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Studies of disordered spin chains have recently experienced a renewed interest, inspired by the question
to which extent the exact numerical calculations comply with the existence of a many-body localization
phase transition. For the paradigmatic random field Heisenberg spin chains, many intriguing features were
observed when the disorder is considerable compared to the spin interaction strength. Here, we introduce a
phenomenological theory that may explain some of those features. The theory is based on the proximity to
the noninteracting limit, in which the system is an Anderson insulator. Taking the spin imbalance as an
exemplary observable, we demonstrate that the proximity to the local integrals of motion of the Anderson
insulator determines the dynamics of the observable at infinite temperature. In finite interacting systems our
theory quantitatively describes its integrated spectral function for a wide range of disorders.
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Introduction.—Considerable effort has been devoted to
understanding the emergence of ergodicity in physically
relevant quantum many-body systems. Important corner-
stones are provided by the random matrix theory (RMT)
and the eigenstate thermalization hypothesis (ETH) [1–6].
Even though a rigorous proof of the ETH is still missing,
several exact numerical studies have confirmed its validity
with remarkable accuracy, at least for specific parameter
regimes of some physical Hamiltonians [4,7–18]. The
clearest numerical results have been obtained for the regimes
where all model parameters are quantitatively similar and the
numerical artifacts are strongly suppressed. Much less under-
stood are properties of many-body systems in which some
physical processes (e.g., interaction or quenched disorder) are
dominant over all other processes. Exciting open questions
concern the possibility of ergodicity breaking phase tran-
sitions and a generalization of the Kolmogorov-Arnold-
Moser theorem [19–21]. In strongly disordered systems, this
type of ergodicity breaking phase transition is referred to as
the many-body localization transition [22–28].
A recent study [29] argued that the identification of

ergodicity in numerical results may strongly depend on the
value of the Thouless time tTh relative to the Heisenberg
time tH [30]. A system is interpreted as ergodic if tTh ≪ tH,
while in the opposite regime tTh ≳ tH the interpretation of
finite-size results appears to be less conclusive. For a
quantitative illustration, let us consider the random field
Heisenberg chain with L sites,

Ĥ ¼ J
X
i

ðŜxi Ŝxiþ1 þ Ŝyi Ŝ
y
iþ1 þ ΔŜzi Ŝ

z
iþ1Þ þ

X
i

hiŜ
z
i ; ð1Þ

where Ŝαi (α ¼ x, y, z) are standard spin-1=2 operators and
the local fields hi (in units of J ≡ 1) are independent and
identically distributed random variables drawn from the
box distribution, hi ∈ ½−W;W�. It was shown [29] that in
finite systems (L≲ 20) at Δ ¼ 1, the criterion tTh ∼ tH is
satisfied around W ¼ W� ≈ 2. Considering the behavior of
the system (1) with increasing disorder strength W, this
point can therefore be interpreted as the onset of the
ergodicity breakdown. The latter is consistent with the
level statistics and the eigenstate entanglement entropies
departing from the RMT predictions [31], the fidelity
susceptibility being maximal [32], the distribution of
observable matrix elements being anomalous [33,34], the
opening of the Schmidt gap [35] and the gap in the
spectrum of the eigenstate one-body density matrix [36],
and the correlation-hole time in the survival probability
reaching tH [37].
Despite those developments, the fate of the ergodicity

breaking point in the thermodynamic limit remains an
extensively debated topic [29,31–33,38–40]. Moreover,
previous studies reported other fascinating phenomena
such as subdiffusive transport [41–47] and an approximate
1=ω scaling of the spin density spectral function
[32,48,49]. These observations call for a universal descrip-
tion within a simple theory that should provide quantitative
predictions at all disorder strengths.
In this Letter we introduce a phenomenological theory

that may achieve some of those goals. We develop the
theory on the premise that the noninteracting point at
Δ ¼ 0, which is Anderson localized for any disorder in the
thermodynamic limit [50,51], determines specific proper-
ties of disordered spin chains also at Δ ≠ 0. The key
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ingredient of the theory is the proximity to the local
integrals of motion of the Anderson insulator (shortly,
Anderson LIOMs). In particular, we allow the Anderson
LIOMs to acquire finite relaxation times due to inter-
actions, i.e., they may become delocalized. The theory
provides an analytical description of the frequency depend-
ence of the spectral function, it exhibits a remarkable
agreement with numerical results for a wide range of
disorders, and it suggests that at least a fraction of
Anderson LIOMs are delocalized. Specifically, for the spin
imbalance observable, we explain rich phenomenology of
the spectral function, which ranges from the anomalous
≈1=ω behavior at moderate disorders to more complicated
functional forms at strong disorder.
Spectral function.—The central quantity in our studies is

the spectral function SðωÞ of an observable Â, which is the
Fourier transform of its autocorrelation function,

