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Quantum entanglement between an impurity and its environment is expected to be central in quantum
impurity problems. We develop a method to compute the entanglement in spin-1=2 impurity problems,
based on the entanglement negativity and the boundary conformal field theory (BCFT). Using the method,
we study the thermal decay of the entanglement in the multichannel Kondo effects. At zero temperature, the
entanglement has the maximal value independent of the number of the screening channels. At low
temperature, the entanglement exhibits a power-law thermal decay. The power-law exponent equals two
times of the scaling dimension of the BCFT boundary operator describing the impurity spin, and it is
attributed to the energy-dependent scaling behavior of the entanglement in energy eigenstates. These
agree with numerical renormalization group results, unveiling quantum coherence inside the Kondo
screening length.
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Introduction.—Quantum entanglement has been used to
identify and characterize many-body states [1–4]. It pro-
vides fundamental understanding especially when states
possess maximal entanglement such as Bell entanglement
[5–7]. An interesting direction is to see how entanglement
changes as a state deviates from a fixed point, e.g.,
thermally. Entanglement in pure excited states or thermal
states has not been much studied [8–10].
For this direction, there are a wide class of states in

quantum impurity problems [11], including impurities in
metals [12,13], spin chains [14,15], Luttinger liquids [16],
and quantum Hall effects [17,18]. Here bipartite entangle-
ment [see Fig. 1(a)] between an impurity and its environ-
ment will be central. This entanglement was studied in the
single-channel Kondo effect (1CK). In the 1CK ground
state [19], it is Bell entanglement and induces impurity-spin
screening. Its thermal suppression, computed with numeri-
cal renormalization group methods (NRG) [20,21], shows
Fermi liquid behavior [22–24]. The entanglement is used
[25] for quantifying spatial distribution of Kondo clouds
[26–30]. It is valuable to study the entanglement in other
impurities, including multichannel Kondo effects that show
non-Fermi liquids [31], boundary phase transitions [32],
and fractionalization. The entanglement will have essential
information about how boundary degrees of freedom
quantum-coherently couple with the bulk in boundary
critical phenomena [33,34].
However no approach for analytically computing the

entanglement has been developed. In a boundary conformal
field theory (BCFT) [35–37], a standard theory for quan-
tum impurities and multichannel Kondo effects, the entan-
glement was not considered, since the impurity degrees
of freedom are replaced by a boundary condition of the
environment and the entanglement is for the partition inside

the Kondo cloud length. By contrast, entanglement for
another partition [Fig. 1(b)] far outside the Kondo length
has been extensively computed [38–42], revealing the
“fractional ground-state degeneracy” [43].
Another difficulty arises in studying the entanglement in

thermal states. Entanglement entropy, a widely used entan-
glement measure, cannot distinguish the entanglement
from classical correlations [44–46] in the mixed states,
overestimating the entanglement. Entanglement negativity
[47–49] is then a good choice, as it is applicable to mixed
states. This entanglement measure has been numerically
computed for Kondo systems [14,21,41].
In this work we develop an approach for analytically

computing entanglement negativity N IjE for the partition
[Fig. 1(a)] between the impurity and its environment in a
one-dimensional spin-1=2 impurity problem described by a
BCFT. The impurity part, replaced by a boundary condition
in the BCFT, is restored in low-energy eigenstates, by
identifying the impurity spin with BCFT boundary oper-
ators and computing its matrix elements with respect to the
eigenstates. Then the thermal density matrix is constructed,
to obtain N IjE.
We then analyze thermal decay of the negativity in the

k-channel Kondo effects (kCK). At zero temperature, the

(a) (b)

FIG. 1. Bipartition (dotted lines) for entanglement in a Kondo
system. (a) It separates the impurity (circle) and the screening
channels (rod). (b) It is located at distance l from the impurity far
outside the Kondo cloud length ξK .
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entanglement between the impurity and screening channels
is maximal, N IjE ¼ 1, regardless of the number k of the
channels, although frustration in the impurity screening
occurs k dependently. This is in stark contrast with the
k-dependent impurity entropy for the partition in Fig. 1(b).
At low temperature T ≪ TK, the entanglement has alge-
braic thermal decay

