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We develop a constitutive model allowing for the description of the rheology of two-dimensional soft
dense suspensions above jamming. Starting from a statistical description of the particle dynamics, we
derive, using a set of approximations, a nonlinear tensorial evolution equation linking the deviatoric part of
the stress tensor to the strain-rate and vorticity tensors. The coefficients appearing in this equation can be
expressed in terms of the packing fraction and of particle-level parameters. This constitutive equation
rooted in the microscopic dynamic qualitatively reproduces a number of salient features of the rheology of
jammed soft suspensions, including the presence of yield stresses for the shear component of the stress and
for the normal stress difference. More complex protocols like the relaxation after a preshear are also
considered, showing a smaller stress after relaxation for a stronger preshear.
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Soft athermal suspensions are mixtures of non-Brownian
soft elastic units in a fluid, like microgels or emulsions [1].
They are commonly used for their ability to turn from soft
elastic solids to liquids under applied stress when the
particle volume fraction ϕ is large enough, e.g., mayon-
naise [2] or hand sanitizer gels [3]. Indeed, above a
jamming concentration ϕJ, a finite yield stress σy develops
[4]. The steady state rheology under simple shear at a
rate _γ follows a Herschel-Bulkley (HB) law σ ¼ σy þ k_γn,
with n ≤ 1 [5–9], which extends to more general defor-
mations [10]. The HB rheology for ϕ ≥ ϕJ is also well
documented from numerical simulations of generic mini-
mal particle models [11–14], as well as more system-
specific models [8,15].
The transient mechanical response is also rich. If a

sample, initially at rest, is brought to yield, the load curve
often shows a stress overshoot, that is, a local maximum of
stress before a further decay to its steady state value, for
deformations of order 1 [16–20]. By contrast, when a
flowing sample is brought to rest by suddenly stopping the
applied deformation, the stress relaxes below the yield
stress with a counter-intuitive dependence on the previous
deformation: the larger the stress during the initial shear,
the smaller the residual stress [21–23].
Most current theoretical approaches address yield stress

fluids (YSFs) in general, that is, a much wider class of
systems including soft jammed suspensions but also gels or
colloidal glasses [24]. They are oblivious to the micro-
scopic origin of the yield stress, which they take for granted
at a coarser level. Continuum models postulate evolution
equations for the macroscopic stress tensor assuming the
presence of a yield stress. For YSFs, they fall into two main
classes: viscoplastic models if they ignore the elasticity
below yield [25] or elastoviscoplastic models if they
consider it [26–29]. While successful at describing even

complex flow situations [30], their structure and parameters
are usually not explicitly connected to microscopic proper-
ties. Mesoscopic models, such as soft glassy rheology
[31,32], elastoplastic models [33], or shear transformation
zone theory [34,35] explain the emergence of the nontrivial
YSF rheology by the statistics of large assemblies of simple
plastic mesoscopic units, possibly mechanically coupled.
Nonetheless, plasticity is assumed at the mesoscopic level
and comes in many variants [35–38]. Finally, mode-
coupling theory (MCT) is the only microscopic theory
addressing YSFs (beyond simple scaling arguments [39]),
but it focuses on thermal colloidal glasses, for which the
yield stress arises from the glass rather than the jamming
transition [40,41].
In this Letter, we aim at developing a rheological model

for jammed athermal soft suspensions from their micro-
scopic dynamics. The goal is to get a temporal evolution for
the stress tensor taking the deformation rate tensor as input,
which structure and parameters can be directly related to
particle properties. We follow a microstructure route based
on a dynamical equation for the pair correlation function.
While this approach is common for near equilibrium
polymeric systems [42], it is much less explored for
non-Brownian suspensions, which are athermal and, thus,
far from equilibrium states. Previous works in this direction
addressed colloidal suspensions below jamming [43–45], a
regime dominated by Brownian motion and hydrodynam-
ics. Our work focuses on jammed suspensions, for which
the main source of stress is the elastic deformation of
particles [9].
We consider a model of a two-dimensional suspension

consisting of N identical soft discs of radius a immersed in
a viscous fluid, akin to the Durian bubble model [46].
Particles have an overdamped, non-Brownian dynamics
and interact through radial contact repulsion forces only.
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The externally applied deformation generates a velocity
field u∞ðrÞ in the fluid, which for the sake of simplicity we
assume affine, u∞ðrÞ ¼ ∇u∞ · r (we define the velocity
gradient as ð∇u∞Þij ¼ ∂u∞i =∂rj). We consider the influ-
ence of the fluid through a viscous drag −λf½_rμ − u∞ðrμÞ�,
neglecting hydrodynamic interactions between particles,
an assumption justified by screening effects in dense
systems. The position rμ of particle μ ¼ 1;…; N evolves
according to

