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Single-file diffusion refers to the motion in narrow channels of particles which cannot bypass each other,
and leads to tracer subdiffusion. Most approaches to this celebrated many-body problem were restricted to
the description of the tracer only. Here, we go beyond this standard description by introducing and
providing analytical results for generalized correlation profiles (GCPs) in the frame of the tracer. In addition
to controlling the statistical properties of the tracer, these quantities fully characterize the correlations
between the tracer position and the bath particles density. Considering the hydrodynamic limit of the
problem, we determine the scaling form of the GCPs with space and time, and unveil a nonmonotonic
dependence with the distance to the tracer despite the absence of any asymmetry. Our analytical approach
provides several exact results for the GCPs for paradigmatic models of single-file diffusion, such as
Brownian particles with hardcore repulsion, the symmetric exclusion process and the random average
process. The range of applicability of our approach is further illustrated by considering (i) extensions to
general interactions between particles, (ii) the out-of-equilibrium situation of an initial step of density, and
(iii) beyond the hydrodynamic limit, the GCPs at arbitrary time in the dense limit.
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The key feature of single-file diffusion [1–3], which
refers to the motion of particles which cannot bypass each
other, is that a typical displacement of a tracer particle
scales as t1=4 instead of t1=2 as in regular diffusion [4–11].
This subdiffusive scaling has been demonstrated in a
growing number of experimental realizations, in contexts
as varied as transport in porous media [12,13], zeolites [14],
or confined colloidal suspensions [15,16]. Theoretically, it
has lead to a huge number of works in the physical and
mathematical literature. Recent advances include the deter-
mination of the large deviation functions of the position of a
tracer in a system of Brownian particles with hardcore
repulsion [17–19] and in the symmetric exclusion process
[20,21] (see below for definitions), which are two para-
digmatic models of single-file diffusion with hard-core
interactions.
Theoretical interest in single-file diffusion originates

from the challenging many-body nature of the problem:
any large displacement of the tracer particle in one direction
requires large displacements of more and more bath
particles in the same direction. However, the quantification
of the coupling between the tracer position and the bath
particles density remains a broadly open question. Here, we
develop a theoretical framework with which to determine
these correlations for single-file systems.
We introduce our formalism by considering first the

symmetric exclusion process (SEP). Particles, present at a

density ρ, perform symmetric continuous-time random
walks on a one-dimensional lattice with unit jump rate,
and hard-core exclusion is enforced by allowing at most
one particle per site [Fig. 1(a)]. The tracer, of position Xt at

(a)

(b) (c)

FIG. 1. SEP. (a) The symmetric exclusion process (SEP). The
position of the tracer is called Xt and the occupation numbers of
the sites with respect to the tracer are denoted ηXtþr. (b) Profiles
of order 1 at densities 0.1,0.25,0.5,0.75,0.9 at time t ¼ 3000
(blue to red). Dashed gray line: prediction from Eq. (9). Inset:
rescaled variance κ̃2 ¼ κ2ρ=ð1 − ρÞ compared to known expres-
sion (gray) [7] and retrieved by our approach. (c) Profiles of order
1, 2, and 3 at high density (ρ ¼ 0.95, t ¼ 1000). Dashed gray
line: prediction from Eq. (10).
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time t, is initially at the origin. The bath particles are
described by the set of occupation numbers ηrðtÞ of each
site r ∈ Z of the line at time t, with ηrðtÞ ¼ 1 if the site is
occupied and ηrðtÞ ¼ 0 otherwise.
To quantify the coupling between the position of the

tracer and the density of bath particles, we study the joint
process ðXt; ηXtþrÞ, which is entirely characterized by its
joint cumulant generating function lnheλXtþχηXtþri. Since
ηXtþr only takes values 0 and 1, this function takes the
form [22]

lnheλXtþχηXtþri ¼ ψðλ; tÞ þ lnð1þ ðeχ − 1Þwrðλ; tÞÞ; ð1Þ

where ψðλ; tÞ is the usual cumulant-generating function,
whose expansion defines the cumulants κn of the position:

