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We develop a variational approach to simulating the dynamics of open quantum many-body systems
using deep autoregressive neural networks. The parameters of a compressed representation of a mixed

quantum state are adapted dynamically according to the Lindblad master equation by employing a time-
dependent variational principle. We illustrate our approach by solving the dissipative quantum Heisenberg
model in one dimension for up to 40 spins and in two dimensions for a 4 x 4 system and by applying it to

the simulation of confinement dynamics in the presence of dissipation.
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Introduction.—Solving the quantum many-body prob-
lem where it is analytically intractable constitutes a
formidable challenge due to the inherent curse of dimen-
sionality with growing system size. Today, two main routes
are pursued to address this issue. On the one hand, the
boundaries of classical computation are pushed by the
development of tailored numerical techniques that build on
the inherent structure of the quantum state of interest to find
compressed representations using a subexponential number
of variational parameters [1-4]. On the other hand, recent
years have brought tremendous progress in the realiz-
ation of quantum simulators as originally envisioned by
Feynman [5,6], which emulate paradigmatic quantum
many-body models using precisely controlled synthetic
quantum systems of ultracold atoms in optical lattices
[7-13], trapped ions [14—16], Rydberg atoms [17-19], and
many more [20-31]. These ‘“noisy intermediate-scale
quantum” (NISQ) simulators [32] already present a valu-
able expansion of our scientific toolbox, enabling the
discovery of new physical phenomena [12,18,19,31,33—
35]. In particular, they challenge the numerical state of the
art and open up largely uncharted terrain, e.g., nonequili-
brium quantum matter in two spatial dimensions. As the
term NISQ implies, the openness of these quantum systems
will play a central role for near-term applications, and
accounting for it appropriately is one of the key challenges.

In this work, we present a novel way to simulate the
dynamics of open quantum systems (OQS) using a neural
network encoding of the quantum state, which is relevant
for two reasons: In view of the recent experimental
developments, computational tools that can keep up with
the system sizes of quantum simulators also in intermediate
spatial dimensions are highly desired as they allow us to
certify experimental observations and provide a link to
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theoretical models. Simultaneously, the exploration of
phenomena associated with driven dissipative systems is
a major aim in itself, for which our approach opens new
possibilities.

The state of an OQS is described by the density operator
», whose dynamics, for Markovian systems, is governed by
a Lindblad master equation. For a system of N spin-1/2
particles considered here the curse of dimensionality
manifests in the 4" coefficients necessary to fully represent
p, which limits exact numerical treatments to small N.
Various numerical methods have been developed to reduce
this complexity [36], each coming with different strengths
and limitations. Stochastic Monte Carlo wave function
(MCWF) methods [37-41] achieve a quadratic improve-
ment of the N scaling at the cost of requiring statistical
averaging. Semiclassical [42—45] and mean-field-like
methods [46,47] provide a polynomial scaling in N but
often suffer from uncontrolled approximations and numeri-
cal instabilities. Tensor network based approaches [1,2,48—
56] are limited to weakly entangled states and require
further approximations if applied in dimensions d > 1 [57—
59]. A recently introduced class of methods, that can
potentially resolve many of these issues are neural network
quantum states (NQS) [60-75]. NQS have been applied
successfully to OQS [76-79]. A natural approach is to
employ a latent state purification [80]; however, this
procedure has so far been restricted to shallow neural
network architectures. A more recent work uses a prob-
abilistic representation of the quantum state [64] which
allows the use of deeper, more expressive networks but has
the drawback of being forced to globally optimize the
network parameters in each time step.

Here we introduce a numerical approach, summarized
graphically in Fig. 1, that is not restricted in terms of

© 2021 American Physical Society


https://orcid.org/0000-0002-8408-7558
https://orcid.org/0000-0003-2223-8696
https://orcid.org/0000-0003-1914-7099
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.230501&domain=pdf&date_stamp=2021-12-01
https://doi.org/10.1103/PhysRevLett.127.230501
https://doi.org/10.1103/PhysRevLett.127.230501
https://doi.org/10.1103/PhysRevLett.127.230501
https://doi.org/10.1103/PhysRevLett.127.230501

PHYSICAL REVIEW LETTERS 127, 230501 (2021)

network architectures and operates based on explicit
second-order local updates, thus overcoming structural
and technical limitations of previously proposed methods.
The derivation of a first-order differential equation for the
time dependence of variational parameters in the context
of a probabilistic formulation of quantum mechanics is a
central result of our work. Thereby, our method expands the
capabilities of previous approaches [64,76] in terms of
system sizes and timescales reached reliably. This is
demonstrated by the application to benchmark problems
of spin systems in 1D and 2D geometries and by showing a
first physics-motivated application.