_rμ ¼ u∞ðrμÞ þ
1

λf

XN

ν¼1

f ðrν − rμÞ: ð1Þ

We consider a radial contact force f ðrÞ, f ðrÞ ¼ fðrÞer, with
r ¼ jjrjj and er ¼ r=r. Note that fðrÞ < 0 for a repul-
sive force.
Now, we outline our coarse-graining procedure, whose

details are reported elsewhere [47]. We start from the
exact time evolution for the pair correlation function
gðrÞ obtained from the conservation of the N-particle
probability,

∂tgðrÞ þ ∇ ·

�
ð∇u∞ · rÞgðrÞ − f ðrÞgðrÞ

− ρ

Z
f ðr0Þg3ðr; r0Þdr0

�
¼ 0; ð2Þ

using the particle radius a as unit length, a characteristic
force f0 as unit force, and τ0 ¼ λfa=ð2f0Þ as unit time.
Equation (2) is not closed but involves the three-body
correlation function g3ðr; r0Þ whose evolution equation also
involves higher order correlation functions in a hierarchical
manner.
The particle stress tensor Σ is defined from the virial

formula [48] as

Σ ¼ ρ2

2

Z
½r ⊗ f ðrÞ�gðrÞdr: ð3Þ

Multiplying Eq. (2) by 1
2
ρ2r ⊗ f ðrÞ and integrating over r,

we get the following evolution equation for Σ:

_Σ ¼ ∇u∞·Σþ Σ·∇u∞T þ G2 − G3; ð4Þ

where G2 and G3 are defined as

G2 ¼
ρ2

2

Z
fðE∞∶er ⊗ erÞ½ðr ⊗ rÞ ·∇f ðrÞ − r ⊗ f ðrÞ�

− f ðrÞ ⊗ f ðrÞ − ½r ⊗ f ðrÞ� ·∇f ðrÞTggðrÞdr; ð5Þ

G3 ¼
ρ3

2

ZZ
ff ðr0Þ ⊗ f ðrÞ þ ½r ⊗ f ðr0Þ�·∇f ðrÞTg

× g3ðr; r0Þdrdr0: ð6Þ

To find a closed equation on Σ, we use the Kirkwood
closure [49], which approximates g3 as a product of pair
correlation functions,

g3ðr; r0Þ ¼ gðrÞgðr0Þgðr − r0Þ; ð7Þ

which is a reasonable approximation for interparticle
distances relatively close to the particle diameter (i.e.,
particles close to contact) [47]. Then, we parametrize
gðrÞ in terms of Σ to close Eq. (4). In the isotropic state,
the function gðrÞ is peaked on a circle in the r plane, whose
radius r� maximizes gisoðrÞ. In the presence of a weak
anisotropy, one expects the locus of the maxima of gðrÞ to
deform according to a small amplitude second order
harmonic, which leads us to approximate gðrÞ as a small
deformation of gisoðrÞ of the form

gðrÞ ¼ giso

�
r

1 − α ðQ∶er ⊗ erÞ
�
; ð8Þ

with α a parameter to be determined and where the traceless
structure tensor Q (an anisotropy measure) is defined as

Q ¼ ρ2

2

Z

r≤2

�
r ⊗ r −

r2

2
l
�
gðrÞdr: ð9Þ

Expanding Eq. (8) to first order in Q, one finds

gðrÞ ≈ gisoðrÞ þ αrg0isoðrÞðQ∶er ⊗ erÞ: ð10Þ

Self-consistency between (9) and (10) imposes that
α
R
2
0 r4g0isoðrÞdr ¼ ð4=πρ2Þ. Using the definition (3) of Σ

and the parametrization (10) of gðrÞ, we get the deviatoric
stress Σ0 ¼ kQ, with k ¼ ðπαρ2=4Þ R 2

0 r
3fðrÞg0isoðrÞdr.

