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Grain boundaries (GBs) whose energy is larger than twice the energy of the solid-liquid interface exhibit
the premelting phenomenon, for which an atomically thin liquid layer develops at temperatures slightly
below the bulk melting temperature. Premelting can have a severe impact on the structural integrity of a
polycrystalline material and on the mechanical high-temperature properties, also in the context of crack
formation during the very last stages of solidification. The triple junction between a dry GB and the two
solid-liquid interfaces of a liquid layer propagating along the GB cannot be defined from macroscopic
continuum properties and surface tension equilibria in terms of Young’s law. We show how incorporating
atomistic scale physics using a disjoining potential regularizes the state of the triple junction and yields an
equilibrium with a well-defined microscopic contact angle. We support this finding by dynamical
simulations using a multiphase field model with obstacle potential for both purely kinetic and diffusive
conditions. Generally, our results should provide insights on the dynamics of GB phase transitions, of
which the complex phenomena associated with liquid metal embrittlement are an example.
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Introduction.—Triple junctions exist when three phases
or grains meet. Their shape and especially contact angles,
defined as the angles with which the interfaces intersect, are
an interesting research subject in material science. These
angles provide the boundary conditions that are the key in
determining the morphology of an interface network, e.g.,
the grain boundary (GB) network in a polycrystal, as well
as its temporal evolution, e.g., during coarsening. Young
was the first to study contact angle selection on a macro-
scopic level [1]. According to his well-known law, the
equilibrium contact angles are those that fulfill a force
balance at the triple junction that involves only macro-
scopic surface tensions. The law is still widely used in
numerous applications but disregards physical effects at the
scale of the interatomic distance that may be crucial in
some cases.
Physical effects originating from the interaction between

interfaces when they are separated by only a few atomic
distances can be modeled by adding a so-called disjoining
potential to the free energy of the system. This potential,
which can be either a monotonous function of the distance
between interfaces h or a function with one or multiple
minima [2], represents the work required to bring the
interfaces from an infinite distance to the distance h; it is
nonzero only when h is in the order of interatomic distance.
The negative of its derivative gives the disjoining pressure,
a term commonly used in studying thin films [3]. For such
films, the critical role of the disjoining potential in
determining the contact angles at the junction is well
known. For example, it is experimentally observed that
in dewetting of a disordered melt of diblock copolymer on a
solid substrate the existence of multiple minima in the

disjoining potential results in a discrete set of equilibrium
contact angles at the triple junction [4]. It is also admitted
that the disjoining potential plays a role in the stabili-
zation of an atomically thin and strained Ge layer on a Si
substrate [5].
When a polycrystalline material is at a temperature well

below the bulk melting temperature TM, the width of the
grain boundaries corresponds to a few atomic distances
only. However, as the temperature increases toward TM,
GBs may transform into liquidlike, thermodynamically
stable thin (i.e., nanoscale) films. Such an order-disorder
transition is termed GB premelting [6] and may be
observed not only at GBs but also on surface [7,8].
Because of its universal physics and important conse-
quences in a wide range of applications, premelting has
interested scientists from domains such as chemistry,
physics, earth science [9], fluid mechanics [10], and,
interestingly, biology [11]. It has been modeled using
different techniques such as molecular dynamics [12,13],
phase-field crystal [14], and phase field [15]. Premelting
belongs to the class of surface phase transitions, for
example, between so-called GB complexion [16]. Let us
note that a similar situation is observed in the liquid film
embrittlement of metals, e.g., by liquid Ga penetrating
along Al GBs [17], for which the penetration speed
depends crucially on the triple junction geometry.
When premelting occurs in a polycrystalline material

exposed to a temperature close to TM, the liquid layer
propagates along the GBs, and triple junctions form where
the premelted part of the GBs meets their dry part. A
schematic of such a junction is displayed in Fig. 1. The
premelted part is bounded by two solid-liquid interfaces
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each having an energy σSL, and the energy of the dry GB is
σGB. For such a junction, the contact angle θ verifies,
according to Young’s law,

