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We employ (1þ 1)-dimensional quantum cellular automata to study the evolution of entanglement and
coherence near criticality in quantum systems that display nonequilibrium steady-state phase transitions.
This construction permits direct access to the entire space-time structure of the underlying nonequilibrium
dynamics, and allows for the analysis of unconventional correlations, such as entanglement in the time
direction between the “present” and the “past.” We show how the uniquely quantum part of these
correlations—the coherence—can be isolated and that, close to criticality, its dynamics displays a universal
power-law behavior on approach to stationarity. Focusing on quantum generalizations of classical
nonequilibrium systems: the Domany-Kinzel cellular automaton and the Bagnoli-Boccara-Rechtman
model, we estimate the universal critical exponents for both the entanglement and coherence. As these
models belong to the one-dimensional directed percolation universality class, the latter provides a key new
critical exponent, one that is unique to quantum systems.
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Introduction.—Cellular automata (CA) are paradigmatic
models for the study of nonequilibrium processes [1–3] that
also serve as models of computation [4,5]. An important
class of CA are so-called (1þ 1)-dimensional CA [6].
These are two-dimensional (2D) lattice models whose
evolution is such that the state of a given row depends
only on the row above it. This results in the emergence of
an effective time dimension, see Fig. 1(a). The dynamics of
CA follow simple local update rules that propagate the state
along the time dimension. This allows the implementation
of a whole host of nonequilibrium processes, including
some that display phase transitions into absorbing states.
In the classical setting this construction has enabled the
accurate study of nonequilibrium universality classes, such
as that of directed percolation (DP) [7]. Here, sampling the
dynamics of a suitably chosen order parameter enables the
extraction of critical exponents. Importantly, these expo-
nents are universal and also apply to other physical
processes. For example, DP universality is also found in
water percolating through sand [6], the dynamics of
epidemic spreading [8], or even electroconvection in
nematic liquid crystals [9] and the transition to turbulence
[10]. Very recently, it was shown that also other quantities,
that are not accessible by sampling—such as entropies—
show critical behavior and are found to obey universal
power-law scaling [11]. This raises the question as to
whether there might be additional exponents, beyond the
ones of the order parameter or correlation functions, that
characterize universality classes.

Considerable activity is dedicated to generalizing the
CA concept into the quantum domain, often looking
at computational applications [12–16]. With regards to
ð1þ 1ÞD CA, the framework introduced in Refs. [17,18]
provides a generalization to a 2D quantum lattice system.

FIG. 1. ð1þ 1ÞD quantum cellular automata. (a) ð1þ 1ÞD
QCA are based on the successive application of unitary quantum
gates. By acting on pairs of rows sequentially, an entangled 2D
quantum state jψi is created that encodes the entire space-time
structure of the ensuing non-equilibrium dynamics. (b) An
elementary cellular automaton (ECA) generates a 2D product
state. On the QCA an ECA can be realized by gates that merely
flip the unoccupied target sites into occupied ones. The image
shows snapshots taken at three times (t1 < t2 < t3) for an
evolution under rule 150, see Table I. (c) An evolution similar
to a probabilistic classical CA is implemented when the gate
rotates target sites into superposition states. This generates an
entangled 2D quantum state. The image shows the density of
occupied sites of the BBR model. (d) Unitary evolution of a 1D
system in the ð1þ 1ÞD QCA framework, for comparison. Here,
the space-time structure for this process is inaccessible.
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These ð1þ 1ÞD quantum cellular automata (QCA) can
be constructed to include ð1þ 1ÞD CA as a special
case, providing a natural starting point for investigations
into the impact of quantum correlations on nonequilibrium
processes and nonequilibrium phase transitions (NEPTs)—
a topic of substantial research efforts in its own right
[17,19–25]. Interestingly, ð1þ 1ÞD QCA can be regarded
as manifestations of quantum feed-forward neural net-
works [26] and are realizable on current quantum simu-
lation platforms, such as two-dimensional Rydberg lattice
gases [27–30].
In this work we exploit the ð1þ 1ÞD QCA structure that