SðωÞ ¼ 1

2π

Z
∞

−∞
dteiωt−jtj0þheiĤtÂe−iĤtÂi; ð2Þ

where h� � �i ¼ Trf� � �g=D denotes the ensemble average
over all eigenstates and D is the dimension of the Hilbert
space. Our numerical calculations are carried out for its
integral

IðωÞ¼
Z

ω

−ω
dω0Sðω0Þ¼ 1

D

XD
m;n¼1

θðω− jEm−EnjÞA2
mn; ð3Þ

where En are the energy levels and Amn ≡ hmjÂjni are
matrix elements of Â in the eigenstate basis, Ĥjni ¼ Enjni,
θ is the Heaviside step function, and we set ℏ≡ 1. We
study observables that are traceless, hÂi ¼ 0, and normal-
ized, kÂk2 ¼ hÂ Âi ¼ 1 [14]. As a consequence, the
high-frequency limit of IðωÞ equals limω→∞IðωÞ ¼
ð1=DÞPm;n A

2
mn ¼ hÂ Âi ¼ 1.

The integrated spectral function IðωÞ filters out fast
fluctuations and thereby allows for a robust analysis
of the dynamics encoded in IðωÞ even for a single
realization of disorder. A particular observable that we
study is the spin imbalance, Â ¼ ð2= ffiffiffiffi

L
p ÞPið−1ÞiŜzi . This

observable has been measured experimentally [52,53], it is
a self-averaging quantity in macroscopic systems, and it has
nonvanishing projections on multiple Anderson LIOMs.
In the language of [54], this observable is integrability
preserving in the noninteracting limit Δ ¼ 0.
Comparison with the noninteracting limit.—Figure 1(a)

shows IðωÞ for a single realization of disorder at Δ ¼ 1
(examples for other realizations are shown in [55]). Results
are compared to the noninteracting system, I0ðωÞ at Δ ¼ 0.
For ω > J the results are qualitatively very similar, while
important differences emerge in the low-frequency regime
ω ≪ J, which is the main interest of this work.

The spectral weight of the Anderson insulator in the low-ω
regime is strongly suppressed, which is manifested as
I0ðω ≪ JÞ ≃ const. This can be interpreted as the accumu-
lation of the spectral weight of the observable in the stiffness
D0 ¼ limω→0þI0ðωÞ, and hence the spectral function can be
approximated as S0ðω ≪ JÞ ≃D0δðωÞ. In contrast, the low-
ω spectral weight of the interacting system may be consid-
erable since Iðω ≪ JÞ ≠ const. This property gives rise to the
anomalous dynamics of the imbalance for Δ ≠ 0 and ω ≪ J
[32,45,48,49,56,60–64], and is the main focus of this Letter.
As an important detail relevant for subsequent analysis,

we note that the stiffnessD0 of an arbitrary observable Â in
the Anderson insulator (Δ ¼ 0) originates from its projec-
tions on the Anderson LIOMs fQ̂αg. Therefore, the spectral
function for ω ≪ J can be written as

SM;0ðωÞ ¼
X
α

DαδðωÞ; Dα ¼
hÂQ̂αi2
hQ̂αQ̂αi

; ð4Þ

where D0 ¼
P

α Dα. The latter relation follows from the
Mazur bound [14], and we consider the Anderson insulator
as an integrable model containing orthogonal Anderson
LIOMs hQ̂αQ̂α0 i ∝ δα;α0 (see [55] for details about the
Anderson LIOMs). Since the projections Dα are defined
in Eq. (4) by the average over the entire Hilbert space, we
do not study the energy-resolved spectral functions, but
instead we focus on the infinite temperature at which the
average energy ðEm þ EnÞ=2 of pairs of eigenstates jmi,
jni in Eq. (3) is arbitrary.
Low-frequency regime.—In what follows we focus on

the interacting systems (Δ ¼ 1), and we disentangle
the effect of accumulation of spectral weight in the stiffness
from the low-ω spectral weight. To this end, we study
the regular part of the integrated spectral function, defined
as ĨðωÞ ¼ IðωÞ − ð1=DÞPD

n¼1 A
2
nn. An example of the

(a)

