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Bundles of filaments are subject to geometric frustration: certain deformations (e.g., bending while
twisted) require longitudinal variations in spacing between filaments. While bundles are common—from
protein fibers to yarns—the mechanical consequences of longitudinal frustration are unknown. We derive a
geometrically nonlinear formalism for bundle mechanics, using a gaugelike symmetry under reptations
along filament backbones. We relate force balance to orientational geometry and assess the elastic cost of
frustration in twisted-toroidal bundles.
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Elastic zero modes are a ubiquitous feature of soft
materials, from mechanical metamaterials [1,2] to liquid
crystal elastomers [3]. Such systems can undergo large
deformations with minimal strain, as geometrically coupled
rotations and translations preserve local spacing between
microscopic constituents. The smectic and columnar liquid
crystalline phases provide paradigmatic examples of zero
modes in soft elastic systems, permitting relative “sliding”
of 2D layers and 1D columns, respectively. Smectic and
columnar phases with zero-cost sliding displacements bear
a striking resemblance to a much broader class of laminated
and filamentous structures with largely inelastic, dissipative
forces tangent to their layers or columns and without
longitudinal correlations between material points, ranging
from multilayer graphene materials [4] and stacked paper
[5] to biopolymer bundles [6,7], nanotube yarns [8], and
wire ropes [9].
While there are well-established frameworks which

capture the geometric nonlinearities of smectic liquid
crystals (i.e., the strain tensor accurately describes arbi-
trarily large and complex deformations) [10], no such
framework exists for columnar and filamentous materials.
The orientations of column backbones impose constraints
on interfilament spacing, generating rich modes of geo-
metric frustration without counterpart in smectic liquid
crystals. In the simplest nontrivial case of helical bundles,
predictions from a minimally nonlinear approximation of
columnar elasticity [11] and tomographic analysis of elastic
filament bundles [12] show that twist in straight bundles
gives rise to nonuniform interfilament stress and spacing in
transverse sections [see Fig. 1(a)]. Except for the restrictive

classes of straight, twisted bundles [13] and twist-free
developable domains [14,15], bundle textures also generate
longitudinal frustration, requiring local spacings to vary
along a bundle [16]. Although deformations that introduce
longitudinal frustration are the rule rather than the
exception—for example, wire ropes or toroidal biopolymer
condensates are both twisted and bent (e.g., Fig. 1)—
existing frameworks of columnar elasticity fail to capture
this effect.
In this Letter, we develop a fully geometrically nonlinear

Lagrangian elasticity theory of columnar materials, which

(a) (b)

FIG. 1. In (a), an equilibrium twisted bundle with straight,
untwisted reference configuration, ΩR ¼ 1, and 2D Poisson ratio
ν ¼ 0.8, colored by the local pressureP ¼ −Sαα=2.Reptation of the
gold filament by σ along its contour, draws the filament (in the
direction indicated by the gold arrow) above the planar cross-
section of the bundle, but leaves the local separationdΔ unchanged.
In (b), a twisted-toroidal bundle found by bending the same bundle
to κ0 ¼ 0.2=R and optimizing interfilament elastic cost.
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completely captures the interplay between orientation and
both lateral and longitudinal frustration of interfilament
spacing. We construct this theory by imposing a gaugelike
local symmetry under reptations, deformations that slide
filaments along their contours without changing the inter-
filament spacing. The resultant equilibrium equations point
to the role geometrical measures of nonequidistance play in
bundles’ mechanics. Within this framework, we compute
the energetic costs of longitudinal frustration in twisted,
toroidal bundles, and give evidence that (1) optimal con-
figurations generically incorporate splay and (2) the bend-
ing cost that derives from nonuniform compression
depends nonmonotonically on pretwist.
To construct the elastic theory, we divide space into

points on filament backbones, labeled by two coordinates:
v, a 2D label of filaments; and s, a length coordinate along
filaments. Hence, the location of each point in the bundle is
described by a function rðs; vÞ, with ∂srðs; vÞ parallel to the
tangent vector t ¼ ∂sr=j∂srj. Because they lack positional
order along their backbone curves, filament bundles and
columnar liquid crystals have a family of continuous zero
modes, corresponding to reptations (Fig. 1),

r0ðs; vÞ ¼ rðsþ σðs; vÞ; vÞ: ð1Þ

We assume that changes in local spacing can be described
by an energy density function W, that depends only on the
deformation gradient [17].
To account for reptation symmetry, we demand that W

depend on a modified deformation gradient, which trans-
forms as a scalar under σðs; vÞ, depends solely on the
deformation r of the material itself, and recovers the well-
established 2D elasticity of developable bundles (i.e.,
parallel arrays) [14,15]. Specifically, we construct a covar-
iant derivative DIr ¼ ∇Ir −AI , where ∇I is the usual
covariant derivative on tensors in the material space and r
determines AI, such that if two configurations, r and r0, are
related by Eq. (1), then DIr ¼ D0

Ir
0. In order for DIr to be

reptation invariant, we must have that −A0
IþAI¼∇Iσ∂sr.

