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We report on a rigorous operator-algebraic renormalization group scheme and construct the free field
with a continuous action of translations as the scaling limit of Hamiltonian lattice systems using wavelet
theory. A renormalization group step is determined by the scaling equation identifying lattice observables
with the continuum field smeared by compactly supported wavelets. Causality follows from Lieb-Robinson
bounds for harmonic lattice systems. The scheme is related with the multiscale entanglement renorm-
alization ansatz and augments the semicontinuum limit of quantum systems.
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Introduction.—Lattice regularization is a standard pro-
cedure for defining continuum quantum field theories [1]
which has led to extraordinary results in the ab initio
determination of the Hadron mass spectrum [2] and may
serve as a starting point for the quantum simulation of
quantum field theories [3]. While interacting models have
been rigorously constructed in the classical works of Glimm-
Jaffe and others [4], the lattice and continuum theories are
often indirectly related in terms of correlation functions.
A recent attempt to build a continuum conformal field

theory (CFT) by embedding a quantum spin chain from
coarser to finer lattices, coined the semicontinuum limit and
inspired by block-spin renormalization, resulted in a dis-
continuous action of symmetries, even the translations [5–8].
Here, we explain how this deficiency can be remedied
by utilizing an observable-based, i.e., operator-algebraic,
approach to the Wilson-Kadanoff renormalization group
(RG) [9–11] for lattice field theories [12,13]. As an
important, instructive example [14,15], we construct the
massive continuum free field with its continuous action of
spacetime translations via the scaling limit of lattice systems
in their ground states approaching the unstable, massless fix
point (see [16] for details and proofs). More recently, the
presented method has been extended to CFTs based on free
fermions [17] invoking the Koo-Saleur formula [18].
Our RG is defined in terms of compactly supported,

regular wavelets [19] allowing for simultaneous control of
locality properties in real and momentum space. We take
inspiration from renormalization in classical systems [20]
and use a scaling function and its multiresolution analysis
to define a RG step: While block-spin renormalization
would correspond to a step function, we use a Daubechies’s
scaling function (see Fig. 1), cf. [21,22]. Thereby, we avoid
the obstacles encountered in [5,7,8] to implement continu-
ous symmetries in the scaling limit, cf. [23]. Mapping
observables from coarser to finer lattices results in a real-
space RG dual to coarse graining the Hamiltonian or

density matrices, e.g., the density matrix renormalization
group [15,24,25]. Our method applies in all dimensions
as we explicitly demonstrate for scalar lattice fields.
Moreover, our approachyieldsa rigorousproof that spacetime
locality (in the sense of the Haag-Kastler axioms [26]) in the
continuum follows from Lieb-Robinson bounds [27–31].
As real-space RG schemes have received rapidly grow-

ing interest in recent years, especially in the context of
tensor networks [32] and the multiscale entanglement
renormalization ansatz (MERA) [33–35], we show, as an
important application, that our approach yields a rigorous
analytic MERA in any dimension d which is not restricted
to critical (massless) models [36,37]. The discrete dimen-
sion of the dþ 1-dimensional tensor network of the MERA
is identified with the sequence of scales at which the given
quantum system is observed.
The Letter is organized as follows. First, we outline our

general renormalization scheme. Then, we apply it to lattice
scalar fields by constructing explicit renormalization maps

FIG. 1. Illustration of the decomposition of lattice sites for d ¼
1 by an RG step determined by the scaling equation (5): On the
left: The block-spin RG and its weights. On the right: The
wavelet-based RG with weights determined by the low-pass filter
of Daubechies’s D4 scaling function.
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in terms of compactly supported wavelets, and we discuss
the connection with the MERA. Finally, in the example of
the free scalar field, we show that imposing a suitable
renormalization condition on lattice ground states at differ-
ent scales, we fully recover the continuum massive field in
the scaling limit including the action of spacetime trans-
lations. The letter closes with an outlook on possible future
developments.
Operator-algebraic renormalization.—As discussed in