Probabilistic representation.—Any quantum state p can
be represented equivalently as a probability distribution P
over measurement outcomes using positive operator valued
measures (POVMs) [61,62,64,81]:

Pr = u(pir®), (1)

where M? = M* ® .. ® M are measurement operators
associated with the outcome a = a,..ay of a tomograph-
ically complete measurement on N spins. We choose M’ to
be the symmetric informationally complete-POVM (SIC-
POVM), or tetrahedral POVM [61]. Its elements are
obtained from the definition M* = (1 + 5* - 5) /4, in which
the 5 form a tetrahedron on the surface of the Bloch sphere
and & denotes the vector of Pauli matrices. Inverting Eq. (1)
gives

p= pa—laa (2)

with the overlap matrix 7% = tr(M*M* ), where implicit
summation over repeated indices is assumed from here on.
Since the POVM elements M?® form an operator basis,
observables can be decomposed as O = Q*M? and their
expectation values become (O) = P*Q?. Compared to the
complex-valued density matrix or its purification, the
probabilistic representation has the advantage that it allows
us to directly leverage the highly sophisticated toolbox for
generative models developed in recent years by the
machine learning (ML) community [82-84].

The dynamics of Markovian OQS is described by the
Lindblad master equation [36]

A TR A pinpit _ Losini o
ﬂ=—l[H,p]+7Z(LpLT—5{LTL,p}), (3)

i

with [.,.] ({-,-}) denoting the (anti-)commutator. The
operators L' are commonly referred to as jump operators
and are representative of the dissipative processes that the
system is subject to. Differentiating Eq. (1) and inserting
Egs. (3) and (2) allows us to state the master equation in the
probabilistic formulation:
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FIG. 1. Tllustration of the variational approach to OQS dynam-
ics. On the left, the standard density matrix formalism is shown
along with the equivalent probabilistic formulation using
POVMs. The right-hand side shows the variational approach,
in which an artificial neural network is used as an ansatz function
for the probability distribution over POVM outcomes. The main
contribution of this work is the TDVP illustrated in the bottom
box which leads to a general and accurate scheme for updating
the network parameters according to the dynamics dictated by the
master equation.

P = Labpb, (4)

The full expression for the Lindbladian £ is given in the
Supplemental Material [85]. Crucially, £ is sparse since the
restriction to one- and two-body interactions in Eq. (3) is
preserved in the probabilistic reformulation, allowing us to
evaluate its action efficiently.

Nonetheless, Eq. (4) is numerically intractable for many-
body systems, because of the exponentially large number of
coefficients P?. In the following we employ a variational
approximation by introducing a trial distribution P} with
variational parameters 6, see Fig. 1. The compressed
representation of the state in a polynomial number of
variational parameters renders the approach numerically
feasible.

Time dependent variational principle for POVMs.—The
main theoretical contribution of our work is a time
dependent variational principle (TDVP) for POVM-
probability distributions which dictates the time depend-
ence of the network parameters 6(¢) by determining the
closest approximation of the Lindbladian dynamics within
the variational manifold. The starting point is a distance
measure D(P,(Q) for probability distributions P, Q.
Assuming a small time step 7 at time ¢ with associated
network parameters 6(r), the aim is to minimize the
distance between the updated POVM-probability distribu-

tion PZ(:)+ o and the time-propagated distribution P;m +

tﬁabP3< y that follows from Eq. (4). We found that two
natural choices for the distance measure D are equivalent
for this purpose, because they describe locally identical
geometries. The first is the Hellinger distance Dy (P, Q) =
1 — F(P,Q), which is defined via the Bhattacharyya co-
efficient (or classical fidelity) F(P, Q) = >, vP*Q®. The
second is the Kullback-Leibler divergence Dy (P, Q) =
> aP*log(P*/Q*). In both cases, a second order

230501-2



PHYSICAL REVIEW LETTERS 127, 230501 (2021)

. . a a
consistent small-z expansion of DH/KL(P9<I)+97,P0(t) +

rﬁ“bP;?(t)) and subsequently demanding stationarity to

find the optimal parameter update 0 yields the TDVP
equation

SOy = Fy. (5)
Here, S denotes the Fisher-metric Sy = (020%)5 _p, Fi =
(02L3P(PP/P*))e_, and the repeated indices a inside the
brackets are not summed over. The brackets denote con-
nected correlation functions (AB)¢ = (AB) — (A)(B) of
expectation values with respect to the POVM-distribution
P and O} = 0y, log P*. We provide a detailed derivation of
Eqg. (5) in the Supplemental Material [85]. It is worth noting
that for models that are normalized by default [such as
recurrent neural networks (RNNs)] (O#) = 0. Usually,
Eq. (5) is ill conditioned and needs to be regularized.
Here, advanced regularization schemes such as described in
Ref. [63] are applicable but they did not turn out to be
crucial for the test cases we consider.

