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We report the development of a vibrational-electronic convergent close-coupling method for electron-
molecule scattering with an ab-initio account of the coupling between the electronic and vibrational
motions. The technique has been applied to scattering on molecular hydrogen, including coupling between
vibrational levels in the first 11 electronic states. Distinct resonances associated with the temporary
formation of the H−

2 ion are present between 10 and 14 eV for numerous transitions, including vibrational
excitation of the X 1Σþ

g state, dissociation via the b 3Σþ
u state, and excitation of the B 1Σþ

u state. With both
resonant and nonresonant scattering treated in a single calculation, this method is capable of providing self-
consistent sets of cross sections for electron-molecule scattering in regions where the adiabatic-nuclei
approximation breaks down.
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Over the last few decades it has been the goal of the
convergent close-coupling (CCC) method to provide a
“complete scattering theory”—one capable of accurately
describing all processes of interest over the entire range of
collision energies for a given scattering system [1]. The
ab initio CCC method is particularly well suited for this
endeavor, since its expansion of the total scattering wave
function over the target states explicitly couples all reaction
channels, and the pseudostate representation of the target
continuum allows accurate elastic, excitation, and ioniza-
tion amplitudes to be extracted from a single calculation
[2,3]. The distinguishing feature of CCC compared with
other methods based on the close-coupling principle is the
efficiency of its implementation, allowing large-scale
convergence studies to be performed. For electron and
positron scattering on quasi one- and two-electron targets,
the CCC method can be considered a complete scattering
theory.
The molecular CCC (MCCC) method is a separate

implementation of the CCC theory for scattering on
molecular targets, and has been shown to completely solve
the electronic scattering problem for collisions with
molecular hydrogen (H2) within the fixed-nuclei (FN)
approximation [4]. The extension of the MCCC method
to generate vibrationally resolved cross sections using the
adiabatic-nuclei (AN) approximation has been a major step
forward in producing a comprehensive set of data for
electron scattering on H2 and its isotopologues [5,6].
However it is well known that the AN approximation is
unable to describe resonant processes, even approximately.
For electron-atom scattering, close-coupling methods are
able to properly represent resonances in the calculated cross

sections by virtue of the implicit representation of the
compound states in the close-coupling expansion of the
scattering wave function. A similar implicit treatment of
resonances in molecular scattering requires both electronic
and nuclear states of the target to be included in the
close-coupling expansion, leading to calculations which
have historically been intractable. Current methods for the
computation of resonant scattering cross sections typically
utilize the projection-operator formalism of Feshbach [7] to
project out the nonresonant scattering channels and explic-
itly couple the target and compound states involved in each
transition [8–13]. These techniques require input from
electronic scattering calculations (generally R matrix) for
the resonance energies and widths, before solving the
nuclear dynamics problem.
Our goal now is to incorporate resonant scattering into

the MCCC method, with the motivation of having a single
theoretical framework within which all scattering processes
of interest can be calculated. As a first step, we continue
to treat the rotational motion adiabatically, but explicitly
couple the electronic and vibrational motions. We refer to
this method as vibrational-electronic molecular convergent
close-coupling (VE MCCC). For simplicity, we assume
that the Born-Oppenheimer approximation is valid for the
target states, allowing us to write the close-coupling
expansion for the vibronic (vibrational and electronic)
scattering state jΨðþÞ

ivi
i as

jΨðþÞ
ivi

i ≈ jΨN ðþÞ
ivi

i ¼ A
X

ðn;vÞ∈N
jfN ðþÞ

nv;ivi
ijΦnijνnvi; ð1Þ
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whereA is the antisymmetrization operator, jfN ðþÞ
nv;ivi

i are the
multichannel projectile states, jΦni is an electronic target
state, jνnvi is a target vibrational state in the electronic state

n, and N denotes the set of all vibronic states included in
the expansion.
The corresponding momentum-space close-coupling