Combining this relation with Eq. (10), we obtain a para-
metrization of gðrÞ as a function of Σ0 and gisoðrÞ.
Expanding in powers of Σ0 the tensors G2 and G3 defined
in Eqs. (5) and (6), the traceless part of Eq. (4) then reads

_Σ0 ¼ κE∞ þΩ∞·Σ0 − Σ0·Ω∞ þ ½β − ξðΣ0∶Σ0Þ�Σ0; ð11Þ

where E∞ and Ω∞ are, respectively, the strain-rate and
vorticity tensors, E∞ ¼ ½∇u∞ þ ð∇u∞ÞT �=2 and Ω∞ ¼
½∇u∞ − ð∇u∞ÞT �=2. The coefficients κ, β, and ξ are given
by multiple integrals involving the isotropic pair correlation
function gisoðrÞ and its derivative (see [47] for the detailed
expressions of these coefficients). To evaluate these coef-
ficients, we use a simple and physically motivated para-
metrization of the isotropic pair correlation function gisoðrÞ,
of the form

gisoðrÞ ¼
A
r�
δðr − r�Þ þHðr − r�Þ; ð12Þ

withHðxÞ the Heaviside function. The parametrization (12)
approximates the first shell of neighbors as a delta peak at a
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distance r�, and considers that the pair correlation is flat for
r > r�. Although this form of the pair correlation is
obviously an oversimplification, it already captures key
features of the microstructure well above jamming with a
small number of parameters. The amplitude A is fixed by
assuming that the first shell of neighbors contains six
particles on average in two dimensions [50], leading to
A ¼ 3=ðπρÞ. The parameter r� can be reexpressed in terms
of the pressure p ¼ − 1

2
TrΣ, so that the coefficients κ, β,

and ξ appearing in Eq. (11) are now functions of the
pressure p and of the average density ρ (or the packing
fraction ϕ ¼ πρ). Thus, to study the behavior of Eq. (11),
we need an equation of state for the pressure p. The latter is
obtained by taking the trace of Eq. (4), yielding an
evolution equation for p (see [47]). Thus, one obtains
coupled evolution equations for Σ0 and p that can be
numerically integrated [47]. For not-too-large values of
the strain rate, the pressure relaxes much faster than the
deviatoric stress Σ0, and thus, it is possible to use the
steady-state value for p in Eq. (11). This provides an
equation of state for the pressure in terms of ϕ, Σ0, and E∞.
Here, for simplicity, we use as an approximation of the
isotropic equation of state pðϕÞ, neglecting the contribu-
tions of E∞ and Σ0 to the pressure. The coefficients κðpÞ,
βðpÞ, and ξðpÞ in Eq. (11) then become constants for a
given ϕ. Thus, Eq. (11), with constant coefficients, may be
considered, at a qualitative level, as a minimal constitutive
equation for the rheology of soft dense suspensions for
intermediate strain rates. It contains the minimal terms
required for a yield stress fluid: a term ∝ E∞ to account
for strain-rate dependence, the commutator ½Ω∞;Σ0� as

imposed by frame indifference, and a tensorial Landau-like
term which generates a yield stress if β > 0 and ξ > 0. One
advantage of this formulation with respect to phenomeno-
logical approaches is that the coefficients are known in
terms of microscopic parameters and ϕ. There is no free
parameter in our theory, yet it is able to qualitatively
capture many nontrivial features of YSFs. Furthermore, our
theory can trace the origin of rheological behaviors back to
the microstructure dynamics.
Now, we discuss the behavior of (11), using several

deformation protocols. For definiteness, we specialize to a
linear repulsive contact force fðrÞ ¼ ð2 − rÞHð2 − rÞ, in
dimensionless form. First, we consider the steady-state
rheology under simple shear, u∞ ¼ _γyex with x the
flow and y the gradient directions. The tensor Σ0 can be
written as

Σ0 ¼
�
N1=2 σ

σ −N1=2

�
; ð13Þ

with σ the shear stress and N1 the normal stress difference.
Introducing a polar parametrization N1 ¼ 2S cos θ and
σ ¼ S sin θ, we get

_S ¼ κ _γ

2
sin θ þ βS − 2ξS3;

_θ ¼ κ_γ

2S
cos θ − _γ: ð14Þ

Physically, S is the amplitude of the stress anisotropy and θ
its orientation. Because Σ0 ¼ kQ, S also quantifies the

(a)
(c) (d)

(e)

(b)

