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We present two primitive algorithms to evaluate overlaps and transition matrix time series, which are
then used to construct several quantum-assisted quantum control algorithms. Unlike previous approaches,
our method bypasses tomographically complete measurements and instead relies solely on single qubit
measurements. We analyze circuit complexity of composed algorithms and sources of noise arising from
Trotterization and measurement errors.
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Introduction.—Quantum control is central to the design
of quantum technologies [1]. The control problem usually
involves optimizing a cost function that incorporates
conditions such as distance to a target state, bandwidth,
and fluence restrictions. The problem is then solved by
employing gradient search methods [2–7], nongradient
search methods [7–15], or hybrid algorithms [16,17].
Such solutions typically involve several iterative updates
to the controls before convergence to a local optima. Since
these methods simulate quantum evolution on a classical
computer repeatedly, often the time complexity for many-
body quantum control protocols is dominated by the
corresponding complexity of simulating the evolution.
Several techniques to partially overcome the computa-

tional intractability have been developed. For instance,
mean-field and cumulant expansion theories [18,19] have
been used in the place of the full evolution. However, the
approximations are either limited or uncontrolled. Another
recent approach [20] has been to use matrix product state
approaches embedded inside control algorithms. Though
this simulates a larger set of quantum states on a classical
computer, such techniques cannot efficiently simulate
generic quantum evolution.
Given the advances in noisy intermediate-scale quan-

tum (NISQ) computing [21,22] platforms, a potential
solution is to simulate quantum evolution on NISQ
devices [23] and extract control pulses via measurements.
This problem has been considered before, though the
solutions have been limited. For instance, the hybrid
GRAPE algorithm was proposed [24,25] and implemented
[26] for optimal control. The states are evolved on a
quantum simulator and the cost function and its gradients
are estimated by projecting the final density matrix into
specific quantum states. This technique is limited by the
fact that the number of projectors needed to span an
arbitrary density matrix basis is exponential in the
number of qubits. To mitigate this, previous authors
typically restricted the target states to sparse matrices

in the measurement basis, which in turn restricts the
possible control solutions one can obtain.
In this Letter, we propose the first control solution for

state optimization that is applicable to dense target states by
adapting existing techniques from quantum computation
and expanding them to compose two algorithmic primi-
tives. They can be implemented on a universal quantum
computer, provided the many-body target states are avail-
able as an off-line resource. This demand for an off-line
resource is justified since our method is akin to compilation
of quantum circuits, where an optimal gate decomposition
of a given unitary in terms of a universal gate set is sought.
Our method is related to these quantum gate compilation
techniques [27–29] in seeking optima but are significantly
different since the underlying unitary is also being opti-
mized for a fixed target state.
The main insight of our work is that most optimal control

techniques such as Krotov [2], GRAPE [3], CRAB [10,11],
and machine learning methods [8] only require certain
scalars in their update step (as opposed to a description
of the entire state). We propose schemes to extract these
scalars, which are either in the form of the overlap of
two states hψðtÞjχðtÞi or the transition element between
two states in a fixed Hermitian operator of the form
hχðtÞjμjψðtÞi using a digital quantum simulator (DQS)
and qubit measurements. A schematic illustration of our
quantum-assisted quantum control algorithm can be found
in Fig. 1.
Overlap estimation algorithm (OEA).—Consider two

time-dependent many-body quantum states jψðtÞi ¼
UðtÞjψ0i and jχðtÞi ¼ VðtÞjχ0i generated by the evolution
operators which are Trotterized implementations of a
time-continuous control sequence discussed below.
Given these two (generic) states, we wish to estimate
the overlap hχðtÞjψðtÞi. It is well known that if we were
given the bipartite state jxi ≔ ½j0ijψðtÞi þ j1ijχðtÞi�= ffiffiffi