[13], the RG approach to the lattice approximation of
continuum theories can be rephrased in terms of observ-
ables, that is, operator algebras, as follows. We fix a family
of lattices ΛN in Rd with lattice constant εN ¼ 2−Nε, and
consider a sequence of Hamiltonian quantum systems

fAN;HN;H
ðNÞ
0 g indexed by the scale N. At each scale

N, we have an algebra of observables AN generated by
(bounded functions of) basic time-zero lattice fields ΦNðxÞ,
their momenta ΠNðxÞ, and a Hamiltonian HðNÞ

0 both acting
on the Hilbert space HN . The quantum state at each scale is

initially given by a density matrix ρðNÞ
0 , e.g., in terms of a

Hamiltonian: ρðNÞ
0 ¼ ðZðNÞ

0 Þ−1e−HðNÞ
0 . The RG connects sys-

tems at different scales via (coarse graining) quantum
operations, mapping density matrices on the finer system
to the coarser system

ENþM
N ðρðNþMÞ

0 Þ ¼ ρðNÞ
M ; ENþ1

N ∘ENþ2
Nþ1 ¼ ENþ2

N ; ð1Þ

where ρðNÞ
M corresponds to the (M times) renormalized

Hamiltonian HðNÞ
M at scale N. Because quantum states ρ

are positive, linear maps ω∶AN → C, by ωðAÞ ¼ trðρAÞ,
and the field correlation functions are given by
hΦNðxÞ;…;ΠNðyÞiðNÞ ≔ ωðNÞ½ΦNðxÞ;…;ΠNðyÞ�., we can
state (1) as

ENþM
N ðωðNþMÞ

0 Þ ¼ ωðNþMÞ
0 ∘αNNþM ¼ ωðNÞ

M ; ð2Þ
where αNNþM∶AN → ANþM is the dual of ENþM

N (the ascend-

ing superoperators [34]).ωðNÞ
0 andωðNÞ

M characterize the initial

andrenormalizedstatesonAN corresponding toρ
ðNÞ
0 andρðNÞ

M .
We call the collection αNNþM the scalingmaps or renormaliza-
tion group. The structure is neatly summarized by an adapta-
tion of Wilson’s triangle of renormalization [ [10], p. 790] in
Fig. 2. If the limit ωðNÞ

∞ ≔ limM→∞ω
ðNÞ
M exists (in a suitable

sense), the sequenceωðNÞ
∞ , called the scaling limit of the initial

states ωðNÞ
0 , is stable under coarse graining

ENþM
N ðωðNþMÞ

∞ Þ ¼ ωðNÞ
∞ : ð3Þ

Employing operator-algebraic techniques (see [16] for
details), we obtain a Hilbert space H∞ and an algebra A∞
generated by continuum fields Φ, Π, acting on it. Following
[5,6,12,13,38],wecallA∞ thesemicontinuumlimit, see, also,
[39,40].Moreover, we have isometriesVN

∞∶HN → H∞ and a
state Ω ∈ H∞ realizing the correlations of the scaling limit

ω ¼ hΩ; :Ωi. The finite-scale fieldsΦN ,ΠN are embedded in
the continuum fields Φ, Π through αN∞∶AN → A∞

αN∞½ΦNðxÞ�VN
∞ ¼ VN

∞ΦNðxÞ; ωðNÞ
∞ ¼ ω∘αN∞: ð4Þ

Wavelets and the scalar field.—Now, we apply the above
framework to lattice scalar fields, setting up a specific
renormalization scheme involving compactly supported wave-
lets [19,41]. To avoid infrared divergence at finite scale, we take
lattices ΛN ¼ εNf−LN;…; LN − 1gd representing a discreti-
zation of the torus ½−L;LÞd ¼ Td

L (periodic boundary con-
ditions, LN ≡ −LN , with εNLN ¼ L fixed). We denote by
ΓN ¼ ðπ=LÞf−LN;…; LN − 1gd the dual momentum space
lattices. The kinematical setup of the lattice scalar field systems
is given by the Fock space HN , built from the action of
momentum-space creation and annihilation operators aNðkÞ,
a†NðkÞ on the vacuum vector ΩN subject to the canonical
commutation relations (CCR), ½aNðkÞ; a†NðlÞ� ¼ ð2LNÞdδk;l,
and by the algebra AN generated by the local (dimensionless)
canonical lattice field for x ∈ ΛN