2 cosðθÞ ¼ σ�; ð1Þ

where σ� ¼ σGB=σSL. Premelting takes place when replac-
ing the dry GB by two solid-liquid interfaces becomes
energetically favorable, i.e., when σ� > 2. Then, Eq. (1)
does not have a solution. This indicates that for triple
junctions that form during GB premelting, Young’s law is
not applicable. In this Letter, we first show, using a sharp
interface model, how introducing the disjoining potential
into the energetics of the system regularizes the situation
and yields an equilibrium with a well-defined microscopic
contact angle, for which we give an analytical expression.
We support this finding using multiphase field model with
obstacle potential by an investigation of the dynamical
state not only under purely kinetic conditions but also under
diffusion controlled conditions. We finally conclude
and discuss our results in the context of surface phase
transitions.
Equilibrium microscopic contact angle.—We start study-

ing the triple junction displayed in Fig. 1 by considering a
system that is in equilibrium at a temperature T below the
melting temperature TM. The dimensionless temperature Δ
is defined as

Δ ¼ cPðT − TMÞ=L; ð2Þ

where cP and L are the specific and latent heats per unit
volume, respectively; Δ represents the bulk free-energy
density difference between liquid and solid, and is negative
in our range of interest.
In the sharp interface model, the solid-liquid interface is

described by the function yðxÞwith the triple junction at the
origin; i.e., yð0Þ ¼ 0. The line y ¼ 0 is the axis of
symmetry, and we solve for x > 0 and y > 0, i.e., for
the upper interface in Fig. 1. We assume σ� − 2 ≪ 1,
allowing us to use a small slope approximation; i.e.,
y0ðxÞ ≪ 1. In this case, the free energy of the system
coming from the interaction between the two solid-liquid
interfaces may be written as an integral over x of a local
contribution, the disjoining potential, which is proportional

to σGB − 2σSL and to a dimensionless function f½yðxÞ�. The
latter describes the fact that the interface energy changes
from σGB when y ¼ 0, to 2σSL when y → ∞.
In addition, the free energy includes two other terms. The

first one is the bulk free-energy increase due to the presence
of the liquid phase below TM, which is proportional to the
entropy of fusion L=TM, to the undercooling TM − T, and
to the amount of liquid 2y at position x. The second term
represents the interface energy change 2σSLð1þ y02=2Þ −
σGB linked to the substitution of the dry GB by two curved
solid-liquid interfaces. The free energy of the system then
reads

F½yðxÞ� ¼
Z

∞

0

dx

�
−2yðxÞL

S
Δþ σSLðσ� − 2Þf½yðxÞ�

þ σSLf2þ ½y0ðxÞ�2 − σ�g
�
; ð3Þ

where S ¼ cPTM=L.
At equilibrium, the temperature and, therefore, Δ are

homogeneous and yðxÞ must satisfy δF=δyðxÞ ¼ 0, i.e.,

−2Δþ ðσ� − 2Þd0
df
dy

½yðxÞ� − 2d0y00ðxÞ ¼ 0; ð4Þ

where d0 ¼ SσSL=L is the capillary length.
Asymptotically far from the triple junction, the pre-

melted GB is at equilibrium with a width y0 such that
d0½ðdfÞ=ðdyÞ�ðy0Þ ¼ 2Δ=ðσ� − 2Þ, y0ðx → ∞Þ ¼ 0, and
y00ðx → ∞Þ ¼ 0. Multiplying Eq. (4), which is satisfied
at any position x, by y0ðxÞ and integrating over x [18] yields

θ0 ¼
�
2Δ

y0
d0

þ ðσ� − 2Þffð0Þ − fðy0Þg
�

1=2
; ð5Þ

where θ0 ¼ y0ð0Þ is the contact angle at the triple junction.
Here, we find the equilibrium contact angle that derives
from introducing the disjoining potential. It thus corre-
sponds to a microscopic contact angle, while at larger
scale, the macroscopic contact angle vanishes (y0 → 0
when x → ∞), in accordance with the condition of full
wetting, i.e., σ� > 2. This is, to our best knowledge, the
first derivation of the microscopic contact angle under a
condition of full wetting of a GB.
With fðyÞ ¼ expð−2y=dwÞ, for which y0 ¼ ðdw=2Þ ln α,

where α ¼ −ðσ� − 2Þðd0=dwÞ=Δ, one obtains

θ0 ¼
�
ðσ� − 2Þ

�
1 −

1þ ln α
α

��
1=2

: ð6Þ

We see that θ0 varies between
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
and 0 within the

premelting temperature range, i.e., for, respectively, 1=α →
0 and 1=α → 1. Thus, our small slope hypothesis indeed
corresponds to the condition σ� − 2 ≪ 1, and more