equations for the scattering T matrix are

hqfνfvfΦfjTjΦiνiviqii ¼ hqfνfvfΦfjVjΦiνiviqii þ
X

ðn;vÞ∈N

Z
hqfνfvfΦfjVjΦnνnvqiGðþÞ

nv ðqÞhqνnvΦnjTjΦiνiviqiidq; ð2Þ

where T and V are the transition and interaction-potential

operators, respectively, and GðþÞ
nv ðqÞ is the asymptotic

Green’s function. The solution of the Lippmann-Schwinger
equations [Eq. (2)] proceeds in a similar manner as in the
FN MCCC method [14]. The representation of the vibronic
scattering state in a complete basis [Eq. (1)] implicit in the
solution of these equations leads to an accurate description
of the compound three-electron states. Hence, without
requiring explicit information about the resonance states,
we expect to see the effects of both resonant and nonreso-
nant scattering in the calculated cross sections. Further
developments to include rearrangement channels explicitly,
in a similar manner to the two-center CCC method for
positron scattering on atoms [15], would allow cross
sections for the important dissociative electron attachment
process to be extracted.

The interaction potential contains both the direct and
exchange interactions:

V ¼ Vd þ Vexch; ð3Þ

the latter arising due to the antisymmetrization operator in
Eq. (1). The Born-Oppenheimer representation of the target
states allows for a simplification of the direct V-matrix
elements by calculating the electronic matrix element first
as a function of the internuclear separation before perform-
ing the vibrational integrations:

hq0νn0v0Φn0 jVdjΦnνnvqi ¼ hνn0v0 jhq0Φn0 jVdjΦnqijνnvi: ð4Þ

The electronic matrix elements are taken from the sphe-
roidal-coordinate implementation of the MCCC method to
ensure their accuracy at all internuclear separations
required (see Ref. [16] for details of the spheroidal
implementation). The exchange potential operator is
given by

Vexch ¼ ðE −Hel − KvibÞ
X2
j¼1

P0j; ð5Þ

where P0j is the spin- and space-exchange operator, E
is the total scattering energy,Hel is the electronic scattering-
system Hamiltonian, and Kvib is the target vibrational
kinetic-energy operator. We apply the common

approximation of neglecting the effect of Kvib on the
electronic target wave functions [17], which are assumed
to vary slowly with R compared with the vibrational
wave functions, so the exchange V-matrix element can
be expressed as

hq0νn0v0ΦnjVexchjΦnνnvqi

¼ hνn0v0 jhq0Φn0 jðE −HelÞ
X2
j¼1

P0jjΦnqijνnvi

− hνn0v0 jhq0Φn0 j
X2
j¼1

P0jjΦnqiKvibjνnvi: ð6Þ

In this Letter, we investigate resonances in the cross
sections for scattering on the ground (electronic and
vibrational) state of H2, considering pure vibrational
excitation, dissociation via the b 3Σþ

u state, and excitation
of the B 1Σþ

u state, in the 10–14 eVenergy region. The most
prominent resonance in this region is the well-known C 2Σþ

g

state of H−
2 , which has been the focus of many previous

studies [12,13,18]. A number of resonances of other
symmetries have also been identified by Stibbe and
Tennyson [19]. We have performed VEMCCC calculations
including the X 1Σþ

g , b 3Σþ
u , a 3Σþ

g , B 1Σþ
u , c 3Πu, EF 1Σþ

g ,
C 1Πu, e 3Σþ

u , h 3Σþ
g , B0 1Σþ

u , and d 3Πu electronic states of
H2, and a projectile partial-wave expansion with Lmax ¼ 6.
This model yields sufficiently converged cross sections
(within 5%) for the transitions and incident energies of
interest. Previous R-matrix studies have shown that an
accurate representation of the H−