ΦNðxÞ ¼
1ffiffiffi

2
p ð2LNÞd

X
k∈ΓN

½a†NðkÞe−ikx þ aNðkÞeikx�;

and its momentum (with a similar formula) satisfying:
½ΦNðxÞ;ΠNðyÞ� ¼ iδx;y. The scaling maps αNN0∶AN → AN0

are the most important input in our framework determining
the existence and structure of the continuum limit. Our choice
using wavelets is motivated by the block-spin case and its
locality properties in real space corresponding to the smearing
of continuum fields with the simplest member of the
Daubechies’s wavelet, the Haar wavelet χ½0;1Þ (see Fig. 1).
But, as the approximation of momenta requires higher
regularity, the latter does not suffice as explained below.
Scaling maps from a scaling function: We consider an

orthonormal scaling function s that satisfies the scaling
equation [19,42,43]

sðxÞ ¼
X
n∈Zd

hn2
d
2sð2x − nÞ; ð5Þ

FIG. 2. Wilson’s triangle of renormalization: Vertical lines
represent renormalization steps, either by coarse graining states
(E’s) or by refining fields (α’s). Horizontal lines represent
sequences of renormalized states considered on the algebra
generated by fields and momenta at a fixed scale (right column).
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such that its integer translates sð· − nÞ are orthonormal.
Further, to build local operators, we take s compactly sup-
ported and normalized by ŝð0Þ ¼ 1. Such an s generates an
orthonormal, compactly supported wavelet basis in L2ðRdÞ,
and the sum (5) is necessarily finite (hn is a finite low-pass

filter [19]). We denote by sðεÞx ¼ ε−ðd=2Þs½ε−1ð· − xÞ� the
scaling function localized near x ∈ εZd at length scale ε,
periodized on the torus Td

L. With the scaling relation (5) in
mind, we define αNNþ1 using the low-pass filter hn

αNNþ1½ΦNðxÞ� ¼ 2−
1
2

X
n∈Zd

hnΦNþ1ðxþ nεNþ1Þ; ð6Þ

and similarly for ΠN. Now, the associated semicontinuum
limit algebraA∞ can be identified with the algebra generated

by continuum fields smeared with the functions sðεNÞx over all
scales N: The map,

ΦNðxÞ ↦ αN∞½ΦNðxÞ� ¼ ε
−1
2

N

Z
dyΦðyÞsðεNÞx ðyÞ; ð7Þ

identifies the lattice fields at scale N with the continuum

fields smeared with sðεNÞx [and analogously for ΠNðxÞ]. The
RG elements αNN0 defined by (6) have two intriguing
properties: First, the lattice field ΦðNÞðxÞ at one scale is
decomposed into a linear combination of the fields at the
successive scale. Second, the embedding (7) into the
continuum field theory is compatible with this decomposi-
tion, αNþ1

∞ ∘αNNþ1 ¼ αN∞, realizing the correct CCR

½αN∞½ΦNðxÞ�;αN∞½ΠNðyÞ�� ¼ ½ΦðsðεNÞx Þ;ΠðsðεNÞy Þ� ¼ iδx;y:

Furthermore, we have ΦðsðεNÞx Þ ¼ P
n∈εN hnΦðsðεNþ1Þ

x−nεNþ1
Þ

[linearity and (5)] with an analogous formula for Π. This
means that the lattice fields and their realization in terms of
the continuum field have the same algebraic structure.
Concrete choice of a scaling function: The simplest

scaling function, χ½0;1Þ, corresponds to the block-spin
renormalization (6) (see Fig. 1). By taking a more regular
scaling function, e.g., Ks with K ≥ 2 of Daubechies’s
D2K wavelet family, we achieve that the smeared

continuum momentum ΠðKsðεNÞx Þ is a well-defined oper-
ator (technically s needs to be in the Sobolev space H

1
2).