FIG. 1. A schematic of the triple junction that forms when the
premelted part of a GB meets its dry part.

PHYSICAL REVIEW LETTERS 127, 225701 (2021)

225701-2



precisely
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
≪ 1. In Fig. 2, we present the function

yðxÞ for different values of α, for σ� ¼ 2.01 and for a ratio
of microscopic lengths dw=d0 ¼ 1. We observe the loga-
rithmic increase of the equilibrium width y0 with α. In the
inset, we present a close-up at the triple junction showing
the convergence of y0ð0Þ ¼ θ0 →

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
(here 0.1, i.e.,

the dashed line) when α → ∞.
In the case of a nonconvex potential fðyÞ ¼

expð−2y=dw1Þ½1 − β sin 2y=dw2Þ�, a first-order GB phase
transition occurs when Δ varies (“intermediate case” in
Fig. 3 of Ref. [2]). As shown in Fig. 3 (for σ� ¼ 2.01,
dw1=d0¼0.25, dw2=d0¼0.16, and β ¼ 0.4), Δ=ðσ� − 2Þ ¼
−0.8 yields a low-temperature equilibrium (blue line) with
a small layer width, while Δ=ðσ� − 2Þ ¼ −0.0375 yields a
high-temperature equilibrium with a larger width (green
line). At Δc=ðσ� − 2Þ ≃ −0.242, a common tangent exists.
Then, when jΔj is larger than jΔcj the high-temperature
phase is absent at equilibrium, and a coexistence of the two
solutions occurs when jΔj is slightly smaller than jΔcj, as
shown in the inset (red line). Such a situation with multiple
equilibria yields a diversity of GB phases in a polycrystal-
line material, as for example when few-monolayer-thick

Ga, followed by a Ga liquid film, penetrates along GBs in
polycrystalline Al [17,19], or when several complexion are
observed on the same GB in Ni-Bi [20].
Phase-field simulations.—Now, we investigate whether a

phase-field model can reproduce the physics that was
evidenced in the previous section. We use here the
multiphase field model with obstacle potentials imple-
mented in the software MICRESS [21], which has proven
its applicability in modeling premelting under equilibrium
conditions. Within this frame, the coupled evolution
equations of ϕ1, ϕ2, and ϕ3 yield as an implicit result a
convex disjoining potential, that obeys Eq. (46) in Ref. [22]
and differs from a simple exponential. Recently, we applied
this model to the problem of growth of the liquid layer
along a dry GB [23]. The investigation of the structure of
the triple junction during this growth is thus a natural
extension of our previous study.
The details of the phase-field model are discussed

elsewhere [23–25]. As displayed in Fig. 4, grain 1 is
assigned the phase field ϕ1, meaning that ϕ1 ¼ 1 in its
bulk. Similarly, grain 2 is assigned the phase field ϕ2. The
liquid phase is assigned the phase field ϕ3. The evolution
equations obey a sum rule ϕ1 þ ϕ2 þ ϕ3 ¼ 1, and for our
premelting problem, the liquid is never in its bulk state; i.e.,
we have ϕ3 < 1. The triple junction is defined as the
position where the two lines corresponding to ϕ3 ¼ ϕ1 and
ϕ3 ¼ ϕ2 cross [26], and the triple junction thus corresponds
to an equality of the three phase fields ϕ1 ¼ ϕ2 ¼
ϕ3 ¼ 1=3. The contact angle is then defined as the slope
of these lines at the triple junction.
In our previous study [23], we have analyzed in detail the