ψðλ; tÞ≡ lnheλXti≡X∞
n¼1

λn

n!
κnðtÞ: ð2Þ

In turn, wrðλ; tÞ is the generalized correlation profile
(GCP)-generating function [27,28]

wrðλ; tÞ ¼ hηXtþreλXti=heλXti; ð3Þ

whose expansion gives the joint cumulants hηXtþrXn
t ic of

the tracer position Xt and the occupation number ηXtþr

measured in its frame of reference. For instance, the first
cumulant hηXtþrXtic ¼ CovðηXtþr; XtÞ provides a measure
of the correlations between the displacement of the tracer
and the occupation of the site at a distance r of the tracer,
while the second one hηXtþrX2

t ic ¼ CovðηXtþr; X2
t Þ (since

hXti ¼ 0) gives a measure of the correlation between the
amplitude of the fluctuations of Xt and the occupation at a
distance r of Xt. Finally, the joint cumulant generating
function (1) is given by the knowledge of ψ and wr, which
are thus key quantities, whose joint determination is the
object of this Letter.
While it is known that the cumulant-generating function

ψ scales as
ffiffi
t

p
at large time for single-file systems, we put

forward that, more generally, at large scale (large time,
large distances), the GCP-generating function admits the
scaling form:

wrðλ; tÞ − ρ ∼
t→∞

Φ
�
λ; v ¼ rffiffiffiffi

2t
p

�
≡X∞

n¼1

λn

n!
ΦnðvÞ: ð4Þ

We note that the symmetry of the system imposes
Φðλ; vÞ ¼ Φð−λ;−vÞ: in the following the results will be
stated only for v > 0. When the tracer moves, it perturbs the
bath particles and gives birth to correlation profiles which,
as displayed by this scaling form, are not stationary but
involve typical length scales growing as

ffiffi
t

p
. In turn, the

way the bath particles readjust at the front and behind the
tracer (encoded in w�1) controls its displacement. This can

be quantified by computing the time evolution of the
cumulant generating function ψ , using a mixed Eulerian
(for the bath particles) and Lagrangian (for the tracer)
master equation, leading to (see Sec. I in the Supplemental
Material, SM [22])

dψ
dt

¼ 1

2
½ðeλ − 1Þð1 − w1Þ þ ðe−λ − 1Þð1 − w−1Þ�: ð5Þ

Finally, this equation shows that, besides fully quantifying
the correlations between the tracer position and the density
of bath particles, the GCPs control the time evolution of the
cumulant-generating function. In particular, the scaling
ψðλ; tÞ ∼

t→∞

ffiffi
t

p
of the cumulants [20,21] actually originates

from the scaling form (4) of the GCP generating function.
Relying again on the mixed Eulerian and Lagrangian
master equation and on the scaling of Φ [Eq. (4)], we
show in the SM that this key quantity satisfies the hydro-
dynamic equation

Φ00ðvÞ þ 2ðvþ bμÞΦ0ðvÞ þ CðvÞ ¼ 0 ð6Þ

completed by the boundary conditions

Φ0ð0�Þ þ 2b�½ρþΦð0�Þ� ¼ 0 ð7Þ

1 − ρ −Φð0−Þ ¼ eλ½1 − ρ −Φð0þÞ� ð8Þ

in front and past the tracer, with μ the sign of v, bμðλÞ≡
limt→∞ψðλ; tÞ=½

ffiffiffiffi
2t

p ðeμλ − 1Þ� and the dependence on λ
omitted for simplicity. While Eq. (7) results from the time
evolution of w�1 obtained from the master equation, Eq. (8)
comes from the cancellation of ðdψ=dtÞ at large times [see
Eq. (5)] due to the scaling ψðλ; tÞ ∼ ffiffi

t
p

. The function CðvÞ
involves higher order correlations, and is a priori unknown.
However, as we report below (see SM for details), explicit
exact expressions of the GCPs can be obtained in several
important situations.
First, we show that the function CðvÞ is strictly equal to

zero at first order in λ, making Eq. (6) closed at this order,
and leading to

Φ1ðv > 0Þ ¼ 1 − ρ

2
erfcðvÞ: ð9Þ

This expression provides the exact large-time behavior of
the correlation function hηXtþrXtic ¼ CovðηXtþr; XtÞ of the
SEP at any density. The fact that it is positive for v > 0
indicates that, if Xt > 0, the sites to the right of the tracer
have higher occupation numbers, which shows that there is
an accumulation of particles in front of the tracer. Note
that it decays monotonically to zero with the distance to
the tracer [Fig. 1(b)]. We finally stress that (9) together
with (8) allows one to recover in a straightforward
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way the well-known expression of the second cumulant
κ2ðtÞ ¼ ð1 − ρÞ=ρ ffiffiffiffiffiffiffiffiffi