In addition, the compact support of Ks leads to locality in
real space, i.e., the lattice fields ΦNðxÞ, ΠNðxÞ can be
used to approximate local operators in the continuum

because ΦðsðεNÞx Þ, ΠðsðεNÞx Þ are spatially localized in
compact regions. In comparison with the block-spin
renormalization, we trade some locality (the support of
the Daubechies’s scaling function Ks is larger than
the support of χ½0;1Þ) for higher regularity, improving
approximations. With this price, we gain the continuum
realization of ΠNðxÞ, and we recover the correlation

functions and space-time symmetries (translations) in
the scaling limit (see below).
Connectionwithmultiscaleentanglement renormalization:

Considering the embedding INNþ1½ΦNðxÞ� ¼ 2−
1
2ΦNþ1ðxÞ

resulting from identifying ΛN as a sublattice of ΛNþ1, and
the Bogoliubov unitary,

UNþ1ΦNþ1ðxÞ ¼
X
n∈Zd

hnΦNþ1ðxþ nεNþ1ÞUNþ1; ð8Þ

implementing the redistribution of field values according to
the low-pass filter hn, the scaling map αNNþ1 decomposes into
MERA form [13,33–35,38]

αNNþ1ð·Þ ¼ UNþ1ð· ⊗ 1Nþ1nNÞU�
Nþ1: ð9Þ

Here, · ⊗ 1Nþ1nN is the tensor productwith the identity on the

ancillary Fock space, HNþ1 ¼ HN ⊗ HðaÞ
Nþ1, and the dual

quantum channel ENþ1
N ¼ TrHðaÞ

Nþ1

½U�
Nþ1ð·ÞUNþ1� is given by

a twisted partial trace on the ancillary. From (9), we find that
UNþ1 serves as MERA disentangler recovered from the
isometries,VN

Nþ1∶HN → HNþ1, between Fock spaces result-
ing from coarse-graining stability (3)

ΩðNþ1Þ
∞ ¼ VN

Nþ1Ω
ðNÞ
∞ ; ð10Þ

where ΩðNÞ
∞ is the vector implementing the scaling limit

ωðNÞ
∞ at scale N. The embedding into the continuum

Hilbert space H∞ can be explicitly computed from (4).
Summarizing,we observe that one layer ofMERA isometries
and disentanglers is recovered from αNNþ1 and the scaling

limit ωðNÞ
∞ . This structure is further elucidated by the action

of the isometries VN
Nþ1 on coherent or Glauber states,

cNðf; gÞ ¼ ei½ΦNðfÞþΠNðgÞ�ΩðNÞ
∞ , using the identification (7)

(see Fig. 3). In this sense, our operator-algebraic RG scheme
produces an analyticMERA.Specifically, the scaling limits of
free lattice ground states, which we construct below, exhibit a
structure similar to an analyticMERA in arbitrary dimensions
and off criticality [36,44–46].

FIG. 3. Illustration of the analytic MERA in d ¼ 1 induced by
the wavelet scaling maps. From bottom to top: The first layer
represents the isometric embedding INNþ1, and the second layer
represents the action of the (dis)entangler UNþ1 at scale N þ 1.
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Scaling limits of harmonic lattice systems.—Now,we are
in a position to apply the RG αNN0 defined by (6) to find the
ground-statescalinglimitsof thefree latticeHamiltonianonHN

HðNÞ
0 ¼ ε−1N

�
1

2

X
x∈ΛN

ðΠ2
Njx þ μ2NΦ2

NjxÞ −
X

hx;yi⊂ΛN

ΦNjxΦNjy

�
;

ð11Þ

whereμN ≥ 2d is a“mass”parameter.ThegroundstateΩðNÞ
0 of

HðNÞ
0 can be encoded into the expectation ωðNÞ

0 on AN
determined by the two-point functions

ωðNÞ
0 ½ΦNðxÞΦNðyÞ� ¼

1

ð2LNÞd
X
k∈ΓN

1

2εNγμN ðkÞ
eikðx−yÞ;