2
p

,
the real part of the overlap hχðtÞjψðtÞi can be evaluated by
measuring the probability of j1i on the first (ancillary) qubit
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of the state H ⊗ Ijxi, where H denotes the Hadamard gate.
Likewise, the imaginary part of the overlap can be obtained
by starting with jx0i ≔ ½j0ijψðtÞi − ij1ijχðtÞi�= ffiffiffi

2
p

. We
next outline a method to generate such superpositions.
To create superpositions between unknown states, we

first extend the results of Oszmaniec et al. [30], who
proposed a probabilistic completely positive (CP) map Λsup

to superpose any two given states jψi and jχi which have
a nonzero overlap with a given reference state jζi.
Concretely, their algorithm takes as input jνi ¼ αj0i þ
βj1i; jψi and jχi to generate states of the form
αðhψ jζi=jhψ jζijÞjψi þ βðhχjζi=jhχjζijÞjχi, using well-
known postselection methods [31], as incorporated in the
dotted box of Fig. 2. Note that Λsup can be constructed for
an arbitrary state space that jψi; jχi lie in by using an
appropriate SWAP gate and projective measurements. It is
easy to see that a small error in the superposition shows up
as a linear additive error in the update (see Supplemental
Material [32], which includes Refs. [33–35]). If the over-
laps are known, then the additional phase factor can be
removed by modifying α and β appropriately. Our exten-
sion generates arbitrary superpositions of states jψðtÞi ¼
UðtÞjψi and jχðtÞi ¼ VðtÞjχi as follows. If a reference state
jζi and overlaps hχjζi ≠ 0 and hψ jζi ≠ 0 are known, Λsup

can be used to create a probabilistic superposition of
the form αj0ijψi þ βj1ijχi by choosing a reference state
jþijζi and inputs j0ijψi and j1ijχi. Then by applying
conditional unitaries j0ih0j ⊗ UðtÞ þ j1ih1j ⊗ VðtÞ, we
obtain states of the form

jΨi ¼ αj0iUðtÞjψi þ βj1iVðtÞjχi: ð1Þ

We note that superpositions of UðtÞjψi and VðtÞjϕi can be
created by applying a Hadamard on the first qubit and
measuring it in the standard basis. If α¼jhψ jζij=ð ffiffiffi

2
p hψ jζiÞ

and β ¼ jhχjζij=ð ffiffiffi
2

p hχjζiÞ, the output is the desired state
jxi ¼ ½j0ijψðtÞi þ j1ijχðtÞi�= ffiffiffi

2
p

. Choices of the generic
quantum states specify various control algorithms discussed
below. For instance, the choice of jψi≡ jψ0i to be the initial
quantum state and jχi≡ jτi to be the target state respectively
will specify the Krotov algorithm discussed below. This
method can also be used to construct several other examples
of gradient-based and gradient-free control algorithms. In all
such control algorithms, we choose the reference state jζi to
be a sparse quantum state with nonzero overlap with the
initial and target state. For instance, jζi can be chosen to be a
sparse initial state if it has nonzero overlap with the target
state. We note that this choice of the reference state is
not unique and can be chosen according to experimental
convenience. This reduces the problem of superposition of
two unitarily rotated states to the problem of applying
arbitrary control unitary on an unknown state.
Following Zhou et al. [36] we can add control to

arbitrary unitaries U and V by padding them with con-
trolled-Xa or internal-SWAP gates. The Xa gate has been
experimentally demonstrated for photonic systems [24] and
requires that each qubit state be the lower energy manifold
of an otherwise controllable multilevel system. This is
naturally also the case for transmon qubits [37–40] and
several other physical implementations of NISQ era quan-
tum computers. For a four level system, the Xa gate is
defined by the transformation rules j0i ↔ j2i; j3i ↔ j1i.
For larger Hilbert spaces it can be defined via a SWAP gate
that acts internally on subspaces of the same Hilbert space,
distinguishing it from the usual SWAP gate that acts on
tensor product spaces. This doubles the internal Hilbert
space dimensionality of the physical qudit with the number
of additional gates needed to add control scaling linearly
with the number of subsystems.
Transition amplitude estimation algorithm (TAEA).—