2t=π
p

[4].
Second, in the dense limit ρ → 1, it is shown that the

function CðvÞ, which involves a product of occupation
numbers of bath particles, vanishes, which leads to the full
GCP-generating function

lim
ρ→1

Φðλ; v > 0Þ
1 − ρ

¼ 1 − e−λ

2
erfcðvÞ; ð10Þ

where the dependencies on λ and v factorize. This expres-
sion gives the GCPs of arbitrary order, which, up to a sign,
assume all the same value, and again decay monotonically
to zero [Fig. 1(c)].
Third we investigate the dilute limit ρ → 0 of the SEP.

We stress that the results in this case cannot be deduced
from the dense limit discussed above, since the particle-
hole symmetry of the SEP is explicitly broken by choosing
to follow the motion of one particle. Actually, this limit
exhibits a richer phenomenology. In fact, it corresponds
to the model of interacting pointlike particles on a line [17–
19], and needs to be taken at constant x ¼ ρr and τ ¼ ρ2t.
The density field ηXtþrðtÞ ↦ ηðx; τÞ becomes continuous in
space and the diffusive scaling for the GCPs reads v ¼
r=

ffiffiffiffi
2t

p ¼ x=
ffiffiffiffiffi
2τ

p
, leading to the definition Φ̂ðλ̂; vÞ ¼

limρ→0½Φðλ ¼ ρλ̂; vÞ=ρ�. In this case, the function CðvÞ
is not negligible, but we put forward self-consistently, in
order to retrieve the known cumulants κn (see point
(i) below), the closure relation

lim
ρ→0

½Cðλ ¼ ρλ̂; vÞ=ρ� ¼ 2λ̂
dβ

dλ̂
Φ̂0ðvÞ; ð11Þ

where we defined β ¼ limt→∞ð1=
ffiffiffiffi
2t

p Þðψ̂=λ̂Þ, with ψ̂ðλ̂Þ ¼
limρ→0½ψðλ ¼ ρλ̂Þ=ρ�. This leads to the key and strikingly
simple closed equation for the full GCP-generating
function

Φ̂00ðvÞ þ 2ðvþ ξÞΦ̂0ðvÞ ¼ 0; ð12Þ

which is the main result of this Letter. Together with (7), it
yields

Φ̂ðλ̂; v > 0Þ ¼ βerfcðvþ ξÞ
π−1=2e−ξ

2 − βerfcðξÞ ; ð13Þ

where ξ ¼ limt→∞ð1=
ffiffiffiffi
2t

p Þðdψ̂=dλ̂Þ. The quantities β and
ξ ¼ ðd=dλ̂Þðλ̂βÞ are then determined from Eq. (8), which
becomes

β
X
μ¼�1

erfcðμξÞ
π−1=2e−ξ

2 − μβerfcðμξÞ ¼ λ̂: ð14Þ

Several comments are in order. (i) Equation (14) is an
implicit equation that allows one to retrieve the exact

cumulants κn obtained in previous studies [17–19] (see
Sec. II.C in the SM [22] for detailed correspondence).
This validates self-consistently the closure relation (11).
(ii) Then, Eq. (13) provides the GCPs of interacting
pointlike particles at arbitrary order; for instance (Fig. 2),