(b)

FIG. 1. (a) Integrated spectral functions IðωÞ [Δ ¼ 1, symbols]
and I0ðωÞ [Δ ¼ 0, lines] at L ¼ 16. Results are shown for a
single disorder realization and various values of W, such that the
ratio hi=W in Eq. (1) is independent of W. (b) Regular part ĨðωÞ,
averaged over 103 realizations of the disorder at W ¼ 2. The
results for L ¼ 12 and 14 in the inset are shifted upwards by a
constant to overlap with the data for L ¼ 16. We set J ≡ 1 in all
figures, and consider periodic boundary conditions in (1).
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disorder averaged ĨðωÞ atW ¼ 2 and different system sizes
L is shown in Fig. 1(b). It is remarkable that a simple
upward shift of the curves for L ¼ 12 and 14 results in an
accurate overlap with the data for L ¼ 16. This is observed
at W ¼ 2 in the inset of Fig. 1(b), and other values of the
disorder in [55]. This suggests that the finite-size effects in
the low-ω regime are small (apart from the L-dependent
vertical shift), and calls for a simple theory to describe the
observable spectral function.
An interesting remark can be made about the overlap of

integrated spectral functions such as the one in the inset of
Fig. 1(b). It indicates that a fraction of the spectral weight
from the diagonal matrix elements at δðωÞ is transferred
to nonzero frequencies with increasing L. This may be
interpreted as the trend towards restoring the ergodicity in
the thermodynamic limit. Several works have recently
explored possibilities for restoring the ergodicity at large
disorders when the thermodynamic limit is approached
[29,31,32,57,65,66]. Nevertheless, our main focus here is
to provide quantitative predictions for properties in finite
systems.
Proximity to Anderson insulator.—We now construct a

phenomenological theory that may quantitatively describe
the observable spectral functions in finite systems. Our
approach is based on the proximity to the Anderson
insulator whose conserved quantities are denoted as
Anderson LIOMs. Anderson LIOMs considered here do
not imply the existence of l bits in interacting systems
[67–74]. The key premise of the theory is the conjecture
that upon interactions, at least a fraction of Anderson
LIOMs fQ̂αg become delocalized, i.e., they cease to be
conserved and hQ̂αðtÞQ̂αi decays with a finite relaxation
time τα. This impacts the dynamics of finite systems by
broadening the δ functions in Eq. (4). We model this effect
by the following regular part of the spectral function for
interacting system [cf. Eq. (4)]:

SMðω ≪ JÞ ¼
XN
α¼1

Dα
1

π

τα
ðωταÞ2 þ 1

; ð5Þ

where the summation runs over N Anderson LIOMs that
have nonvanishing projections on Â and are delocalized in
the interacting system. Note that the broadening in Eq. (5)
is described by the Lorentzian functions, which is a
common approach in the literature. Recently, the
Lorentzian form of the spectral function [cf. Eq. (5) with
N ¼ 1] was actually observed in numerical studies of
several many-body systems close to integrable points
[17,57,58]. Nevertheless, we argue in [55] that the main
results of our study are independent of the particular
functional form of the broadening function.
Important inputs to the theory are the values of the stiff-

nesses fDαg and the relaxation times fταg of delocalized
Anderson LIOMs in the Hamiltonian (1). We calculated

both quantities numerically at disorders W ¼ 2 and 3, see
Sec. S4 of [55]. The first insight is that, for the spin
imbalance, many projections Dα from Eq. (4) are nonzero,
and hence one needs to consider N ≫ 1 in Eq. (5). The
second insight is that the projections Dα are very weakly
correlated (or uncorrelated) with the relaxation times τα,
and hence we replace Dα with its average value in Eq. (5),
Dα → 1=N