The second time series we require for the control algo-
rithms is the estimation of transition matrix elements
hχðtÞjμjψðtÞi. If the control Hamiltonian μ (see below)

FIG. 2. A circuit for estimating transition amplitudes of the
form hχjV†μUjψ0i using the LCU technique. Using D condi-
tional unitaries μl, the transition amplitude can be estimated. The
circuit inside the dotted box is an implementation of Λsup for
superposing states where jν0i ¼ jhψ jζijj0i þ jhχjζjijj1i.

FIG. 1. A high level schematic of our quantum-assisted
quantum control algorithms where scalars are extracted using
digital quantum simulation combined with OEA and TAEA given
target and Hamiltonian resources, provided either in terms of
linear combination of unitaries (LCU) or in terms of block
encoding.
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can be expressed as a linear combination of known
unitaries (LCUs) [41] μ ¼ P

D
l¼1 clμl, then by applying a

conditional unitary μl on jΨi we can estimate the overlap
hχðtÞjμljψðtÞi and hence hχðtÞjμjψðtÞi. This is presented in
Fig. 2 in terms of a circuit description.
Alternatively, if there exists a block encoding [42,43] B

of μ, then by applying a conditional version of this
unitary on ½j0ij0kijψðtÞi þ j1ij0kijχðtÞi�=

ffiffiffi
2

p
, we can esti-

mate hψðtÞjh0kjBj0kijχðtÞi and hence hψðtÞjμjχðtÞi (see
Supplemental Material for a formal algorithmic description
of these primitives [32]).
Quantum-assisted gradient algorithms.—We now apply

these algorithmic primitives to construct quantum-assisted
quantum control algorithms. Consider quantum control
algorithms that operate with fixed terminal time (T) such
as the Krotov algorithm [2]. Without loss of generality we
work with Hamiltonians of the form HðtÞ ¼ H0 þ ξðtÞμ
where H0ðμÞ is the bare (control) Hamiltonian. The cost
function in the Krotov algorithm is given by

J ¼ hψðTÞjQjψðTÞi − α

Z
T

0

dtξ2ðtÞ; ð2Þ

where Q ¼ jτihτj is the projector onto the target state jτi.
Here the integral represents the fluence of the control field
ξðtÞ and α is a Lagrange multiplier that modulates the
relative importance of the second term. The first-order
variation of the cost function produces three equations of
motion,

j _ψ ðkÞðtÞi ¼ −iHðkÞjψ ðkÞðtÞi; ð3Þ

j_χðkÞðtÞi ¼ −iHðkÞjχðkÞðtÞi; ð4Þ

ΔξðkÞðtÞ ¼ −
1

α
Imhχðk−1ÞðtÞjμjψ ðkÞðtÞi; ð5Þ

which are solved iteratively subject to the boundary con-
ditions jψ ðkÞð0Þi¼ jψ0i and jχðkÞðTÞi ¼ Qjψ ðkÞðTÞi until
convergence is reached. Here HðkÞðtÞ¼H0þξðkÞðtÞμ is the
time-dependent Hamiltonian with the control field ξkðtÞ,
state jψ ðkÞðtÞi, and costate jχðkÞðtÞi corresponding to the
kth iteration of the algorithm. Each iteration of the solution
proceeds by evolving the state and costate equations along-
side computing the overlap integral. Note that the state
equation Eq. (3) is specified by an initial condition whereas
the costate equation Eq. (4) is specified by a terminal
condition. This implies that while the state equation is
evolved forward in time, the costate equation is evolved
backward in time.
By using OEA and TAEAwe can implement a quantum-

assisted Krotov algorithm that circumvents the exponential
complexity of simulating state evolution. Throughout
the algorithm we only use superpositions of the form jyi ¼
αj0ijψð0Þi þ βj1ijτi which can be prepared as described

