the projection operator. If a constraint equation
requires that A ¼ B with two observables A and B, P has to
be defined in such a way that PA ¼ PB holds (otherwise,
one might group a part of the dynamics to the random force
Fi that actually belongs to the organized drift ΩijAj). This
can be ensured by choosing ρ̂ so that it assigns zero
probability to configurations that do not satisfy the constraint
equations. Apart from this, ρ̂ can be adapted to the problem
at hand. For the problem we are interested in, a good choice
for ρ̂ is a distribution that assigns equal probability to all
configurations compatible with the observed present value of
the Hubble parameterH0. Moreover, in general relativity, the
phase-space integral in the definition of the scalar product
becomes, for γij and πij, a functional integral. Finally, the
lower limit of the time integral in Eq. (3) typically corre-
sponds to the time of the preparation of the system, although
later times can also be used [64]. In cosmological contexts,
the “time of preparation” would be the big bang, which
can be a problematic choice of the reference time due to
singularities. Hence, a slightly later time might be more
appropriate. An earlier time should not be chosen, since
otherwise the system would have to “remember” the values
of the observables from times before the big bang.
We now demonstrate the usefulness of the Mori-Zwanzig

formalism in general relativity by applying it to the
cosmological averaging problem. Averaged scalar quan-
tities in general relativity can be described using the
Buchert equations [27–29]. For simplicity, we consider a
universe filled with irrotational dust as done in Ref. [27],
but since Buchert’s formalism can also be applied to more
general cases [29], our approach is not restricted to this
simple example.
Let D ⊂ Σt be the domain of the hypersurface Σt we

average over [71]. This domain has the volume V. We
introduce the effective scale factor a ¼ ðV=V0Þ13, where V0

is the volume at the present time. Our relevant variables are
the effective Hubble rate H ¼ _a=a, the squared effective
Hubble rateH2, and the cosmological constantΛ. The latter
two are included since the contributions from H2 and Λ
would otherwise be hidden in the memory kernel because
Eq. (3) is linear in the relevant variables. Our relevant
variables have to be functions of the phase-space variables.
This is the case here since H can be written as
H ¼ −ðRΣt

d3r πÞ=ð6 RΣt
d3r

ffiffiffi
γ

p Þ, where r⃗ is the position
on the hypersurface Σt, π ¼ γijπ

ij the trace of the momen-
tum πij, and γ the determinant of the spatial metric γij.
The expression for H follows from Buchert’s result
H ¼ −ðRΣt

d3r
ffiffiffi
γ

p
KÞ=ð3 RΣt

d3r
ffiffiffi
γ

p Þ [27] together with
πij ¼ ffiffiffi

γ
p ðKγij −KijÞ [70], where Kij is the extrinsic

curvature tensor and K ¼ γijKij its trace.
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As shown in Ref. [27], the 3þ 1 decomposition with
Ni ¼ 0 and N ¼ 1 gives the Buchert equations

3ð _H þH2Þ þ 4πGρ̄ − Λ ¼ QD; ð4Þ

3H2 − 8πGρ̄þ 1

2
R̄D − Λ ¼ −

QD

2
; ð5Þ

where G is Newton’s gravitational constant, ρ̄ the averaged
mass density (due to mass conservation given by ρ̄ ¼
M=ðV0a3Þ with the total mass M), R̄D the averaged spatial
Ricci scalar, and QD the backreaction term. Equation (4) is
the averaged Raychaudhuri equation and Eq. (5) is an
averaged Hamiltonian constraint.QD and R̄D are related via
the integrability constraint ∂tða6QDÞ þ a4∂tða2R̄DÞ ¼ 0.
The Buchert Eqs. (4) and (5) are similar in form to the
Friedmann equations [72,73], which are the standard
description of an isotropic homogeneous universe, and
obtain the same form (for a flat universe) when setting
R̄D ¼ QD ¼ 0. We employ units in which the speed of
light c is 1.
Equation (4) is the microscopic equation of motion for

H. Next, we eliminate ρ̄ by solving Eq. (5) for ρ̄ and
inserting the result into Eq. (4), which gives

_H ¼ −
3

2
H2 þ 1

2
ΛþF ð6Þ

with F ¼ QD=4 − R̄D=12. Compared to Eq. (4), Eq. (6)
has the advantage that the projection P [which has to
respect the constraint (5)] is easier to apply. Applying
expðiLt) to Eq. (6) and using Eq. (2) gives