P
α Dα ¼ D0=N. Finally, we calculated the

distribution fτðτÞ of the relaxation times τα of the auto-
correlation functions hQ̂αðtÞQ̂αi and found that the dis-
tribution fτðτÞ is extremely wide. In particular, the
distribution can be well approximated by a power-law
dependence fτðτÞ ∝ 1=τμ in an interval τ ∈ ½τmin; τmax�,
where the disorder strength only impacts the exponent μ
and the boundaries τmin and τmax. Such a power-law
distribution of relaxation times τα is consistent with the
distributions of τα studied for the Anderson insulators
coupled to regular bosons or hard-core bosons via the
Fermi golden rule [75,76].
Summarizing the above considerations, we replace the

sum N−1PN
α¼1 in Eq. (5) with the integral

R
τmax
τmin

dτfτðτÞ,
and obtain a phenomenological model to describe the low-
frequency dynamics,

SMðωÞ ¼
D̄0

π

Z
τmax

τmin

dτ
τμ−1

1

ðωτÞ2 þ 1
; ð6Þ

where D̄0 is a prefactor that determines the total spectral
weight arising from the delocalized Anderson LIOMs. In
analogy to Eq. (3), we then define ĨMðωÞ by the integral of
SMðωÞ, see also [55].
Before carrying out a quantitative comparison of our

phenomenological model with the actual numerical data,
we comment on some general properties of the spectral
function described by Eq. (6). We first note that if
ω ≪ τ−1max, then SMðωÞ ∝ const and ĨðωÞ ∝ ω. This prop-
erty is usually associated with the diffusive character of the
dynamics. Emergence of such regime was detected in
several studies of many-body systems that comply with
the ETH [4,15–17,57,77–79]. For the model under inves-
tigation, see Fig. 2(a), we indeed observe ĨðωÞ ∝ ω at
W ≈ 1. In this regime of parameters, the phenomenological
model (6) can be simplified since τmin and τmax are of the
same order and hence one may use a single relaxation time,
τα → τ. With increasing the disorderW, however, the linear
regime in ĨðωÞ shifts to lower ω, which is a consequence of
a rapid increase of τmax with W.
The main message of this Letter is that, for a wide range

of disorder strengths, the low-frequency response may be
governed by a broad distribution of the relaxation times
fταg, with τmax=τmin ≫ 1 in Eq. (6). This suggests that the
frequency regime τ−1max ≪ ω ≪ τ−1min may be very broad and
hence relevant for the time regimes studied in numerical
simulations and analog quantum simulators [52,53].
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Particularly informative is the case μ ¼ 1 in Eq. (6), for
which

SMðωÞ ¼
D̄0

π

arctanðωτmaxÞ − arctanðωτminÞ
ω

: ð7Þ

The functional form ∝ 1=ω at μ ¼ 1 is consistent with the
anomalous dynamics and spectral functions reported in
several previous studies [32,48,49]. More generally, SMðωÞ
at μ < 2 can roughly be approximated by SMðωÞ ∝ 1=ωη

with η ≃ 2 − μ, see Fig. 2(b) for μ ¼ 1.1 and 1.5. In [55] we
show that the 1=ωη dependence arises solely from the
power-law distribution of relaxation times fταg, and is not
an artifact of the Lorentzian broadening used in Eq. (5).
We note, however, that the functional forms predicted by
Eq. (6), as well as the numerical results in Figs. 3 and 4,
may also exhibit a fine structure beyond a simple power-
law dependence. In the opposite regime μ > 2, SMðωÞ
resembles a Fourier transform of a single Lorentzian, as
shown in Fig. 2(b) for μ ¼ 2.5.
Numerical tests for spin imbalance.—We now carry out a

quantitative comparison between the numerical results for
ĨðωÞ [symbols in Figs. 3 and 4] and the predictions ĨMðωÞ
from the phenomenological model in Eq. (6) [lines in
Figs. 3(a) and 4]. The fitting parameters of the latter are
τmin, τmax and μ that determine the distribution of relaxation
times, and the prefactor D̄0.
Figure 3 considers the case where the free parameters of