The TDVP equation (5) exhibits a number of features
beneficial for the numerical time evolution of (7). As a
result of the employed short-time expansion, the variational
optimization problem becomes convex and information
about the local geometry of the variational manifold is
taken into account in the form of the Fisher-metric S. Upon
inverting S, the differential equation can be solved straight-
forwardly with explicit integration schemes. Importantly,
Monte Carlo sampling is only required once per time step.
These features are in contrast to the implicit integration
scheme presented in Ref. [64], where Monte Carlo sam-
pling is required at each optimization step performed for the
iterative global minimization of a nonconvex cost function.

Network architecture.—Neural networks are highly non-
linear universal function approximators in the limit of large
networks [86—88]. For the purpose of generative modeling
autoregressive networks are advantageous, because they
enable direct generation of uncorrelated samples; therefore,
various autoregressive architectures have recently been
explored for NQS [64,65,89-91]. In the following, we
employ RNNs, which belong to this family of network
architectures (see Supplemental Material [85] for details).

Numerical results.—To illustrate the accuracy and scal-
ability of our method we apply it to the anisotropic
Heisenberg model,

with nearest neighbor interactions and periodic boundary
conditions, which was also used in Ref. [64] as a bench-
mark system. The considered decoherence channel is
spontaneous decay given by the jump operator [ = 6~ =
(X — i¥)/2 acting on each spin. We obtain benchmark data
using exact simulations for N = 10 spins and test our
approach in the case of N = 10 [85] and N = 40 [Figs. 2(a)
and 2(b)] spins, where we compare magnetizations and
next-nearest neighbor correlators. Since finite-size effects
are negligible to good approximation for systems with more
than N = 10 spins, we can use the exact data for N = 10
spins as comparison for the case of N = 40 spins studied in
the main text. The noise in the correlation signal is due to
the finite number of samples that are used to evaluate the
observables. One observes slight deviations in the corre-
lation functions, which may be attributed to both an
imperfect choice of hyperparameters and the stochastic
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FIG. 2. (a) and (b) Mean magnetizations and next-nearest neighbor connected correlation functions [e.g., Cxx(d =2) =
Zi(f( :Xi5)¢/N] as a function of time in the anisotropic 1D Heisenberg model for N = 40 spins starting in the product state
(¥) = —1. Nearest neighbor couplings are given by Iy = (2,0,1), h./y = 1 and the dissipation channel is L. = 6~ = %(}A( —i¥). The
exact data are obtained for N = 10 spins. (c) and (d) Mean z magnetizations and nearest neighbor connected correlation functions (for
Jy/y = 1.8) in a 4 x 4 anisotropic 2D Heisenberg lattice with nearest neighbor couplings Ty = [0.9,1.0(1.8), 1.0] and the same decay

as in (a) and (b), starting in the product state (Z) = 1.
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nature of the proposed method. We found that the sample
size needed to reach a given precision does not need to be
increased when transitioning to larger systems, as the
overall noise decreases thanks to a self-averaging effect
in the translationally invariant system.

Figures 2(c) and 2(d) show results for a 4 x 4 lattice
initialized in a product state with (Z) = 1. In panel (c) we
compare the magnetization for two different parameter
choices to results from MCWF stochastic integration with
500 trajectories, showing perfect agreement. Exact inte-
gration of Eq. (3) would be exceedingly costly in this case.
We provide a comparison of a 3 x 3 lattice to exact
dynamics in the Supplemental Material [85], which shall
serve as a numerically exact benchmark. Nearest neighbor
correlations shown in panel (d) for the case of J,/y = 1.8
show small deviations at late times, which we attribute to
the finite number of samples used for estimating the
updates 0 [85].

Having benchmarked our approach on generic spin
models, we now apply it to a physical scenario to gauge
the effect of decoherene for large problem instances. It was
recently shown that confinement dynamics, as found for
quarks in quantum chromodynamics, can be realized in
the Ising spin model with transverse and longitudinal
fields [92]

In this system pairs of domain walls form after a quench.
For h, = 0 these domain walls can propagate freely while
for finite /1, the separation between them comes with an
energy cost leading to confinement. This phenomenon
manifests in a buildup of dominant spin-spin correlations
that is limited to short distances and a much weaker light-
cone spreading due to the propagation of bound domain-
wall pairs. Signatures of this effect have been observed
recently for moderate system sizes on IBMQ [93].