N IjEðTÞ ¼ 1 − ak

�
T
TK

�
2Δ

ð1Þ

with the exponent identical to two times of the scaling
dimension Δ of the BCFT operator describing the impurity
spin. Δ ¼ 1 for k ¼ 1, Δ ¼ 2=ð2þ kÞ for k ≥ 2, TK is the
Kondo temperature, and ak is a k-dependent positive
constant. We confirm Eq. (1), using the NRG method
developed in Ref. [21]. We also find the scaling behavior of
N IjE in thermal crossover between different fixed points in
channel anisotropic Kondo effects.
Interestingly, the power-law exponent of the thermal

decay is determined by that of the energy dependence of
the entanglement in energy eigenstates. This is valid for
general spin-1=2 impurities described by BCFTs.
Computation of negativity.—We develop a method of

computing the negativity N IjE ¼ kρTIk − 1 between the
impurity and the other part in a one-dimensional critical
system having a spin-1=2 impurity described by a BCFT at
temperature T. ρ is the density matrix of the whole system,
k · k is the trace norm, and TI is the partial transpose on the
impurity. The maximum possible value of N IjE is 1 in the
system [50].
We organize steps for computing N IjE. (i) At a fixed

point, the impurity spin S⃗imp is identified with BCFT
boundary operators ψα with scaling dimension Δα,

Sα¼x;y;z
imp ¼ cα þ dαψα þ � � � ; ð2Þ

with constants cα, dα and operators � � � of dimension > Δα.
(ii) The energy E (∼Ei, Ej) dependence of matrix elements

hEijS⃗impjEji of the identified operator is studied for low-
energy eigenstates jEii of the BCFT Hamiltonian, which
includes the irrelevant terms describing thermal deviation
from the fixed point. For the purpose, we consider a finite
system size L and choose L ∼ v=E, where v is a relevant
velocity (we set the Planck constant ℏ≡ 1 and Boltzmann
constant kB ≡ 1). Using conformal transformation [50],
we find

hEijSαimpjEji ¼ cαδij þ dαOðL−ΔαÞ; ð3Þ

and their energy dependence is obtained by replacing v=L
by E. The replacement has been justified [35,57–62] such
that the states of energy E in an infinite-size system,
e.g., obtained with the NRG, are well described by the

corresponding BCFT or bosonization of finite size
L ∼ v=E; the region outside L negligibly affects the states
of energy E at positions near the impurity. It is because
correlations exponentially decay with distance x≳ v=T at
temperature T. The replacement allows us to avoid numeri-
cal calculations [63] of the matrix elements.
(iii) The energy eigenstates jEii’s are represented [50] in

the bipartite basis states of the impurity and the environ-
ment, utilizing Eq. (3). The impurity degrees of freedom are
restored in the representation. Energy dependence in the
representation of jEii is found as in Eq. (11) for the kCK.
Utilizing Schmidt decomposition [50], we find that each

energy eigenstate jEii has the entanglement of

N IjEðjEiiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4hEijS⃗impjEii2

q
ð4Þ

between the impurity and the environment, showing that
the entanglement directly relates to the expectation value of
the impurity spin for each low-energy engenstate. This is a
general relation applicable to any spin-1=2 impurities.
Using Eq. (3) and expanding Eq. (4) up to possible leading
contributions in the low-energy regime, we obtain

N IjEðjEiiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

X
α¼x;y;z

c2α

s
þ
X
α

cαdαOðEΔα
i Þ

þ
X
α

d2αOðE2Δα
i Þ þ � � � : ð5Þ

The energy dependence ofN IjEðjEiiÞ follows EΔα
i or E2Δα

i ,
depending on cα’s.
(iv) The thermal density matrix is constructed,

ρðTÞ ¼ P
i wijEiihEij, with the eigenstates jEii of energy

Ei ∼ T, the Boltzmann weight wi ¼ e−Ei=T=Z, and the
partition function Z ¼ P

i e
−Ei=T . This approximate den-

sity matrix was proved [57,60] to well describe thermo-
dynamic properties associated with the impurity; the exact
density matrix is governed mainly by the eigenstates
jEi ∼ Ti, because wi decays exponentially with Ei ≳ T
while the density of states increases with Ei. Then the
negativity N IjEðρÞ ¼ kρTIk − 1 is computed.
Combining these steps, we find [50] that the thermal