ĨMðωÞ are fitted independently for every disorder realization.
An example of the outcome of such procedure is shown in
Fig. 3(a) for a single disorder realization, while examples for
several other realizations are shown in [55]. Figures 3(b) and
3(c) then show the cumulative distribution of fitting param-
eters obtained by analyzing 103 realizations of disorder.
There are two important quantitative results. The first is that
the distribution of τmax is broad and its median increases
approximately exponentially with W, unless it reaches the

Heisenberg time tH ¼ ω−1
H atW� ≈ 2, see the vertical line in

Fig. 3(b). (The Heisenberg energy ωH corresponds to the
average level spacing in the middle of the spectrum, which at
L ¼ 16 is ωH=J ≈ 10−3 [29].) The value W� ≈ 2 is con-
sistent with the ergodicity breaking transition point in this
model [31], occurring when the Thouless time tTh in the
spectral form factor approaches tH [29]. When τmax exceeds
tH, the mean of μ departs from μ ¼ 1 towards higher values
[see Fig. 3(c)]. The second important result is that τmin
remains well below tH for all results reported here.
Otherwise, the dynamics would be frozen, ĨðωÞ ≃ const,
down toω ∼ ωH, which is clearly not the case in Figs. 3(a) or
4(b). The first result suggests that a fraction of Anderson
LIOMs remains localized at W > W� upon adding the

(a)

(b) (c)

FIG. 3. (a) Symbols: numerical results for ĨðωÞ at L ¼ 16 and a
single realization of the disorder W. Lines: predictions by ĨMðωÞ
for the low-frequency regime ω < 0.2. (b),(c) The resulting
cumulative distribution functions (CDF) of the fitting parameters
τmax and μ, respectively, for 103 realizations of the disorder. The
vertical dashed line in (b) denotes the Heisenberg time tH at
W ¼ 2. See [55] for details.

(a)

(b)

FIG. 2. (a) Numerical results for the regular part of the
integrated spectral function ĨðωÞ at L ¼ 16 and weak disorder.
Results are averaged over 103 realizations of disorder. (b) Solid
lines: SMðωÞ from Eq. (6) at μ ¼ 1.1, 1.5 and 2.5, using τmin ¼ 1,
τmax ¼ 105 and D̄0 ¼ 1. Dashed lines are power-law guidelines,
with functional forms ∝ 1=ω2−μ for μ ¼ 1.1; 1.5, and ∝ 1=ω2.

(a) (b)

FIG. 4. Symbols: numerical results for the disorder averages of
ĨðωÞ at L ¼ 16, using 103 disorder realizations. Lines: predic-
tions by ĨMðωÞ for the low-frequency regime ω < 0.2. Values of
the disorder strengths are (a) W ≤ 2 and (b) W ≥ 3. See [55] for
details.
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interactions. Exploring the fate of those LIOMs for larger
systems, i.e., when tH → ∞, is beyond the scope of this
work. The second result suggests that at least some fraction
of Anderson LIOMs is delocalized in the interacting system
for all disorder values considered here. In Fig. 4 we carry out
an analogous analysis for the disorder averages of ĨðωÞ. Also
in this case, the phenomenological model from Eq. (6)
provides an extremely accurate description of the results.
A quantitative analysis of the fitting parameters τmax and μ is
provided in [55].
Conclusions.—In this Letter we introduced a phenom-

enological theory that accurately describes the spectral
properties of the spin imbalance in disordered chains. The
theory is based on the proximity to the Anderson insulator.
We assume that at least certain Anderson LIOMs acquire
finite relaxation times as a consequence of interactions. An
important ingredient of the underlying phenomenological
model is a broad distribution of relaxation times of
Anderson LIOMs, which represents the origin of anoma-
lous dynamics in finite systems. Then in systems amenable
to exact diagonalization there exist the disorderW� [W� ≈ 2
for the model in (1)] above which the relaxation times fταg
of a fraction of Anderson LIOMs are larger than the
Heisenberg time tH. As a result, the properties of finite
systems atW > W� are governed by the coexistence of two
types of LIOMs: those for which τα > tH (they appear to be
exactly conserved), and those for which τα < tH. The
interplay between both types of LIOMs may give rise to
unconventional properties of the system defined on a Fock
space graph [80–85], which needs to be explored in more
detail in future work.
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