equilibrium corresponding to a premelted GB. The phase-
field equations are then one dimensional, i.e., depend on a
single spatial coordinate x, and they yield temperature-
dependent phase-fields distributions ϕ1ðxÞ, ϕ2ðxÞ, and
ϕ3ðxÞ. The lengths are scaled by the interface width η,
which corresponds to the length scale of the variations of
the phase fields in case of a two-phase equilibrium, i.e.,
when only two phase fields vary while the other one
vanishes identically. The liquid phase field ϕ3 reaches its
maximum value at the center of the liquid layer, x ¼ 0. This
maximum value ϕ3ðx ¼ 0Þ vanishes when a dimensionless
temperature defined as

ΔPF ¼ ðL̃=SÞΔ; ð7Þ

with L̃ ¼ Lη=ð4σSLÞ, reaches −ðσ� − 2Þ=2. The latter
quantity sets the maximum undercooling below which pre-
melting is still possible. Recalling that, in the sharp inter-
face model, α was defined as the ratio of the maximum
undercooling for premelting and the actual undercooling, a
corresponding quantity can be defined for the phase-field
model as

αPF ¼ −
σ� − 2

2ΔPF
; ð8Þ

FIG. 2. Shape of solid-liquid interface for different values of α
in the case of the disjoining potential fðyÞ ¼ expð−2y=dwÞ. Here
σ� ¼ 2.01 and dw=d0 ¼ 1. Inset: focus on the region close to
x ¼ 0 in which the α dependence of the microscopic contact
angle and its convergence to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p ¼ 0.1 (dashed line) are
apparent.

FIG. 3. Nonconvex disjoining potential (see text) with different
scenarios depending on the slope of the dashed lines. Inset:
corresponding equilibrium shape of the premelted layer.
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which also satisfies 0 < 1=αPF < 1. While the width of the
liquid layer increases with α in the sharp interface descrip-
tion, ϕ3 increases with αPF in the phase-field model
according to

ϕ3ð0Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=αPF

p
; ð9Þ

when one assumes σ� − 2 ≪ 1 [see Eq. (9) in Ref. [23]—
pay attention the definition of Δ).
The objective of this section is to analyze whether the

contact angles resulting from the phase-field simulations
reproduce, at least qualitatively since the disjoining poten-
tial is not a simple exponential in the phase-field model, the
temperature variation of the equilibrium contact angle
predicted by Eq. (6).
Two different sets of phase-field simulations were

performed. First, a homogeneous and constant temperature
field is prescribed and the dynamics is purely kinetically
controlled. Second, diffusive conditions are assumed, for
which the temperature field is numerically solved with a
Dirichlet boundary condition far ahead of the triple junction
and adiabatic boundary conditions elsewhere. In both
cases, the liquid layer grows steadily along the dry GB.
The characteristics of the produced premelted GB are set by
the temperature far behind the triple junction, which is
prescribed in kinetic conditions and results from energy
conservation in diffusive conditions. In both sets of
simulations, the grid step is η=30, S ¼ 10, L̃ ¼ 37.5. For
the diffusive simulations, the diffusion coefficient D,
expressed through the characteristic velocity μ associated
with the phase field (phase-field mobility) is D=ðd0μÞ ¼ 1.
As mentioned above, the location of the triple junction is

determined by the intersection of the isolines ϕ1 ¼ ϕ3 and
ϕ2 ¼ ϕ3; i.e., all the phase fields take the same value of 1=3
at the triple junction. Thus, for ϕ3ð0Þ < 1=3, i.e., for
1=αPF > 8=9 [see Eq. (9)], the triple junction cannot be
defined. This is illustrated in Fig. 4, where isolines ϕ3 ¼ ϕ2

and ϕ3 ¼ ϕ1 are superimposed on the color map of ϕ3 for
three different values of 1=αPF. It can be seen that, while the
two isolines intersect for 1=αPF ¼ 0.0469 and 0.797, they
do not for 0.992 and the position of the triple junction
cannot be defined.