behavior of the entanglement satisfies

N IjE½ρðTÞ� ¼
X
i

wiðEiÞN IjEðjEiiÞjEi∼T þ fðTÞ: ð6Þ

The first term ofN IjEðjEi ∼ TiÞ is the leading contribution
from the diagonal elements of ρ, while fðTÞ is the other
contribution from the diagonal and off-diagonal elements.
The first term is dominant at low temperature, since
wiðEi ∼ TÞ ∼Oð1Þ, fðTÞ ∼ Tκ, and κ is larger than or
equal to the minimum among 2Δα’s. Therefore the power-
law exponent of the thermal behavior of N IjEðρÞ equals
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that of the energy dependence of N IjEðjEiiÞ. Namely, the
temperature dependence of N IjEðρÞ stems from the uni-
versal behavior of the pure energy eigenstates. This is a
fixed-point property of general spin-1=2 impurities
described by BCFTs. We below apply the findings to
the kCK model.
Restoring the impurity state in BCFT.—In the kCK

model, a spin-1=2 impurity S⃗imp interacts with k channels
of noninteracting electrons. Its Hamiltonian is

HkCK ¼
Xk
i¼1

½Hi þ λiS⃗imp · S⃗i� ð7Þ

with the ith-channel Hamiltonian Hi, the interaction
strength λi > 0, and the ith-channel electron spin S⃗i at
the impurity position. We first consider isotropic couplings
λ1 ¼ � � � ¼ λk ¼ λ at T ≪ TK . This regime is described by
the BCFT Hamiltonian [35–37,64]

HBCFT ¼ HFP þ λ̄HLI: ð8Þ

HFP is the fixed-point Hamiltonian invariant under
Uð1Þ × SUð2Þk × SUðkÞ2 Kac-Moody algebra, and λ̄HLI
is the leading irrelevant term with coupling strength
λ̄ ∝ ð1=TKÞΔ. Operators are labeled by quantum numbers
ðQ; js; jfÞ with charge Q, spin js, flavor jf, respectively, in
the U(1), SUð2Þk, SUðkÞ2 sectors.
As in Eq. (2), the impurity spin is identified [37,65] with

a boundary operator ψ⃗ with scaling dimension Δ,

Sα¼x;y;z
imp ∝

ψα

ðTKÞΔ
þ � � � : ð9Þ

In the 1CK, ψ⃗ is the local spin density operator J⃗ with
Δ ¼ 1 at the boundary. In the kCK with k ≥ 2, ψ⃗ is the
ðQ ¼ 0; js ¼ 1; jf ¼ 0Þ primary boundary operator ϕ⃗ with
Δ ¼ 2=ð2þ kÞ. Using Eq. (3) and replacing 1=L by energy
Ei; Ej ∼ E ð≪ TKÞ, we find

hEijSα¼x;y;z
imp jEji ¼ O

��
E
TK

�
Δ
�
; ð10Þ

which agrees with NRG results [50].
Equation (10) implies that each eigenstate jEii with Ei ≪

TK is composed of a maximally entangled state ðj ↑i ⊗
jϕi↑i þ j↓i ⊗ jϕi↓iÞ=

ffiffiffi
2

p
and small deviation jδEii,

jEii ¼
1ffiffiffi
2

p ðj ↑i ⊗ jϕi↑i þ j↓i ⊗ jϕi↓iÞ þ jδEii: ð11Þ

jμ ¼↑;↓i is the impurity spin state and jϕiμi’s are ortho-
normal states of the channels; the notation jϕiμi does not
imply that the spin quantum number of jϕiμi is μ [66]. The

impurity state is restored in the energy eigenstates jEii. Using
Eq. (10) and aGram-Schmidt process [50], we derive Eq. (11)
and find the scaling of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihδEijδEii
p ¼ O½ðE=TKÞΔ� and

hδEijEji ¼ O½ðE=TKÞΔ� in the restricted Hilbert space
spanned by states of energy E ∼ Ei ∼ Ej.
Negativity at zero temperature.—Equation (11) shows

that each pure ground state is in the form ðj ↑i ⊗ jϕg↑iþ
j↓i ⊗ jϕg↓iÞ=

ffiffiffi
2

p
, having maximal entanglementN IjE ¼ 1

between the impurity and the channels. There can happen
multipleN0 degenerate ground states jEg ¼ 0i’s in the kCK
with k ≥ 2, e.g., when the channels satisfy the antiperiodic
condition [35]. Their thermal mixture ρðT ¼ 0Þ ¼PN0

g¼1 jEg ¼ 0ihEg ¼ 0j=N0 has the maximal entangle-
ment,N IjE ¼ 1, because jϕgμi’s are mutually orthonormal.
This agrees with our NRG result in Fig. 2.
It is remarkable that the impurity is maximally entangled