FIG. 1. Particle shear stress σ and normal stress difference N1 in explicit dimensionless forms, for different protocols. (a) Stationary
flow curves for different packing fractions ϕ ¼ ϕJ þ Δϕ with Δϕ ¼ 0.01, 0.02, 0.03, 0.04 (bottom to top). Inset: pressure pðϕÞ.
(b) Transient response at a constant shear rate _γ after a preshear at low shear rate _γps ¼ 10−5, showing an overshoot on the shear stress σ
for _γτ0 ¼ 2 × 10−3, 5 × 10−3, 10−2 at ϕ ¼ ϕJ þ 0.01. (c) Schematic representation in the plane ðN1=2; σÞ of the transient response
shown in panel (b), highlighting the fast dynamics of S and the slow dynamics of θ. Particle configurations corresponding to the colored
dots indexed by γi are schematically drawn with the same color code. (d) Stress relaxation at _γ ¼ 0 after a preshear at shear rate
_γpsτ0 ¼ 2 × 10−3, 5 × 10−3, 10−2, showing that a stronger preshear eventually leads to a lower value of the shear stress. (e) Schematic
representation in the plane ðN1=2; σÞ of the relaxation shown in panel (d), which occurs at constant θ. Data are obtained by numerical
integration of Eq. (14), using a linear force fðrÞ ¼ f0ðr − 2aÞ=a (for r < 2a) to evaluate the coefficients.

PHYSICAL REVIEW LETTERS 127, 218003 (2021)

218003-3



deformation of the contact shell, and θ is twice its tilt angle
with respect to the flow direction.
The isotropic equation of state pðϕÞ is such that pðϕÞ ¼

0 for ϕ < ϕJ and pðϕÞ > 0 for ϕ > ϕJ, where ϕJ ¼ 1.25 is
the jamming packing fraction (a value 50% above the
correct jamming packing fraction in two dimensions due to
the approximations made). Numerically, we find that p
increases with ϕ [see inset of Fig. 1(a)]. The small Δϕ ¼
ϕ − ϕJ behavior is linear as p ≈ 0.63Δϕ, when particle
simulations show a slightly larger exponent of 1.1 [51]. The
coefficients κ, β, and ξ are positive, leading to a yield stress
fluid behavior due to the Landau-like term in the equation
for S. The yield follows the von Mises criterion
Σ0∶Σ0 ¼ β=ξ, as sometimes observed experimentally [52]
(but not always, see [53]). For small Δϕ, we find
κ ≈ 1.19 − 0.099Δϕ, β ≈ 0.16þ 0.76Δϕ, and ξ ≈ 0.62þ
0.0054Δϕ [47]. Looking perturbatively for the small _γ
solution, one finds

S ≈ S0 þ b_γ; θ ≈ θ0 −
_γ

2β
; ð15Þ

with S0 ¼
ffiffiffiffiffiffiffiffiffiffi
β=2ξ

p
, b ¼ ðκ sin θ0Þ=ð4βÞ, and θ0 ¼

cos−1ð2S0=κÞ. For densities higher than ϕm ≈ 1.5, we find
that 2S0=κ > 1 such that there is no stable solution. Thus,
we consider ϕJ < ϕ < ϕm to be the validity range of our
approximations. Therefore, we obtain a Bingham fluid
behavior for both the (particle) shear stress component σ
and the normal stress difference N1,

σ ¼ σy þ bσ _γ; N1 ¼ Ny þ bN _γ; ð16Þ

with yield stress values σy ¼ S0 sin θ0 and Ny ¼
2S0 cos θ0 > 0, and prefactors bσ ¼ κ=ð4βÞ − 1=ðκξÞ and
bN ¼ 2ðS0=βÞ sin θ0. Steady-state flow curves are dis-
played in Fig. 1(a), showing the increase of yield values
with ϕ. A positive N1 is also observed in experiments [53]
and in simulations [9,54]. Our model predicts a ratio
Ny=σy ≈ 1.5–1.8, a value slightly larger than what is found
in 2D simulations of foams for which Ny=σy ≈ 1 [54] and
much larger than the value ≈0.2 observed in experiments
[53,55] and in simulations of 3D microgels [9]. Similarly,
large values of Ny=σy are also found in tensorial versions of
the SGR model [56].
We further explore the transient dynamics of the stress