encodes an entire space-time dynamics within a single pure
2D quantum state. In such a structure, correlations in the
temporal (vertical) dimension can be studied in a well-
defined manner, by partitioning the 2D lattice along a row,
see Fig. 1(a). This allows one to study the nonequilibrium
behavior of a wide variety of novel and interesting
quantities. Specifically, we consider the temporal entangle-
ment quantified by the second-order Renyi-entropy, S2. In
that case, one arrives exactly at the nonequilibrium entropy
considered in Ref. [11] (see Ref. [31] for a review of
entanglement and entropy). Furthermore, we consider the
contribution to the entropy stemming from quantum
coherences, C2, which can be isolated in this case. This
quantity is strictly zero in the classical model, and thus
constitutes an essential quantity in understanding the
uniquely quantum aspects of NEPTs.
Throughout, we focus on QCA related to quantum

generalizations of two paradigmatic nonequilibrium mod-
els: the Domany-Kinzel cellular automaton (DKCA) [7]
and the Bagnoli-Boccara-Rechtman (BBR) model [32].
Both systems possess a critical point associated with an
absorbing phase transition (APT). By construction, these
quantum models reproduce the observables of their
classical counterparts. Therefore, they belong to the 1D
DP universality class and S2 displays a universal power-law
scaling on its approach to stationarity [11]. In ð1þ 1ÞD
QCA this can be understood as the universal scaling of
temporal entanglement. Moreover, when considering the
behavior of C2, we again find that this quantity displays a
power-law decay. Not only does this show that at criticality
quantum effects persist on a timescale longer than any
microscopic one, but also that the uniquely quantum
aspects of APTs are universal and can be quantified, and
we provide novel estimates of the corresponding critical
exponent to this end.
ð1þ 1ÞD QCA and link to other CA models.—QCA are

lattice systems with sites that may be either occupied or
empty; see Fig. 1(a). The dynamics is constructed such that
the occupation of sites in a row—or more generally in
a d-dimensional surface—is determined by those of the row
above it [17,18]. This leads to an effective time dimension,
and the corresponding models are termed (dþ 1)-
dimensional with d spatial dimensions perpendicular to

the single “time” dimension [6]. Similar models have been
studied extensively in the context of classical systems [33].
In ð1þ 1ÞDQCA, at any time t the system is described by a
pure quantum state jψ ti, which is an element of the Hilbert
spaceH ¼⊗τ;k Hτ;k, whereHτ;k are local Hilbert spaces of
a 2D lattice indexed by (τ, k). Here we consider local
Hilbert spaces that are two dimensional with basis
fj∘i; j•ig, where nj∘i ¼ 0, nj•i ¼ j•i and n is the local
particle number operator. We will refer to the states j∘i and
j•i as occupied and empty, respectively.
The ð1þ 1ÞD QCA evolves under the action of unitary

gates Gτ;k. These apply local updates to a “target” site at
ðτ; kÞ, depending on the state of a set of “control” sites in
row τ − 1 that form the “neighborhood,” N k, of site k, see
Fig. 1(a). Since we are considering binary variables, N k is
taken to be an integer labeling the possible neighborhoods,
whose binary representation (see Table I) specifies the
occupation of the sites [5]. The state jψ ti evolves in discrete
time-steps as jψ ti ¼ Gtjψ t−1i. Here the “global update” Gt
consists of an ordered product of Gt;k, one per each site of
row t. Wewill consider the situation in which the 2D state is
initialized at t ¼ 1 into a product state of all unoccupied
sites, j∘i, except for the first row, τ ¼ 1. This will have a
single occupied site, j•i, at the center, which we refer to as
the seed initial condition. During the subsequent evolution,
jψ ti then encodes the entire space-time structure of cellular
automaton dynamics from this initial condition, i.e., it
allows for access to the full history of trajectories, permit-
ting the analysis of typically inaccessible (quantum) cor-
relations between different space-time regions.
The ð1þ 1ÞD QCA framework generalizes classical

cellular automata (CCA) into a unitary quantum setting.
It includes canonical classical models, such as deterministic
CCA—, e.g., the much-studied elementary cellular
automata (ECA) [4,5]—and classical probabilistic cellular
automata (PCA), such as those studied in the context of
APTs [6], as limiting cases [see Figs. 1(b) and 1(c)].
Moreover, 1D unitary CAs, as discussed in, e.g.,
Refs. [15,16] can also be represented as ð1þ 1ÞD QCA.
However, as illustrated in Fig. 1(d), such an evolution
generates an “effectively” 1D quantum state, which is

TABLE I. Local update rules for ð1þ 1ÞDQCA. The gate (1) is
defined by eight values of the probability pðN Þ, one for each
possible configuration of the neighbourhood N [see Fig. 1(a)].
The three examples given encode the classical ECA rule 150, the
DKCA and BBR model. The totalistic nature of the updates for
the DKCA and BBR model results in only two parameters p1 and
p2. See also Fig. 1(b) and (c) for the evolution of an initial seed
generated by the ECA and BBR rules.