with the screening channels at zero temperature, independ-
ently of the channel number k. In the 1CK, the perfect
impurity screening originates from the maximal entangle-
ment. In the kCK with k ≥ 2, N IjE ¼ 1 still happens,
although the impurity is overscreened with k-dependent
frustration. This is in stark contrast with the impurity
entropy [38] ζimp ¼ ln g for the partition far outside the
Kondo length [Fig. 1(b)] which is k dependent; g ¼ 1 for
k ¼ 1 and g ¼ 2 cos½π=ð2þ kÞ� for k ≥ 2.

(a)

(b) (c)

FIG. 2. Temperature dependence of the negativity N IjE be-
tween the impurity and screening channels in the isotropic kCK
effects. (a) NRG results [50], obtained by the method of Ref. [21].
At T ¼ 0, N IjE ¼ 1 independently of k. N IjE rapidly decreases
around TK . (b),(c) NRG (dots) and BCFT (curves) results at
T ≪ TK . N IjE shows power-law scaling with T=TK . The power-
law exponents of the BCFT prediction in Eq. (1) agree with the
NRG. (c) Log-log plot of 1 −N IjEðTÞ.
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N IjE and ζimp reveal different but complementary
aspects of the Kondo effects. N IjE measures how the
impurity is coherently screened or quantum correlation
between the impurity and its screening cloud, while ζimp

counts the effective ground-state degeneracy induced by the
impurity [43]. For example, N IjE ¼ 1 shows that even at
k → ∞, the impurity is not free but maximally correlated
with the channels. Hence ζimp → ln 2 at k → ∞ does not
imply a residual free moment. This is expected from the
behavior of the impurity magnetization [67,68].
And, at k ¼ 2, ζimp ¼ ln

ffiffiffi
2

p
implies fractionalization of

the impurity into two Majorana fermions, a free Majorana
γi1 and another γi2 coupled with the channels. Each ground
state of the 2CK is a product state of a fermionic state by
fusion of γi1 and a free Majorana of the channel, and
another fusion state of γi2 and a Majorana of the channels
[62]. In terms of the bipartite basis states for the partition
in Fig. 1(a), the product state is written as the maximal-
entanglement form ðj↑i⊗ jϕg↑iþj↓i⊗ jϕg↓iÞ=

ffiffiffi
2

p
. Here

the impurity states j ↑i and j↓i are described by fusion of
γi1 and γi2. Hence, the fractionalization is reconciled
with N IjE ¼ 1. Similar maximal entanglement happens
in a one-dimensional p-wave superconductor having free
Majoranas [10].
Universal thermal decay of negativity.—Putting cα ¼ 0

and Δα ¼ Δ of the kCK [see Eq. (10)] into Eq. (5), we find
that the entanglement becomes weaker in the eigenstates
of higher energy, N IjEðjEiiÞ ¼ 1 −O½ðEi=TKÞ2Δ�. Then
using Eq. (6), we obtain the algebraic thermal decay of the
entanglement in Eq. (1). The decay is confirmed by the
NRG in Fig. 2, and also by direct calculation [50] of
N IjE þ 1 ¼ kρTIk ¼ 2 −O½ðT=TKÞ2Δ� that equals the sum
of the square roots of the eigenvalues of ðρTIÞ2.
The power-law exponent 2Δ of the thermal decay of

N IjE is a universal fixed-point behavior. Considering the
energy dependence hδEijEji ¼ O½ðE=TKÞΔ� of the eigen-
states in Eq. (11), it is nontrivial that the exponent of the
entanglement decay is 2Δ rather than Δ; the contributions
of O½ðT=TKÞΔ� to N IjEðρÞ exactly cancel each other. This
relates with the fact that the entanglement is a nonlinear
function of the density matrix. The exponent (Δ versus 2Δ)
is determined by whether cα ¼ 0 or not or equivalently
by the ground-state expectation value of S⃗imp; see
Eqs. (2)–(5). For example, we find [69] that the exponent
of the algebraic thermal decay of N IjE is Δz (¼ Δx) in the
Ising spin chain [33,34] with fixed boundary where cx;z ≠ 0

and 2Δy > Δx;z.
Negativity between fixed points.—We study the temper-

ature dependence of the negativity N IjEðTÞ in the channel
anisotropic Kondo model, where thermal crossover hap-
pens between different Kondo effects [31,32]. Figure 3
shows that the power-law exponent ofN IjEðTÞ accordingly
changes, following Eq. (1).