with two different protocols, numerically integrating
Eq. (14). In the first one, we preshear up to steady state
at a low rate _γps, and then follow the stress dynamics after
suddenly increasing the shear rate to a constant value
_γ > _γps. An overshoot is observed on the shear stress,
which relaxes on an order 1 strain scale, in agreement with
experiments [17,18,20,57,58], while the normal stress
difference increases monotonously [Fig. 1(b)], here, too,
in agreement with numerical simulations of foams [54].
The polar representation of Σ0 gives us insights on the

microscopic dynamics. An early fast increase of S corre-
sponds to a radial compression or elongation of contacts at
almost fixed orientation. After the overshoot, S saturates
quickly while θ starts decreasing [Fig. 1(c)]. This reflects a
rotation of closest contacts with the vorticity, which
consequently decreases (respectively, increases) their shear
stress (respectively, normal stress difference) contribution.
Then, we consider the relaxation at _γ ¼ 0 after a

preshear. It has been experimentally and numerically
observed that shear stress unexpectedly relaxes to a lower
value for a stronger preshear [21–23,59]. This effect is
reproduced by our model [Fig. 1(d)], and can be understood
as follows. During the preshear phase, a higher shear rate
_γps leads to a smaller value θps of the angle θ, according to
Eq. (15). Switching off the shear, S relaxes to S0 while θ
keeps the value θps it had at the end of the preshear, as seen
from Eq. (14). Thus, one finds, for the final values σf of the
shear stress and Nf of normal stress difference,

σf ¼ σy −
_γps
2κξ

; Nf ¼ Ny þ
σy
β
_γps; ð17Þ

that is, σf=σy < 1 is a decreasing function of _γps.
(Experiments report weaker dependencies, σf=σy ∝ _γ−0.2ps

[23] or even σf=σy ∝ − log _γps [22].) In contrast, Nf > Ny

and increases with _γps. The opposite trends on Nf and σf
are a consequence of the von Mises yield criterion our
model predicts. Interestingly, the relaxation curves for
different preshear values approximately intersect at a same
time t�, and for shear stress values close to the yield stress.
Those predictions on the shear stress relaxation are con-
sistent with experimental observations [21]. The predicted
relaxation time scale (≈3τ0) is, however, much smaller than
measured in [21], but consistent with [59]. The relaxation
dynamics is well understood in the polar coordinates ðS; θÞ,
as the dynamics occurs at a constant value θps deter-
mined by the preshear, until S has relaxed to S0 [Fig. 1(e)].
As θps decreases with the preshear _γps, a stronger pre-
shear leads to a lower final value of σ. Linearizing the
dynamics (14) of S around S0, one finds that curves for
different _γps cross precisely at σ ¼ σy, at a (dimensionless)
time t� ¼ ð2βÞ−1 ln½ξκ2=ð2βÞ − 1�.
To sum up, we have derived, from the microscopic

dynamics, a minimal tensorial constitutive model for
jammed soft suspensions in two dimensions. This con-
stitutive model accounts, at a qualitative level, for a number
of nontrivial features, like the existence of yield stresses for
both the shear stress and the normal stress difference, a
stress overshoot on step change of shear rate, or the
preshear dependence of residual stresses during stress
relaxation. One of the main interests of the present
result with respect to more standard phenomenological
approaches is that all parameters are fixed by the particle-
level dynamics, thus, shedding light on the microscopic
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mechanisms responsible for different types of macroscopic
rheological behaviors. Moreover, our approach links mac-
roscopic phenomena like overshoots in transient response
to the particle-level behavior, which could stimulate further
numerical or experimental work in this direction. Note that
our approach, which partly neglects correlations, is valid
sufficiently far away from both the jamming density and the
yielding transition (i.e., when ϕ − ϕJ and _γ are not too
small), so that static and dynamic critical fluctuations do
not dominate the physics. In contrast to MCT [40,41], our
theory directly addresses the dynamics of athermal, out-of-
equilibrium systems without the need for a nearby refer-
ence equilibrium state and is based on a physically more
transparent real-space description.
Future work will investigate the role of the precise form

of the repulsive force, and extend the present approach to
dense soft suspensions just below jamming, as well as to
the potentially richer three-dimensional case. On a longer
term, it would be useful to improve the approximations
made (in particular the Kirkwood closure and the para-
metrization of the pair correlation function) so as to more
accurately describe the low-shear-rate behavior of jammed
soft suspensions, when localized plastic events dominate
the relaxation processes. Such plastic events have a four-
fold symmetry which is not captured by the parametrization
(10) of the pair correlation function. Generalizing the
present approach by including a fourth order harmonic
in gðrÞ might grant access to the HB rheology.