In the left-hand panel of Fig. 5, the phase field results for
the measured angle at the triple junction θ are presented as a
function of 1=αPF. Accordingly, no data point exists beyond
the vertical dashed line, i.e., for 1=αPF > 8=9. The angle is
normalized by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
, and an error bar is provided

corresponding to the effect of the spatial discretization
on the measurement. The blue and black markers represent
simulations under purely kinetic conditions for which αPF is
prescribed, respectively, for σ� ¼ 2.02 and 2.01. The red
markers represent simulations with σ� ¼ 2.01 under dif-
fusive conditions. In the right-hand panel of Fig. 5, we
present the diffusion field in the neighborhood of the triple
junction, with 1=αPF ≃ 0.65 being measured at the tip of the
black curve corresponding to ϕ3 ¼ 1=3. The inhomo-
geneity of ΔPF on the relevant length scales (η in the
y direction and η=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
in the x direction) is sufficiently

small (not exceeding 7%–8% of its value in any simulation)
for excluding its influence on the difference of measured
angle whether in purely kinetic or diffusive simula-
tions (black and red markers). Instead, we attribute this

FIG. 5. Left: normalized microscopic contact angle measured in
the phase-field simulations for purely kinetic (blue and black
markers) and diffusive (red markers) conditions as a function of
the normalized undercooling 1=αPF. The error bars correspond to
the influence of the spatial discretization on the measurement. As
a reference, the angle deriving from Eq. (6) is plotted in brown
solid line. The dashed vertical line corresponds to 1=αPF ¼ 8=9
(see text); Right: diffusion field around the triple junction, located
at the tip of the black curve, that represents ϕ3 ¼ 1=3. The
lengths are given in units of η=ð2πÞ.

FIG. 4. Color map of liquid phase field ϕ3 along with isolines ϕ3 ¼ ϕ2 and ϕ3 ¼ ϕ1, whose intersection determines the triple junction
position. Results are for 1=αPF ¼ 0.0469, 0.797, 0.992 (left, center, right). In the latter case, because 1=αPF > 8=9, the phase-field
computation does not lead to a defined triple junction. Note that the scale of the color bar is different between the left, center, and right plots.
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difference to finite velocity effects. Indeed, here, for
1=αPF ¼ 0.38, 0.51, and 0.65, the selected velocities are
Vd0=D ¼ 1.375, 0.975, and 0.6875, respectively, and the
ratio between the growth velocity and the diffusion velocity
is of order unity, while vanishing velocity effects would
correspond to Vd0=D ≪ 1.
In addition, the analytical expression for the equilibrium

contact angle in Eq. (6) is given as a reference with a brown
solid line in the left-hand panel of Fig. 5. A similar trend is
clearly observed in the simulations and the analytics. The
scaling θ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
seems fully appropriate in view of the

proximity of the different sets of data points and of the
analytical curve, although the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
≪ 1 is

actually relatively weakly fulfilled.
Conclusion.—We have studied, using sharp interface and

phase-field models, the geometry of a triple junction under
premelting conditions, i.e., when an atomically thin liquid
layer propagates along a dry grain boundary below TM.
While Young’s law fails in this case, the disjoining potential
plays a major role and provides a solution for the micro-
scopic contact angle and the shape of the liquid layer. Our
results can be interpreted in terms of surface phase
transitions between the “dry” phase and one or more (when
the disjoining potential is nonconvex) premelted phases.
The integrand in Eq. (3) varies along the x axis between 0 in
the dry phase (x < 0) and a negative value when x → ∞,
with a maximum proportional to θ2 ∼ σ� − 2 at the triple
junction. Accordingly, the transition takes place on a length
of order dw=θ ∼ dw=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� − 2

p
. The phase-field simulations

reproduce faithfully the analytical results for the contact
angle, thus opening the way for the simulation of analyti-
cally nontractable more complex scenarios. While the
phase-field model used here generates a convex disjoining
potential, an interesting future development of the model
would concern nonconvex potentials. Our work contributes
to the understanding of premelting, in particular in systems
exhibiting liquid-metal embrittlement such as Ga-Al [17] or
Ni-Bi [20], and of transitions between GB complexion such
as the one reported in Ref. [27]. It may therefore open new
ways for the engineering of transport properties along
interfaces in materials.
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