earlier if the overlaps with respect to some reference state
are known. Evolution of states is done according to Eqs. (3)
and (4) via digital quantum simulation which can be done
efficiently even for many-body systems. Note that since
jχðtÞi ¼ VðtÞjχðTÞi ¼ hτjψðTÞiVðtÞjτi, we need to esti-
mate the scalar overlap hτjψðTÞi which can be done using
OEA given jyi. To compute the control field updates
ΔξðkÞðtÞ we employ TAEA. Other popular algorithms such
as GRAPE can also be implemented in a quantum-assisted
fashion (see Supplemental Material [32]). Furthermore, we
note that until now the optimization has been built into the
structure of the Euler-Lagrange-like equations since they
were derived using a first-order variational principle. We
now extend these techniques to hybrid algorithms where
there is an explicit classical optimization step in the process.
Quantum-assisted gradient-free algorithms.—Besides

gradient algorithms, OEA and TAEA can also be used
to implement nongradient quantum control algorithms.
Typically, nongradient algorithms first guess a pulse
sequence that is fine-tuned over iterations to improve
fidelity. Using OEA and TAEA, the same nongradient
algorithms can be used for the optimization of more
complicated functionals involving overlaps and transition
amplitudes. Recently, Castaldo et al. [44] showed that such
an optimization could be performed on the IBM X2.
Resource counting.—Our algorithmic primitives use m

repeated single-qubit measurements to estimate scalar
values, which we group into a single experiment and begin
the complexity analysis with the number of experiments
needed for several example algorithms. We then separately
estimate the relationship between Trotter error, number of
measurement repetitions, and the error threshold per experi-
ment. The superposition part of either primitive requires
measurements in a basis containing the reference state jζi
which can be done easily if a unitary transformation can be
implemented such that it takes some standard basis state
to jζi. The OEA requires two experiments, one each for
estimating real and imaginary parts. The number of experi-
ments for TAEA depends on the approach used.
While block encoding only needs two experiments, LCU
requires 2D experiments one each for the real and imagi-
nary parts of D different terms in the LCU decomposition
of the operator μ. The number of times each quantum-
assisted control algorithm invokes the algorithmic primi-
tives can be inferred simply. For each update, one TAEA
experiment and two OEA experiments are needed.
Quantum-assisted GRAPE requires two fidelity experiments
in each update step.
We now relate the monotonic convergence requirements

to error thresholds by focusing on the quantum-assisted
Krotov algorithm, the extension of this analysis to other
algorithms being straightforward. We consider two sources
of error, the first is due to Trotterization which results in an
approximate version of the unitary corresponding to time
evolution being implemented. Poulin et al. [45] gave an
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upper bound on this error and also give an estimate for the
number of gates using a Solovay-Kitaev decomposition to
obtain desired levels of accuracy. The second source of
error is due to the finite precision arising from finite
measurements described in the central limit.
The quantum-assisted Krotov algorithm is monotonically

convergent up to the point where the incremental change in
the cost function ΔJðkÞ ¼ JðkÞ − Jðk−1Þ in an ideal imple-
mentation is comparable to the fluctuation in ΔJðkÞ due to
the two sources of errors mentioned above. Using the upper
bounds on Trotterization [45] and finite measurement
errors, we can compute an upper bound on the error in
each Krotov update. This can further be used to provide a
lower limit for ΔJðkÞ below which convergence cannot be
guaranteed (see Supplemental Material [32]). As a result,
we can guarantee that the quantum-assisted Krotov algorithm
remains monotonically convergent so long as the stochas-
tically averaged change is much larger than the typical
amplitude of the fluctuations,