_HðtÞ ¼ −
3

2
H2ðtÞ þ Ω̃HHHðtÞ þ Ω̃HH2H2ðtÞ þ 1

2
Λ̃ðtÞ

þ
Z

t

0

ds½KHHðsÞHðt − sÞ þ KHH2ðsÞH2ðt − sÞ�

þ FHðtÞ; ð7Þ

where we have introduced the frequencies

Ω̃HAj
¼ ðAj; AkÞ−1ðF; AkÞ ð8Þ

with Aj ∈ fH;H2;Λg, the shifted cosmological constant

Λ̃ðtÞ ¼ Λ
�
1þ 2Ω̃HΛ þ 2

Z
t

0

dsKHΛðsÞ
�
; ð9Þ

the memory functions

KHAj
ðtÞ ¼ ðAj; AkÞ−1½iLFHðtÞ; Ak�; ð10Þ

and the random force (noise)

FHðtÞ ¼ eiQLtQF: ð11Þ

The noise FH is related to the memory kernels via Eq. (10).
These equations constitute a cosmological fluctuation-
dissipation theorem (FDT), since they are analogous to
the usual second FDT [38,64]. Equation (7) is a special case
of the general result (3). The tilde over the frequencies
emphasizes that we have split off the terms appearing also
in Eq. (6) to make them visible explicitly.
At first glance, it might appear as if Eq. (7) is no

improvement compared to Eq. (6), since it contains
significantly more terms. However, this impression is
misleading. Equation (6) contains the function F about
which (without further input) we know next to nothing. It
could also depend on H. In Eq. (7), however, all contri-
butions from the relevant variables are made explicit. The
additional terms are simple and linear in the relevant
variables, and the random force FH really only contains
the “irrelevant” part of the dynamics, such that (with some
caveats, see Ref. [74]) it can be thought of as a noise term.
(It can still depend on a, but even this dependence could be
extracted by including a in the set of relevant variables.
This is not done here since our main purpose is to explain
the formalism.) Equations of the form (7) are well under-
stood, and this understanding can now be exploited to
understand better the effects of backreaction. In particular,
there are well-established numerical methods for extracting
the form of the memory functions from measured data of
the observable of interest [75–77].
To solve Eq. (7), we assume that the noise is small and

can be omitted. (Alternatively, if we gave the random force
a stochastic interpretation, Eq. (7) could be interpreted as
giving rise to a probability distribution over possible
universes, corresponding to different noise functions.)
Next, we make a simple ansatz for the memory kernels
of the form KHHiðtÞ ¼ −κi expð−ξitÞ with memory ampli-
tude κi and damping coefficient ξi, where i ¼ 1, 2. Such an
ansatz is common in high-energy physics [78,79]. It has the
advantage that it allows us to remove the convolution
integral in Eq. (7) (see Refs. [78,80]).
Finally, we make the, also common, assumption that KHΛ

relaxes quickly (Markovian approximation [39]), such that
the third term on the right-hand side of Eq. (9) is approx-
imately constant. The backreaction then just changes the
measured value of the cosmological constant compared to
the microscopic case. In other applications of the Mori-
Zwanzig formalism, the irrelevant dynamics typically con-
tributes mainly to the linear memory term, such that we set
Ω̃HH ¼ 0, Ω̃HH2 ¼ 0, and κ2 ¼ 0 to focus on the dominant
contribution. Then, one can rewrite Eq. (7) as

Ḧ ¼ −3H _H − ξ1

�
_H þ 3

2
H2 −

1

2
Λ̃
�
− κ1H; ð12Þ

where we have suppressed the time dependence.
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We now link our results to astronomical parameters, in
particular to the redshift z and the jerk j. If structures evolve
sufficiently slowly, z is determined by the averaged
quantity a through the relation a ¼ 1=ð1þ zÞ [24]. It
follows from the definition of H that

Ḧ ¼ a
…

a
− 3H _H −H3: ð13Þ

Using the definition of the jerk [81]

j¼−
a
…

aH3
¼−1þð1þzÞðH

2Þ0
H2

−
1

2
ð1þzÞ2 ðH

2Þ00
H2

; ð14Þ

where 0 denotes a derivative with respect to z [from now on,
we write H ¼ HðzÞ], we find from Eqs. (12)–(14)

j ¼ −
−ξ1ð _H þ 3

2
H2 − 1

2
Λ̃Þ − κ1H þH3

H3
: ð15Þ

(Note that some authors define j ¼ þa
…
=ðaH3Þ instead

[82].) With the plausible assumption that the universe
behaves approximately Friedmannian on large scales, such
that _H ≈ − 3