ð12Þ

with the dispersion relation γ2μN ðkÞ ¼ ε−2N ðμ2N − 2dÞ þ
2ϵ−2N

P
d
j¼1½1 − cosðεNkjÞ�, and analogous formulas for

ωðNÞ
0 ½ΦNðxÞΠNðyÞ� and ωðNÞ

0 ½ΠNðxÞΠNðyÞ�, the latter being
most singular.
Scaling limit of the ground states: We choose (12) as our

initial states to generate a sequence of renormalized states

ωðNÞ
M at each scale N (Fig. 2). To avoid the RG-fixed points

μ2N ¼ 2d (massless, unstable) and μ2N ¼ ∞ (ultralocal,
stable) and hit the unstable manifold of the relevant Φ2

operator, we impose the renormalization condition

lim
N→∞

ε−2N ðμ2N − 2dÞ ¼ m2; ð13Þ

for some m > 0. This leads to the massive continuum
dispersion, limM→∞γμNþM

ðkÞ2 ¼ m2 þ k2 ¼ γmðkÞ2, and
the scaling limit [using (6) and (12), and similar for ΠN]

ωðNÞ
m;∞½ΦNðxÞΦNðyÞ� ¼

1

ð2LÞd
X
k∈Γ∞

jŝðεNÞðkÞj2
2εNγmðkÞ

eikðx−yÞ; ð14Þ

where Γ∞ ¼ ðπ=LÞZd is the momentum space of the torus
Td
L. Since the two-point function of the momentum ΠN is

the most singular, the limit states are well defined for
scaling functions with sufficient momentum-space decay,
which holds for scaling functions Ks, K ≥ 2, built from
Daubechies’s D2K wavelet family [19]. Formulas (14),
multiplied by εN, ε−1N , respectively, agree with the two point
functions of the usual continuum mass-m ground state in
finite volume L of the continuum smeared field operators

ΦðsðεNÞx Þ, ΠðsðεNÞx Þ. Therefore, the semicontinuum limit
algebra A∞ can be identified with a subalgebra of the
algebraAm;L generated by the massive continuum free field
(m > 0) on Td

L, acting on the usual continuum Fock space.
Because of localization and completeness of the wavelet
basis associated with the scaling function s [19,41], all field

operators ΦðfÞ, ΠðgÞ smeared with smooth compactly
supported functions can be approximated, in an appropriate
sense, by operators from A∞.
Translations, dynamics, locality, and Lieb-Robinson

bounds: Our construction provides an explicit method
for circumventing the no-go results of [5,7] concerning
the implementation of continuous symmetries. In particu-
lar, the continuous extension of spatial translations by
discrete vectors a ∈∪N ΛN (dyadic translations as enforced
by the dyadic lattice refinements) acting on A∞ to trans-
lations by arbitrary vectors a ∈ Td

L is a consequence of the
manifest continuous translations invariance of the two-
point function (14), and the generators of translations are
the usual momentum operators. The thermodynamical limit
of (14), L → ∞, exists by a Riemann-sum argument and
yields the two-point functions of the free, massive vacuum
in infinite volume (see [16]), which is fully Poincaré
invariant. Let us, also, explicitly address the convergence

of the lattice dynamics generated by the Hamiltonian HðNÞ
0

of (11) to their continuum limit: From γμN → γm, we deduce

VN0
∞eitH

ðN0Þ
0 αNN0 ½ΦNðxÞ�ΩðNÞ

∞ ⟶
N0→∞

eitHVN
∞ΦNðxÞΩðNÞ

∞ ;

and similarly for ΠN, uniformly on bounded intervals of
t ∈ R, with the free continuum Hamiltonian H on the torus
Td
L. Since γm is the free, massive relativistic dispersion

relation, we know that the dynamics generated by H has
propagation speed c ¼ 1 and, thus, the scaling limit theory
satisfies Einstein causality, i.e., eitHαN∞½ΦNðxÞ�e−itH and

eisHαN∞½ΦNðxÞ�e−isH commute if the support of sðεNÞx at time

t and the support of sðεNÞy at time s are spacelike separated
on the cylinder. A more lattice-intrinsic and model-
independent way to conclude recovery of causality in
the scaling limit is via Lieb-Robinson bounds [28,29].
Considering the extension of the finite-scale time trans-

lations σðNÞ
t ¼ eitH

ðNÞ
0 ð·Þe−itHðNÞ

0 to A∞ by (9), said bounds
for harmonic lattice systems [30] imply

lim
N→∞

½σðNÞ
t ðAÞ; B� ¼ 0; ð15Þ

exponentially fast and uniformly for jtj ≤ T with (bounded)
A;B ∈ A∞ localized in sets SA;SB ⊂ Td