Φ2ðvÞ ¼
1

ρ

�
1

2
erfcv − 2

e−v
2

π

�
; ð15Þ

Φ3ðvÞ ¼
3

π3=2ρ2
½ð2v − ffiffiffi

π
p Þe−v2 þ ffiffiffi

π
p

erfcv�: ð16Þ

(iii) The sign of these GCPs is nontrivial. For instance,
Φ2ðvÞ ¼ CovðηXtþr; X2

t Þ is negative (see Fig. 2 for n ¼ 2),
which implies that X2

t and ηXtþr fluctuate in opposite
directions: a larger fluctuation of X2

t is associated with a
smaller value of the occupation. Furthermore, even if there
is no asymmetry in the dynamics, these GCPs display a
surprising nonmonotonic behavior with the distance to the
tracer (see Fig. 2 for n ≥ 2), which indicates that this effect
is more pronounced at a certain distance of the tracer
(which is non stationary, and grows as

ffiffi
t

p
). (iv) It is

demonstrated in Sec. III.C in the SM [22] that the GCPs
actually coincide with the saddle-point solution in the
formalism of macroscopic fluctuation theory (MFT) [35],
evaluated at a specific point. In turn, it sheds new light on
this saddle-point solution. This, after (i), is a further
validation of the exactness of the closure relation (11).
A key result of our approach is that the GCPs satisfy the
very simple closed equation (12). (v) We stress that our
approach can be generalized to the important out-of-
equilibrium situation of an initial step of density [21,36].
The main equation (12) remains valid in this case, and only
the boundary conditions [(7), (8)] must be straightfor-
wardly adapted. The modified equations, and explicit
expressions of the cumulants and the GCPs are given in
the SM [22] [Eqs. (S58–S65)].
These analytical results can also be extended to a general

single-file system of interacting particles with average
density ρ. Such a system can be described at large scale
by two quantities: the collective diffusion coefficient DðρÞ
and the static structure factor at vanishing wave number
SðρÞ [16,34,37,38]. The case of the SEP considered above
corresponds to DðρÞ ¼ 1=2 and SðρÞ ¼ 1 − ρ. We con-
jecture that the first-order GCP of a general single-file
system can be obtained by adapting the main equation (12)
into DðρÞΦ00

1ðvÞ þ vΦ0
1ðvÞ ¼ 0, with the boundary condi-

tions 2DðρÞΦ0
1ð0�Þ þ ρκ̃2 ¼ 0 and Φ1ð0þÞ −Φ1ð0−Þ ¼

SðρÞ. This leads to the general expression

Φ1ðv ≥ 0Þ ¼ SðρÞ
2

erfc

�
vffiffiffiffiffiffiffiffiffiffiffiffiffi

2DðρÞp
�
: ð17Þ

Note that the known expression of the variance of the tracer
κ2ðtÞ ¼ ½SðρÞ=ρ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4DðρÞt=πp
[34,38] is recovered from the

particular value Φ1ð0Þ. The analytical result (17) can be
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retrieved by a MFT computation provided in Sec. III.C in
the SM [22]. Furthermore, it is supported by numerical
simulations (Fig. 3) of several paradigmatic examples of
single-file systems (see caption of Fig. 3 and Sec. IV in the
SM [22] for definitions) with hard-core interactions (the
Brownian hard-rods model, Fig. 3(a), as involved in the
experimental realization of the quasi-1D colloidal suspen-
sion from [16], and the random average process, Fig. 3(b)
[32,33,39,40]) and more general pairwise interactions
(Brownian pointlike particles with Weeks-Chandler-
Anderson (WCA) potential Fig. 3(c), and dipole-dipole
interactions, Fig. 3(d), as involved in the experimental
realisation of paramagnetic colloids confined in a 1D
channel from [15]).

Higher order GCPs can also be obtained in the dilute
limit. Indeed, in the limit ρ → 0 of a generic single-file
system, the collective diffusion coefficient and the structure
factor should respectively satisfyDðρÞ → D0 and SðρÞ → 1
where D0 is the diffusion constant of an individual particle
and 1 is the structure factor of the ideal gas. Equations (13)–
(16) are therefore valid for such a system at low enough
density, as confirmed by numerical simulations [Figs. 3(e)
and 3(f)].
Although we mostly focused on the hydrodynamic limit,

we stress that our approach also provides a framework to
analyze the GCP-generating function (3) at all times.
Starting from the microscopic equation satisfied by wr
deduced from the master equation [see Eq. (S69) and (S70)

FIG. 2. Pointlike interacting particles. Rescaled orders 1, 2, and 3 (left to right) of the GCPs at times τ ¼ 100, 200, 500, 1000, 2000,
5000 (green to black). The dashed gray lines are the predictions from Eqs. (9), (15), and (16). The insets show the second and fourth
cumulants with the solid lines corresponding to the simulations and the dashed gray line to the solution from Eq. (14).