2
H2 þ 1

2
Λ̃, Eq. (15) simplifies to

j ¼ −1þ κ1
H2

: ð16Þ

In the widely used ΛCDM model, the expansion of the
universe is dominated by the cosmological constant (Λ) and
by cold dark matter (CDM), and the jerk is j ¼ −1 [81]. For
this reason, measurements of j have been used to inves-
tigate possible deviations from the ΛCDM model [83–85],
which were suggested by various recent studies [83,86].
Deviations of j from −1 have been linked to a nonstandard
equation of state for dark energy [81] or energy transfer
from matter to dark energy [87]. Effects of backreaction on
the jerk were also considered [88–90].
The functional form of Eq. (16)—derived here from first

principles—has been proposed in Ref. [81] as a possible
ad hoc modification of ΛCDM. There, it was shown that
the differential equation obtained by setting Eq. (16)
equal to Eq. (14) has the solution H2=H2

0 ¼ c1ð1þ zÞ3 þ
1 − c1 þ 2

3
j1 lnð1þ zÞ with an integration constant c1 and

κ1 ¼ j1H2
0. This gives us

�
_a
a

�
2

¼ H2
0c1
a3

þH2
0ð1 − c1Þ −

2

3
κ1 lnðaÞ: ð17Þ

Essentially,wehave converted a differential equation forHðtÞ
into a (analytically solvable) differential equation for HðzÞ
whose solution [Eq. (17)] is a differential equation for aðtÞ.
The first two terms on the right-hand side of Eq. (17)will also
be present in the ΛCDM model. The third term, on the other
hand, is solely a consequence of backreaction.

In a homogeneous and isotropic universe, the
Hamiltonian constraint 3H2 ¼ 8πGρþ Λ (with mass den-
sity ρ) implies that c1 ¼ 8πGρ0=ð3H2

0Þ [81], where ρ0 is the
present value of ρ, andH2

0ð1 − c1Þ ¼ Λ=3. (These relations
follow directly from comparing the constraint with Eq. (17)
using ρ ¼ ρ0=a3, since κ1 ¼ 0 in the homogeneous case.)
However, in the coarse-grained description considered
here, we have to use the averaged constraint (5). Hence,
we cannot simply read off c1, since it is possible that the
backreaction also has a contribution ∝ a−3 (suggested in
Ref. [17]). We thus proceed by treating c1 as a constant that
needs to be determined by measurement.
Based on fits to various datasets (supernova distance

modulus data, observational Hubble data, baryon acoustic
oscillation data, and cosmic microwave background shift
parameter data), Mukherjee and Banerjee [81] have found
the values c1 ¼ 0.298� 0.010 and j1 ¼ 0.078� 0.140.
Hence, while the data is consistent with the standard result
j1 ¼ 0 within a 1σ confidence region, the best fit value
is j1 ≠ 0.
We have used this best-fit value to numerically integrate

Eq. (17). The result is shown in Fig. 1 in comparison to
the standard case without memory effects. In this figure,
time is measured in units of the Hubble time tH ¼ 1=H0

and t ¼ 0 corresponds (here) to the present. We use
κ1=H2

0 ¼ 0 (standard Friedmann equations) and κ1=H2
0 ¼

0.078 (extension with memory), and set c1 ¼ 0.298 in both

FIG. 1. Time evolution of scale factor aðtÞ, obtained by solving
Eq. (17), for κ1=H2

0 ¼ 0 (standard Friedmann equations) and
κ1=H2

0 ¼ 0.078 (extension with memory). We show only the
expanding solution. Since Eq. (17) is quadratic in _a, there exists a
second solution that corresponds to a shrinking universe.
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cases. As one sees, the backreaction-induced memory has
the effect of slowing down the expansion of the universe.
In conclusion, we have extended the Mori-Zwanzig

formalism to general relativity and demonstrated its use-
fulness by deriving an expression for the backreaction in
general relativity from first principles. We have shown that
this approach predicts a relation between the cosmological
jerk and the Hubble rate. Given the relevance of the Mori-
Zwanzig formalism in other fields, we hope that our work
provides a useful starting point for further investigations in
precision cosmology and other areas of astrophysics.
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