N • • • • • ∘ •∘• •∘∘ ∘ • • ∘ • ∘ ∘∘• ∘∘∘
ECA 1 0 0 1 0 1 1 0
DKCA p2 p1 p2 p1 p1 0 p1 0
BBR 1 p2 p2 p1 p2 p1 p1 0
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shifted along the time direction using SWAP gates
(see Ref. [34]).
In the following, we consider gates that act on a single

target site and a three-site “control” neighborhood with the
form,

Gτ;kj∘i ¼
X

N k

PN k
⊗ e−iσxαðN kÞj∘i: ð1Þ

The symbol ⊗ separates the operators which act on the
controls (placed to the left) and on the target (placed on the
right): the PN k

¼ jN kihN kj are projectors onto the differ-
ent “classical” configurations of the control sites [see
Fig. 1(a) and Table I] and σx ¼ j∘ih•j þ j•ih∘j acts on
the target site. The angles αðN kÞ determine by how much
the target site is rotated from its initial state j∘i into a
superposition. The probability for the target site to be
occupied, given a particular configuration of the control
sites, is Pfnτ;k ¼ 1jN kg ¼ pðN kÞ ¼ sin2½αðN kÞ�. For the
gate (1), a local update (or “rule”) is specified by choosing
the eight (real) values of αðN kÞ or, equivalently, pðN kÞ. As
we discuss in the following this includes several inform-
ative cases, listed in Table I, which directly connect to CCA
with simultaneous updates. This is because for these cases
the Gτ;k for different k commute, such that all choices of Gt

are equivalent.
Choosing rotation angles such that pðN kÞ ¼ 0, 1, the

gate of Eq. (1) reproduces deterministic CCA on the 2D
state jψ ti, which remains in a product (unentangled) form at
all times, see Fig. 1(b). For example, ECA can be realised
in this setting including irreversible cases [5], which corres-
ponds to the classical result that irreversible CCA can be
embedded in higher-dimensional reversible CCA [35].
Further to that, Eq. (1), contains the case of classical
PCA [see Fig. 1(c)]. Here the diagonal components of the
density matrix Ξt ¼ jψ tihψ tj are equal to the probability of
producing the corresponding space-time configuration
under a PCA dynamics [17]. However, the unitary dynam-
ics of the ð1þ 1ÞDQCA can generate off-diagonal terms in
Ξt, i.e., coherence. This means that the gate in Eq. (1)
generalizes any desired PCA into a genuine quantum
system: the ð1þ 1ÞD QCA encodes the original classical
dynamics, including all associated physics such as APTs,
while also displaying uniquely quantum features. For
example, the BBR model is a PCAwith a three-site control
neighbourhood that displays APTs [32,36]. It displays two
absorbing states (the fully occupied and fully empty
product states) and is totalistic, meaning that the local
updates depend only on the total number of occupied sites
in the neighbourhood, see Table I. The corresponding
totalistic update rule with a two-site neighborhood, the
DKCA, which displays a single absorbing state of all empty
sites, can also be considered in this three-site neighborhood
setting, e.g., by making updates not depending on the
control site in the middle. As for deterministic CCA, jψ ti

encodes also in this case the entire space-time history,
although now being an entangled state, see Fig. 1(c).
Scaling of temporal correlations.—In the following, we

will focus on ð1þ 1ÞD QCA with gates as in Eq. (1), that
realize quantum generalizations of the DKCA and the BBR
model. We will refer to these as QDKCA and QBBR
model, respectively. At any time, the QCA can be parti-
tioned in such a way that the tth row is singled out. Since
rows with τ > t are in a product state, the entanglement
between the two subsystems generated by the partition
quantifies the amount of quantum correlations in the pure
state jψ ti, between the “present” (sites in row t) and the
“past” (rows τ < t). We measure this “present-past” entan-
glement through the second-order Renyi entropy, i.e., the
logarithm of the purity of the reduced state ρt ¼ Trτ≠tΞt of
the tth row:

S2ðtÞ ¼ − ln Tr½ρ2t �: ð2Þ

Given that we are considering extensions of PCA, it is
natural to expand ρt into a diagonal part, ρclt , and an off-
diagonal part, Xt, such that ρt ¼ ρclt þ Xt. For classical
processes all off-diagonal terms are zero and ρt ¼ ρclt
[11,34]. Under this decomposition the purity of the reduced
state becomes a sum of two terms: Tr½ρ2t � ¼ Tr½ðρclt Þ2�þ
C2ðρtÞ. The first one is equivalent to the classical compo-
nent of the purity. This can be viewed as due to the
probabilistic nature of the process through which sites can
be rotated into the occupied state j•i. The second term

C2ðρÞ ¼ Tr½X2� ¼
X

i;j

jXijj2; ð3Þ

is the l2 norm of the density matrix coherence. This
contribution is positive, and zero only if ρt ¼ ρclt . As such,
it can only increase the purity of ρt and is a manifestation of
the quantum correlations present in the QCA. While
sufficient for our purposes, we note that C2 is not a strict
measure of coherence as it violates certain monotonicity
conditions [37].
For some classical PCA, it was recently found that near

the critical point of an ATP the second-order Renyi entropy
scales as Scl2 ∼ t−p, with a universal exponent p ¼
0.632 613ð6Þ [11]. The same behavior is expected, by
construction, when considering ρclt of the QDKCA and the
QBBR model, and hence

Scl2 ðtÞ ¼ − ln Tr½ðρclt Þ2� ð4Þ

should display a power-law decay at criticality.
In what follows, we focus on the quantum Renyi entropy

in Eq. (2) and show that, in the vicinity of the APT of the
QDKCA and the QBBR model, it obeys a scaling form

S2ðtÞ ∼ t−qent : ð5Þ
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Furthermore, we observe that the coherence also follows a
similar power-law decay close to criticality,

C2ðtÞ ∼ t−qcoh ; ð6Þ
which defines an additional critical exponent qcoh. For the
seed initial conditions considered, we establish that
qcoh ≫ qent. As might then be expected, we find that the
quantum entropy S2ðtÞ tends to the one of the correspond-
ing classical PCA, Scl2 ðtÞ, for sufficiently long times.
Numerical results.—In the following we present results

concerning the scaling of S2 and C2 close to criticality for
the QDKCA and the QBBR. We compute these quantities
by simulating the reduced evolution of ρt using tensor
networks (TNs) and matrix product states (MPSs) [38,39].
The method employed—detailed in Ref. [34]—relies on
representing ρt as an MPS and G as a matrix product
operator (MPO), and applying standard methods for sim-
ulating MPS evolution [40,41]. Details concerning the
lattice size L, MPS bond-dimension χ and other parameters
related to the simulation are contained in the caption of
Fig. 2. All simulations start with an initial seed placed in the
center of the first time slice [see Fig. 1(a)].
In Fig. 2(a) we show the entropy S2 for the QDKCAwith

p2 ¼ 0.874 and the six values of p1 indicated in the figure
(solid lines). For the two lowest values of p1, the second-
order Renyi entropy rapidly vanishes, due to the fact that
the systems approaches an absorbing (product) state. In
contrast, the curves with the three highest values of p1 tend
to stationary values. This demonstrates that S2 can play the
role of an order parameter, by distinguishing between the
two different phases. When choosing p2 ¼ p1ð2 − p1Þ
the DKCA is equivalent to so-called bond-directed

percolation and extensive studies of this classical process
have determined the location of the critical point as
p2 ¼ 0.874, p1 ¼ 0.645 [6]. The corresponding critical
curve is shown as solid green lines in Figs. 2(a) and 2(b).
Here, S2 follows a power-law behavior. By fitting the curve
between t ¼ ½50; 200�, we estimate the critical exponent to
be qent ¼ 0.213� 0.004.
Note that, in estimating critical exponents for APTs,

determining the location of the critical point is typically a
key source of error [6]. However, since the QDKCA and
DKCA share the same critical point by construction, in our
case this error is negligible. The relevant error sources for
the QDKCA model are thus associated with finite-L, finite-
χ, and finite-time effects. In contrast, due to the relatively
few studies on the BBR model, for the QBBR model the
uncertainty on the location of the critical point provides a
significant contribution to the error. Overall, in addition to
larger finite-χ errors, the error associated with the estimates
of the critical exponents for the QBBR model are consid-
erably larger than those of the QDKCA. For details on the
estimation of errors, and a further discussion of related
issues, see Ref. [34].
Figure 2(a) also displays Scl2 (dashed lines). For each p1,