We focus on the anisotropic 2CK model with the
coupling strengths λ1 ≠ λ2. Combining the finite-size
bosonization method and our approach, we derive [50]

1 −N IjE ∝

8<
:

T
TK

ðT� ≪ T ≪ TKÞ;
νT2

T� ðT ≪ T�Þ:
ð12Þ

T� [∝ ν2ðλ2 − λ1Þ2TK] is the crossover temperature
between the 1CK at lower temperature and the 2CK at
higher temperature. ν is the local density of channel states
at the impurity site. Interestingly, the scaling behavior
νT2=T� at T ≪ T� is different from the known behavior of
observables; at T ≪ T�, the decay of electron conductance
in a setup follows ðT=T�Þ2, while the magnetization
follows ðT=T�Þ2 ffiffiffiffiffiffiffiffiffiffiffi

T�TK
p

[70]. This scaling behavior of
N IjE is attributed [50] to the scaling

hEijSαimpjEji ¼

8>><
>>:

O
� ffiffiffiffiffi

E
TK

q �
ðT� ≪ E ≪ TKÞ

O
� ffiffi

ν
p

Effiffiffiffi
T�p
�

ðE ≪ T�Þ
ð13Þ

with E ∼ Ei ∼ Ej. This is confirmed by the NRG.
Conclusion.—We develop analytic computation of the

entanglement N IjE between the impurity and channels in
the multichannel Kondo effects. N IjE quantifies how the
Kondo screening quantum coherently happens inside the
screening length. Its thermal scaling is a universality of
the fixed point and reflects non-Fermi liquids and frac-
tionalization [71]. N IjE and the impurity entropy show
different but complementary aspects of the Kondo effects.

(a) (b)

FIG. 3. Temperature dependence of the negativity N IjE in
anisotropic (a) 2CK and (b) 3CK effects with the coupling
strengths λ1 and λi≥2 ¼ λ. The power-law exponent of N IjEðTÞ
changes, following crossover between different Kondo effects.
The NRG results (points) agree with the BCFT prediction
(lines). The isotropic case with λ1 ¼ λ is shown for comparison.
(a) When λ1 ¼ 0.99λ or 1.01λ, the exponent changes from
2Δ ¼ 2 (the 1CK behavior) to 2Δ ¼ 1 (2CK) as T increases,
passing the crossover temperature T�. (b) When λ1 ¼ 0.99λ, the
exponent changes from 2Δ ¼ 1 (2CK) to 2Δ ¼ 4=5 (3CK).
When λ1 ¼ 1.01λ, the exponent changes from 2Δ ¼ 2 (1CK) to
2Δ ¼ 4=5 (3CK).
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Our findings have implications. First, the direct relation
in Eq. (4) between N IjE and hEijS⃗impjEii for energy
eigenstates means that the impurity spin screening origi-
nates from the entanglement N IjE in general spin-1=2
impurities. It implies the possibility of accessing N IjE by
experimentally detecting impurity magnetization at suffi-
ciently low temperature. For example, in a quantum dot
[72,73] showing multichannel charge Kondo effects, the
excess charge of the dot, corresponding to hEijS⃗impjEii, is
detectable. One can measure N IjE with changing a gate
voltage applied to the dot, which corresponds to a magnetic
field applied to S⃗imp.
Second, the entanglement N IjE will be useful for

quantifying the spatial distribution of multichannel
Kondo clouds. The 1CK cloud was recently observed
[30] with changing the location at which the screening
channel is weakly perturbed. Similarly, we suggest [74]
to observe kCK clouds by monitoring change of N IjE or

hEijS⃗impjEii with varying the perturbation position.
Third, the thermal scaling of N IjE is a universal fixed-

point property. This scaling behavior can be different from
that of states, since N IjE is a nonlinear function of the
states. Interestingly, the thermal scaling of N IjE is esti-
mated from the scaling of N IjE of energy eigenstates. This
suggests to study entanglement in pure excited states in
other problems, which has been less studied [8–10] than
ground states.
Finally, our approach is applicable to study coherent

coupling between the boundary and bulk in spin chains
or in other spin-1=2 impurities described by BCFT. The
behavior of N IjE will depend on different universality
classes of boundary phenomena of different boundary
conditions.
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