This work is supported by the French National Research
Agency in the framework of the “Investissements d’avenir”
Program (ANR-15-IDEX-02).

*Corresponding author.
romain.mari@univ-grenoble-alpes.fr

[1] R. T. Bonnecaze and M. Cloitre, in High Solid Dispersions,
edited by M. Cloitre (Springer, Berlin, 2010), Chap. 3,
pp. 117–161.

[2] L. Ma and G. V. Barbosa-Cánovas, J. Food Eng. Food
Rheol. 25, 409 (1995).

[3] G. P. Roberts and H. A. Barnes, Rheol. Acta 40, 499 (2001).
[4] A. J. Liu and S. R. Nagel, Nature (London) 396, 21 (1998).
[5] J. M. Piau, J. Non-Newtonian Fluid Mech. 144, 1 (2007).
[6] P. Møller, A. Fall, V. Chikkadi, D. Derks, and D. Bonn, Phil.

Trans. R. Soc. A 367, 5139 (2009).
[7] T. Divoux, D. Tamarii, C. Barentin, and S. Manneville,

Phys. Rev. Lett. 104, 208301 (2010).
[8] J. R. Seth, L. Mohan, C. Locatelli-Champagne, M. Cloitre,

and R. T. Bonnecaze, Nat. Mater. 10, 838 (2011).
[9] T. Liu, F. Khabaz, R. T. Bonnecaze, and M. Cloitre, Soft

Matter 14, 7064 (2018).
[10] N. J. Balmforth, I. A. Frigaard, and G. Ovarlez, Annu. Rev.

Fluid Mech. 46, 121 (2014).
[11] M. Otsuki and H. Hayakawa, Prog. Theor. Phys. 121, 647

(2009).

[12] M. Otsuki and H. Hayakawa, Phys. Rev. E 83, 051301
(2011).

[13] P. Olsson and S. Teitel, Phys. Rev. Lett. 109, 108001
(2012).

[14] T. Kawasaki, D. Coslovich, A. Ikeda, and L. Berthier, Phys.
Rev. E 91, 012203 (2015).

[15] M. Gross, T. Krüger, and F. Varnik, Soft Matter 10, 4360
(2014).

[16] P. Partal, A. Guerrero, M. Berjano, and C. Gallegos, J. Food
Eng. 41, 33 (1999).

[17] A. P. Batista, A. Raymundo, I. Sousa, J. Empis, and J. M.
Franco, Food Biophys. 1, 216 (2006).

[18] T. Divoux, C. Barentin, and S. Manneville, Soft Matter 7,
9335 (2011).

[19] I. Kaneda and S. Takahashi, Food Sci. Technol. Res. 17, 381
(2011).

[20] E. Younes, M. Himl, Z. Stary, V. Bertola, and T. Burghelea,
J. Non-Newtonian Fluid Mech. 281, 104315 (2020).

[21] L. Mohan, R. T. Bonnecaze, and M. Cloitre, Phys. Rev. Lett.
111, 268301 (2013).

[22] L. Mohan, M. Cloitre, and R. T. Bonnecaze, J. Rheol. 59, 63
(2015).

[23] P. Lidon, L. Villa, and S. Manneville, Rheol. Acta 56, 307
(2017).

[24] D. Bonn, M. M. Denn, L. Berthier, T. Divoux, and S.
Manneville, Rev. Mod. Phys. 89, 035005 (2017).

[25] T. C. Papanastasiou, J. Rheol. 31, 385 (1987).
[26] P. Saramito, J. Non-Newtonian Fluid Mech. 145, 1 (2007).
[27] P. Saramito, J. Non-Newtonian Fluid Mech. 158, 154

(2009).
[28] Y. S. Park and P. L.-F. Liu, J. Fluid Mech. 658, 211 (2010).
[29] F. Belblidia, H. R. Tamaddon-Jahromi, M. F. Webster, and

K. Walters, Rheol. Acta 50, 343 (2011).
[30] I. Cheddadi, P. Saramito, B. Dollet, C. Raufaste, and F.

Graner, Eur. Phys. J. E 34, 1 (2011).
[31] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Phys.
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