as t increases, the curves for S2 and Scl2 become indis-
tinguishable on the scale shown. This means that the critical
exponent found also holds for the classical model. We
remark that this is different from the value obtained for Scl2
in Ref. [11], which may be due to the fact that we are not
using a homogeneous initial condition but an initial seed
instead. The agreement between S2ðtÞ and Scl2 ðtÞ suggests
that C2 becomes irrelevant compared with Tr½ðρclt Þ2� over
time [34]. This is confirmed in Fig. 2(b), whereC2 is shown

(a) (b) (c) (d)

FIG. 2. Critical scaling of entanglement and coherence. (a) Dynamics of the second-order Renyi entropy S2 (solid lines) for the
QDKCAwith p2 ¼ 0.874. MPSs with bond dimension χ ¼ 128were used to simulate the dynamics of a lattice with L ¼ 256 sites in the
spatial direction. Six different values of p1 [indicated in panel (b)] in the vicinity of the critical point were considered. For comparison
we also display Scl2 (dashed lines). For p1 ¼ 0.645, where the DKCA has a critical point [6], a power law is observed with exponent
qent ¼ 0.213� 0.004. See the text for more details on the estimation procedure and the Supplemental Material [34] for a discussion of
error estimation. (b) C2 for the QDKCA. At the critical point, p1 ¼ 0.645, a power-law behavior is observed. The corresponding
exponent is estimated by calculating the effective exponent (see main text), shown in the inset, yielding qcoh ¼ 2.96� 0.04. (c) S2 for
the QBBR model and p2 ¼ 0.2. For p1 ¼ 0.61, a power-law behavior with qent ¼ 0.27� 0.07 can be observed. (d) C2 for the QBBR
model. At the critical point, p1 ¼ 0.61, power-law scaling with an exponent qcoh ¼ 2.74� 0.27 is observed. The inset shows the time-
dependent effective exponent at criticality.
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for the same values of p1. As with S2, at criticality we
observe a power-law behavior in C2. However, we find that
the timescale over which C2 approaches a power law is
considerably larger than that of S2. As such, to estimate the
critical exponent, we construct the time-dependent effective
exponent, qcohðtÞ ¼ − ln ½C2ðtÞ=C2ðt=2Þ�, as shown in the
inset of Fig. 2(b). As can be seen, C2 does indeed approach
a power-law [indicated by qcohðtÞ approaching a constant
value], and we estimate the exponent to be qcoh ¼ 2.96�
0.04 by averaging over the effective exponent between
t ¼ ½450; 550�.
Figures 2(c) and 2(d) display S2 and C2 for the QBBR

model. In each case we set p2 ¼ 0.2 and choose six values
for p1 as indicated in the legend. When p1 ¼ 0.610 (solid
green line) a power law can be observed, with estimated
exponent qent ¼ 0.27� 0.07, obtained by fitting a curve
between t ¼ ½50; 200�. Moreover, as t increases, S2 and Scl2
become indistinguishable. This is explained by the decay of
C2, shown in Fig. 2(d). Using the effective exponent for
p1 ¼ 0.610 (shown in the inset), we estimate qcoh ¼
2.74� 0.27, by averaging over t ¼ ½150; 200�.
Conclusions and outlook.—QCA constitute a platform

that allows us to realize a number of canonical CA
scenarios. They can be experimentally realized on quantum
simulators [42,43] and encode the entire space-time infor-
mation of a nonequilibrium process in a single quantum
state. This permits experimental access to unusual proper-
ties, such as entanglement in the time domain [44]. Already
simple QCA, which are quantum generalizations of the
classical DKCA and the BBR model, reveal intriguing
features, such as power-law scaling of entanglement and
coherence with time at criticality. In the future it would be
interesting to focus on more intricate situations, e.g., QCA
where the elementary gates do not commute, so that the
order in which local updates are applied defines inequiva-
lent global updates Gt [18]. In such a setting, the updates
in ð1þ 1ÞD QCA can be considered as asynchronous
updates, the impacts of which have been extensively
studied in the classical case [45–47] but are still largely
unexplored in the quantum domain.
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