L such that
distðx;SAÞ ≥ c0T for all x ∈ SB, for some c0 > 1.
Because c0 > 1, the causality implied by (15) is not strict,
likely due to a nonoptimal bound on the Lieb-Robinson
velocity [28]. Another important feature of our approxi-
mation of dynamics (or symmetries in general) is the
possibility for uniform error bounds in time and within a
fixed range of field and momentum amplitudes at a
given scale N: For the free continuum time evolution
σt ¼ eitHð·Þe−itH, we have [16]
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kðσðN0Þ
t − σtÞðAÞψk ≤ C sup

k∈Γ∞

�
γmðkÞ12jγμN0 ðkÞ − γmðkÞj

ð1þ εN jkjÞδ
�
;

ð16Þ

for exponentials A ¼ αN∞ðei½ΦNðxÞþΠNðyÞ�Þ of fields and

momenta on coherent states ψ ¼ cðε−1
2

N sðεNÞu ; ε
1
2

Ns
ðεNÞ
v Þ at

scale N. C only depends on N, εN , m, T for jtj ≤ T, and
s. While the specific form of these bounds reflects the free-
field situation, our general method for obtaining such
uniform bounds at fixed approximation scale N is not
restricted to this situation (cf. conclusion).
Conclusions and outlook.—Our results show that the

existence and properties of continuum limits depend deci-
sively on the choice of a renormalization scheme. Correctly
choosing the initial states allows us to reconstruct the
continuum field theory from the lattice approximation
through the semicontinuum limit. For the free massive
scalar field, our renormalization scheme, given by com-
pactly supported wavelets, yields continuous spacetime
translations, avoiding the apparent no-go results stated in
[5,7]. Obtaining a similar convergence statement for Lorentz
transformations or even conformal transformations requires
further work [17]. Apart from the question of approximation
of symmetries, our method proves [(14) and (16)] that time-
dependent and spatially translated correlation functions of
the continuum field theory for any insertions of fields and
momenta, AN ¼ ΦNðx1Þ…ΠNðxnÞ and BN ¼ ΦNðxnþ1Þ
…ΠNðxnþmÞ, at any scale N are approximated by the
correlation functions of the lattice models (suppressing
scaling maps αNN0 , αN∞)

jωðN0Þ
0 ½ANσ

ðN0Þ
ðt;xÞðBNÞ� − ω½ANσðt;xÞðBNÞ�j⟶N

0→∞
0; ð17Þ

where σðt;xÞ and σðN
0Þ

ðt;xÞ are the continuum, respectively,

discrete spacetime translations for ðt; xÞ ∈ R × ΛN. We
point out that the convergence in (17) only mildly depends
on the choice of scaling function s (requiring sufficient
regularity). This presents a significant conceptual and
presumably computational difference in comparison with
a related construction using wavelet theory [46] focusing on
locality in one-particle space and relying on a continuous
adaptation of the choice of scaling function to achieve a
given accuracy goal for the approximation of equal-time
correlation function similar to (17). An application of the
wavelet method to (free) lattice fermions has lead to similar
results as those presented here [17,47]. Our general frame-
work can also include interacting lattice systems, e.g.,
Φ4 models, although we will need approximations by
analytical and numerical expansion or perturbative methods
[25,48,49]. Moreover, Lieb-Robinson bounds for anhar-
monic lattice systems [31] offer a possibility for obtaining
spacetime locality directly from the lattice [28,29]. In view
of the classical results by Glimm-Jaffe and others [4] on

PðΦÞ models in d ¼ 1, our method is directly applicable to
those using a low-pass filter implementing momentum-
space cutoffs [16], thereby providing the same regularized
continuum fields as in [50], and we expect a possible
extension to the wavelet setting. Therefore, it would be
interesting whether the convergence to the scaling limit can
be shown exploiting the results in [51] supplemented by
explicit error bounds similar to (16).
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