Here we study in what way dissipation influences the
signature spreading of spatio-temporal correlations. We
consider single particle dephasing I. = Z as the dissipation
channel, significantly altering the nature of the spreading
on timescales yt 2 1.

Figure 3 shows results for a typical scenario with a
dephasing rate of y = 0.25/ and N = 32. The magnetiza-
tion [panel (a)] initially shows coherent oscillations (inset)
which are quickly damped out followed by a slow relax-
ation of all magnetizations towards zero. The dashed lines
show MCWF simulations for N = 16.

The top half of panel (b) shows the correlation dynamics
in the considered dissipative scenario using the hitherto
described numerical approach. For comparison, we show
the corresponding unitary dynamics simulated using matrix
product states (MPS) [1,2] on the bottom half of panel (b).
In the unitary case correlations initially show a light-cone

(2) 1.0 X) - MCWF
0. MCWF
MCWF
0.6
0.4
0.2 |
2

1071

—11 === light cone (Unitary case)
-13 ——=- MCWEF system size

-15
0 20 40 60 80 100 120
Jt

FIG. 3. (a) Mean magnetizations in a spin chain of length N =
32 with the quench parameters h,/J, = 0.25, h,/J, = 0.05 and
the dissipation channel L = Z with relative strength y/ J, =025
compared to MCWEF-data for N = 16 spins starting in the product
state (Z) = 1. (b) Spreading of correlations in the spin chain.
Top: Dissipative system with y = 0.25, Bottom: MPS simulation
of the unitary system where y = 0.0. After an initial linear light-
cone spreading, the nature of the dissipative propagation grows
more diffusive, before all correlations eventually vanish. Notice
that the slight deviations in panel (a) coincide with the time at
which the dissipative correlations cross the MCWF system size
boundary.

spreading. In contrast, the dissipative dynamics deviates
from this light cone even for short times as the dissipation
results in correlation growth that we find to be consistent
with diffusive spreading on intermediate timescales [85].
At long times all correlations decay and the system
approaches the featureless steady state p(r — o) o 1.

The ability to simulate these dynamics is a direct
consequence of the polynomial scaling of the described
ansatz. The system size of the MCWF-approach (N = 16)
is plotted in panel (b) as a dashed gray line. As is obvious
from the chosen color-scale cutoff,the MCWEFE-approach
suffers from finite-size effects at around Jt =40 when
correlations beyond d = 8 build up. This is also the time at
which the z magnetization in panel (a) deviates, suggesting
that this deviation is due to finite-size effects present in the
MCWEF simulation.
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Discussion and outlook.—We have introduced a novel
method that allows the variational simulation of open
quantum dynamics based on the efficient encoding of
the quantum state in an artificial neural network and
demonstrated its potential. Our method scales approxi-
mately cubically with the number of spins N, since the
computationally intense part is obtaining F in Eq. (5). For
that purpose, the nonvanishing entries of £2P, the cost of
evaluating a plain RNN, and the incorporation of transla-
tional symmetry each contribute a factor of N to the
computational cost. Importantly, however, the algorithm
admits massive parallelization, e.g., on GPU clusters
[63,94], which allows for extensive control of the total
compute wall time. Here, different levels of parallelization
are exploited: The algorithm permits treating the samples
independently from each other, allowing us to employ
multiple accelerators which communicate via MPI. At the
same time, the batched network evaluation of the configu-
rations allows for convenient vectorization of the compu-
tations on the single accelerator level.

For future research it will be crucial to better understand
the limitations of finite network architectures to represent
physically relevant quantum states. An obvious short-
coming of the probabilistic state representation is that
the positivity of the density operator is not guaranteed;
understanding the consequences will be key for further
progress.

The presented combination of the probabilistic formu-
lation of mixed quantum states with a TDVP opens new
possibilities for the investigation of driven-dissipative
many-body systems in regimes that are challenging for
other approaches, for example, to study two-dimensional
systems or the propagation of information across large
distances [95,96]. Future work employing the TDVP for
0OQS could address the emergence of glassy dynamics [97-
100] or self-organization in OQS [101,102]. Furthermore,
the developed technique is not restricted to solving the
Lindblad equation; it could be generalized for other use
cases of master equations with large discrete configuration
space, such as disease dynamics models [103,104] or the
chemical master equation [105].

The MCWF data was obtained using QuTip [106]. The
TDVP algorithm was implemented using the jVMC code-
base [107] and the JAX library [108]. We acknowledge
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