2 resonance states can be
achieved using an expansion with fewer than ten low-lying
H2 states [19,20], so we expect the present model to give an
accurate account of resonant scattering.
The close-coupling expansion [Eq. (1)] includes bound

vibrational states as well as vibrational pseudostates which
discretize the dissociative continuum of each electronic
state, leading to an account of dissociation equivalent to the
pseudostate treatment of ionization in the CCC or R matrix
with pseudostate methods [21,22]. Convergence in the
transitions of interest was confirmed with respect to
the number of vibrational levels included, with the final
calculations containing a total of 587 vibronic states.
To handle the large number of coupled equations in

PHYSICAL REVIEW LETTERS 127, 223401 (2021)

223401-2



Eq. (2) we utilize a hybrid OpenMP-MPI parallelism
scheme with the V matrix distributed across many super-
computer nodes.
In Fig. 1, we present the cross sections for excitation of

the b 3Σþ
u and B 1Σþ

u states considering only the 2Σg
scattering symmetry. There are prominent resonances in
both cross sections, associated with the temporary forma-
tion of the excited Rydberg C 2Σþ

g state of the H−
2 ion. The

resonance positions are in excellent agreement with the
experimentally determined vibrational energies of Comer
and Read [23] for this state, which are indicated by the
vertical dashed lines in the figure. Similar resonances were
found in recent local complex-potential (LCP) calculations
[13] of the D2 b 3Σþ

u excitation, although these calculations
do not include the nonresonant contribution.
An illustration of the resonant and nonresonant processes

contributing to dissociation through the b 3Σþ
u state in the

2Σg symmetry is provided in Fig. 2. The nonresonant
process corresponds to the electronically free scattering
channels, while the resonant process corresponds to the
electronically bound scattering channels [24,25]. The
resonant process proceeds via capture of the incident
electron to form the H−

2 ion in one of a number of possible
vibrational levels, before the compound state decays back
into neutral H2 plus a free electron. For a given final energy
in the b 3Σþ

u continuum, the nonresonant process has a
lower threshold than the resonant process because it does
not require the formation of a higher-energy intermediate
state. Each of the resonance peaks in the calculated cross
section corresponds to the formation of a different vibra-
tional level in the compound C 2Σþ

g state. The C 2Σþ
g state

primarily decays into the X 1Σþ
g , b 3Σþ

u , and B 1Σþ
u states of

H2 [19], leading to similar resonance structures in the
excitation cross sections for each of these states.

In Fig. 3 we present cross sections for excitation of the
b 3Σþ

u , B 1Σþ
u , and X 1Σþ

g states, showing the contributions
from the four dominant scattering symmetries: 2Σu, 2Σg,
2Πg, and 2Πu. The B 1Σþ

u cross section is summed over all
final vibrational levels, while the X 1Σþ

g cross section is
summed over levels vf > 0 since the vibrationally elastic
cross section is dominated by nonresonant scattering and
would obscure the resonance structures. For dissociative
excitation of the b 3Σþ

u state there are prominent resonances
in both the 2Σg and 2Πu symmetries, and barely visible
features in the others. The B 1Σþ

u cross section has reso-
nance structures in all four symmetries, which we compare
with measured or calculated resonance positions taken from
the literature: 2Σg and 2Σu from the measurements of Comer
and Read [23], 2Πu from the calculations of Stibbe and
Tennyson [19], and 2Πg from the measurements of Kuyatt
et al. [29]. In the 2Σu symmetry the present calculations
appear to show a number of resonance features above the
levels identified in Ref. [23]; however, inspection of the
contributions from each exit vibrational level suggests these
are the result of interference between nonresonant channels
as higher vibrational levels open with increasing energy. In
the 2Πg symmetry we do not see the first two resonances
found by Kuyatt et al. [29], either because they were
incorrectly identified, or because the calculated cross
section is too small near the threshold for the resonances
to be visible. In the X 1Σþ

g cross sections there are
prominent peaks in the 2Σg and 2Πu symmetries, with only
faint features in the other two symmetries.
In Fig. 4 we present cross sections for pure vibrational

excitations (from vi ¼ 0) within the X 1Σþ
g state in the 2Σg

scattering symmetry. The vibrationally elastic v ¼ 0 → 0
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FIG. 1. Electron-impact cross sections for excitation of the
b 3Σþ