⟪ΔJðkÞ⟫ ≫ 4Tεjjμjj þ 4
T
α
½ξmaxε� þ 4εTS; ð6Þ

where T is total time of evolution, ξmax is the maximum
value of the control field, εM; εTS are bounds on the
measurement and Trotterization errors, respectively,
and ε ¼ εM þ 3εTSjjμjj=α.
Numerical simulation.—We now present simulations for

the proposed quantum-assisted Krotov algorithm. The theo-
retical error model is based on bounds that are well known
to be not tight and it is known that gate digitization can
be relatively efficient [23,46]. Hence we incorporate an
aggregated error model which takes into account any
additive errors to the update including Trotterization errors,
measurement errors, and errors in superposition. This is
done by introducing a Gaussian random noise model of
standard deviation eamp at every update. Our simulations
use standard packages [47,48] (also see Supplemental
Material [32]).
We simulate transmon qubits [49,50] whose two-

qubit Hamiltonian is ĤðtÞ=h ¼ H0 þ VðtÞ, where

H0 ¼ −ðω1=2Þσ̂ð1Þz − ðω2=2Þσ̂ð2Þz þ 2Jðσ̂ð1Þx σ̂ð2Þx þ σ̂ð1Þy σ̂ð2Þy Þ
and VðtÞ ¼ uðtÞðσ̂ð1Þx þ λσ̂ð2Þx Þ. Here σ̂ are Pauli matrices,
ω1 ¼ 1.1 GHz, ω2 ¼ 2.1 GHz are energy level splitting of
the first and second qubits, respectively, J ¼ 0.2 GHz is the
effective coupling strength, ξðtÞ is the control field, and
λ ¼ 1.1 is the strength of the qubit-control coupling for the
second qubit relative to the first. We allow the system to
evolve for 25 ns under ĤðtÞ, starting from the ground state
j00i and optimize for target state ðj00i þ j11iÞ= ffiffiffi

2
p

. The
result of our noisy optimization is shown in Fig. 3, where
the upper four panels show the time evolution of j00i (blue)
and j11i (orange) states with decreasing noise. Other
examples are discussed in the Supplemental Material

[32]. In all of our simulations, we see that for moderate
to low levels of noise the optimization converges to within
an infidelity of 10−3.
Conclusions.—We present the algorithmic primitives

OEA and TAEA to implement arbitrary quantum-assisted
quantum control algorithms. Our method substantially
improves existing hybrid quantum control algorithms by
incorporating dense target states and complex control
algorithms. Furthermore, the underlying algorithmic prim-
itives only rely on qubit measurements and require the
implementation of specific controlled unitaries, that can be
accomplished by well-known methods. We emphasize that
our simulations indicate that the circuit complexity of
specific algorithms considered scales favorably with error
thresholds. We applied our method to quantum-assisted
versions of gradient and nongradient algorithms. Several

FIG. 3. Panel (a) shows how the population evolves over time
along with achieved infidelity JT for various error amplitudes
eamp. Panel (b) shows the corresponding optimized control pulse.
The populations of j01i and j10i saturate to the expected value of
0 and are omitted for clarity.
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recent experiments have demonstrated control of relatively
large number of qubits on differing platforms, from
gradient algorithm on 12 NMR qubits [26] to a controlled
state preparation of 20 transmon qubits [51] suggesting that
our protocols are practical to implement with existing
technology. Furthermore, when two separate platforms
can both simulate the same Hamiltonians H0 and μ, our
method can be combined with analog or digital quantum
simulation experiments to design optimal control pulses in
new systems. For example, proposals to generate all-optical
higher-dimensional tensor network states [52,53] can be
used to generate complex target states for our scheme.
By introducing quantum-assisted variation of paths, our

techniques add to the literature on variational quantum
algorithms [54–56] and generalize the optimization pro-
gram to complex overlaps which bring control theory and
quantum algorithms closer [57]. Furthermore, our algo-
rithmic primitives can also be used to optimize nongradient
objectives and can be used for important tasks such as the
design of modular quantum computers [58–60] and con-
trolling reactions in quantum chemistry [61].
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