(a) (c) (e)

(b) (d) (f)

FIG. 3. GCPs of single-file systems. (a)–(d) Profiles at order 1 for various models. The dashed gray lines correspond to the prediction
of Eq. (17). The insets show the rescaled variance κ̃2 ¼ κ2ρ=SðρÞwith the prediction in gray. (a) Hard-rod gas at density ρ ¼ 1 and time
t ¼ 1000. The length of a rod is a ¼ 0.1, 0.25, 0.5, 0.75, 0.9 (blue to red). The parameters are SðρÞ ¼ ð1 − aρÞ2, DðρÞ ¼ ð1 − aρÞ−2
[16]. (b) Random-average process [32,33] at density ρ ¼ 1 at times t ¼ 1000 and 5000 (light blue and blue): at exponential times, each
particle performs a symmetric jump whose length is a random fraction of the distance to the nearest particle. SðρÞ and DðρÞ are given in
Ref. [33]. (c) Pointlike Brownian particles interacting by a Weeks-Chandler-Andersen potential [VðrÞ ∝ ½ð1=r12Þ − ð1=r6Þ� for r < 21=6

and 0 otherwise]. Density ρ ¼ 0.2, 0.3, 0.4, 0.5 (blue to red) at time t ¼ 100. SðρÞ is the structure factor at vanishing wave-number, and
DðρÞ ¼ D0=SðρÞ [16,34]. (d) Pointlike Brownian particles interacting with long-range dipole-dipole interactions VðrÞ ∝ ð1=r3Þ at
density ρ ¼ 0.2 and 0.4 (blue and red) at time t ¼ 100. (e),(f) Profiles of order 2 for the same models as (c),(d) at density ρ ¼ 0.05 and
times 5 × 103 and 1 × 104 (light blue and blue). The dashed gray line is the low-density prediction from Eq. (15).
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in the SM], the dense limit of the GCP-generating function
w̌r ¼ limρ→1ðwr − ρÞ=ð1 − ρÞ in the Laplace domain reads

w̃rðuÞ ¼
Z

∞

0

e−utw̌rðtÞdt ¼
1

u
1 − e−νλ

1þ α
αjrj; ð18Þ

where ν ¼ signðrÞ and α¼1þu−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þuÞ2−1

p
, and the

dense limit of the cumulant generating function at all times
ψ̌ðλ; tÞ¼ limρ→1ψ=ð1−ρÞ¼ te−t(I0ðtÞþ I1ðtÞ)½coshλ−1�,
where In is a modified Bessel function of order n.
All together, the theoretical framework developed in this

Letter allows one to quantify the correlations between the
tracer and the bath of particles in single-file diffusion with
the help of generalized correlation profiles. We emphasize
the main merits of this method. First, it is based on a master
equation, which is a natural tool for physicists. Second, in
the limits considered here, it reduces to a simple first order
linear differential equation. In views of the complexity of
available methods to study tracer diffusion in single-file
systems, such as the coupled nonlinear partial differential
equation for the macroscopic fluctuation theory [17,35] or
integrable probabilities and the Bethe ansatz [21], this is an
important simplification. Furthermore, we discover a clo-
sure relation which allows us to break the infinite hierarchy
in a many-body model of pointlike particles with hardcore
repulsion. Beyond these technical aspects, the impact of the
present results is further demonstrated by considering
extensions to general interactions between particles, the
out-of-equilibrium situation of an initial step of density
and, beyond the hydrodynamic limit, the GCPs at arbitrary
time in the dense limit. Finally, our method opens the way
to the resolution at arbitrary density, which is a long-
standing and challenging question.
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