u and B 1Σþ
u states of H2 from the ground state, considering

only the 2Σg scattering symmetry. The vertical dashed lines
indicate the C 2Σþ

g vibrational energy levels of the H−
2 ion

determined experimentally by Comer and Read [23].
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FIG. 2. Illustration of the resonant and nonresonant processes
contributing to the X 1Σþ

g → b 3Σþ
u transition. The H2 potential-

energy curves are taken from Refs. [26–28], and the H−
2 curve

from Ref. [19]. The vibrational energies of the C 2Σþ
g state are

taken from Ref. [23].
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cross section is dominated by nonresonant scattering. The
nonresonant contribution diminishes with an increasing
exit vibrational level, so that for vf > 2 only the resonance
peaks are visible. Celiberto et al. [12] have previously
calculated cross sections for resonant vibrational excitation

of H2 involving the 2Σg symmetry in this energy range,
using the LCP method. Although the resonance structures
seen in the LCP results are similar to those in the present
calculations, the two data sets are not directly comparable,
since the LCP calculations do not account for nonresonant
scattering. In fact, the vibrationally elastic v ¼ 0 → 0 cross
section presented by Celiberto et al. [12] has prominent
resonance peaks corresponding to the C 2Σþ

g vibrational-
level energies, while in the present calculations there are
dips at the resonance energies in this cross section. A novel
feature of our method which is not present in alternative
approaches is the proper account of coupling between
resonant and nonresonant scattering channels, which cap-
tures the redistribution of flux from nonresonant elastic
scattering into the resonant excitations and leads to the dips
in the v ¼ 0 → 0 cross section.
Resonances also appear in FN calculations of electron-

molecule cross sections, associated with the formation of a
compound state at the fixed internuclear separation. In
Fig. 5 we compare the X 1Σþ

g ðvi ¼ 0Þ → b 3Σþ
u cross

section in the 2Σg symmetry obtained using the present
VE MCCC method with results obtained using the FN
approximation. The FN calculation utilizes an electronic
close-coupling expansion consisting of the same electronic
states included in the VEMCCC calculations. Above 13 eV
the two methods produce similar results, but in the
resonance region the FN approximation clearly break
down. The FN cross section has a prominent resonance
just below 12 eV, corresponding to the vertical excitation
energy of the H−

2 C 2Σþ
g state at the mean internuclear

separation [19]. Evidently, the FN approximation is able to
roughly identify the energy region where the resonances
should occur, but cannot predict the number of resonances
or their positions. The magnitude of the FN resonance peak
is also substantially larger than any of the true resonances.
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FIG. 3. Electron-impact cross sections for excitation of the
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state. The results are displayed separately for each of the four
dominant scattering symmetries: 2Σu, 2Σg, 2Πu, and 2Πg. The
B 1Σþ

u cross section is summed over the final vibrational levels,
while the X 1Σþ

g cross section is summed over levels vf > 0.
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In this Letter we have demonstrated the feasibility of
extending the MCCCmethod to include both electronic and
nuclear states in the close-coupling expansion, allowing the
calculation of self-consistent sets of absolute cross sections
where the adiabatic-nuclei approximation breaks down.
The method treats both resonant and nonresonant scattering
on the same footing, and does not require the input of
resonance data from external calculations. We have applied
the method to the resonance structures in the 10–14 eV
incident-energy region of electron scattering on H2, and
found agreement with previously measured or calculated
resonance positions. As the MCCC method is extended to
more complex diatomic molecules in the future, the
techniques described here can be immediately applied.
This will allow the benefits of large-scale close-coupling
calculations, such as rigorous demonstrations of conver-
gence and a proper account of interchannel coupling, to be
applied to all molecular scattering processes. Thus, a
complete description of electron-molecule scattering pre-
viously believed to be unfeasible is becoming within reach
of present-day computational methods.
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