Therefore, −A0
I þAI ¼ −ðt · ∇Ir0Þtþ ðt ·∇IrÞt. To con-

struct an elastic theory of columnar materials, we set
AI ¼ ðt ·∇IrÞt, which is manifestly reptation invariant,
and leads to a deformation gradient that only measures
deformations transverse to the local backbones,

DIr≡∇Ir − ðt · ∇IrÞt: ð2Þ

Notably, for two nearby filaments at rðvÞ and rðv þ dvÞ in
material coordinates, the covariant derivative gives the local
distance of closest approach dΔ ¼ dvIDIr, for which
dΔ · t ¼ 0 [see inset of Fig. 1(a)]. As shown explicitly
in the Supplemental Material [18], this covariant deforma-
tion gradient captures the standard 2D deformation gra-
dients of developable domains.

From this deformation gradient, we construct an effec-
tive metric geffIJ ¼ DIr ·DJr, which is naturally invariant
under rotations of r, and which encodes the metric inherited
by the local 2D section transverse to the filaments in the
bundle [21]. BecauseDsr ¼ 0, the effective metric only has
components for 2 × 2 block I; J ≠ s, which we denote
using index notation α, β ∈ f1; 2g. We can now define the
Green–Saint Venant strain tensor [17,25,26] as

ϵαβ ¼
1

2
½Dαr ·Dβr − gtarαβ�; ð3Þ

where gtarαβ is the target metric corresponding to strain-free
state, which for this Letter, we take to be developable with
uniform spacing, so gtarαβ ¼ δαβ. For weak deflections from
the uniform parallel state, Eq. (3) reduces to the small-tilt
approximation to the nonlinear columnar strain [11,27,28],
which captures the lowest-order dependence of spacing on
orientation [18].
Assuming that strains are small though deformations

may be large, we can treat the elastic energy as quadratic in
the strain, so that

Es ¼
Z

dVWðϵÞ ¼ 1

2

Z
dVSαβϵαβ; ð4Þ

where Sαβ ¼ ð∂W=∂ϵαβÞ ¼ Cαβγδϵγδ is the nominal stress
tensor, and Cαβγδ is a tensor of elastic constants which
depends on both the crystalline symmetries of the under-
lying columnar order and the target metric, gtarαβ [29].
Energetics of columnar materials also include other
gauge-invariant costs, including the Frank-Oseen orienta-
tional free energy (particularly filament bending) and the
cost of local density changes along columns [30]. Here, for
clarity, we focus only on the energetics of columnar strain
and detail the combined effects of other contributions
elsewhere [36]. Given this gauge-invariant formulation
of the columnar strain energy, we first illustrate the
mechanical effects of orientational geometry on local
forces. This follows from the bulk Euler-Lagrange equa-
tions of Eq. (4) (see Supplemental Material [18] for a
complete derivation),

δEs

δr
¼ −∇αðSαβDβrÞ þ∇s

�
SαβDβr

t ·∇αr
j∇srj

�
: ð5Þ

The bulk terms represent body forces generated by the
columnar strains, which must be balanced by other internal
stresses or external forces. To cast them in a more
geometrical light, we consider separately the components
tangential and perpendicular to t, Fk, and F⊥, respectively.
Making use of the identity, t ·∇αDβr ¼ −∂αt · ∂βr, the

tangential forces can be recast simply as

Fk ¼ Sαβhαβ; ð6Þ
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where

hαβ ¼
1

2

�
∂αt · ∂βrþ ∂βt · ∂αr

−
t · ∂αr
j∂srj

∂st · ∂βr −
t · ∂βr

j∂srj
∂st · ∂αr

�
; ð7Þ

is the convective flow tensor that measures longitudinal
variations in interfilament spacing [16]. Just as the second
fundamental form measures gradients of a surface’s normal
vector [37], hαβ measure the symmetric gradients of t in its
normal plane (i.e., its trace is the splay of filament tangents).
Here,we see that tangent forces couple nonequidistance to

the stress tensor much like the Young-Laplace law couples
in-plane stresses to normal forces in curvedmembranes [25].
This analogy becomes exact for zero twist textures: when
t · ð∇ × tÞ ¼ 0, filaments can be described by a set of
surfaces normal to t. In this case, it is possible to choose
coordinates so that ∂αr · t ¼ 0, and tangential forces give the
Young-Laplace force normal to each surface, with hαβ
reducing to their second fundamental form. This illustrates
the intuitive notion, shown schematically in Fig. 2, that
columnar strain generates tangential body forces that push
material points toward lower-stress locations in the array.
The bulk components of Eq. (5) perpendicular to t give

the transverse force

F⊥ ¼ −Dα½SαβDβr� þDs

�
Sαβ

t · ∂αr
j∂srj

Dβr

�
: ð8Þ

This form captures the divergence of stress in the planes
perpendicular to backbones. The second term accounts for
the corrections arising frommaterial derivatives that lie along
the backbone, such as twisted textures, when ∂αr · t ≠ 0.
Thus, the longitudinal derivatives inF⊥ are needed to capture
transverse mechanics of even equidistant twisted bundles
beyond the lowest-order geometric nonlinearity [11].
We now illustrate the energetics of longitudinal frus-

tration by considering a prototypical nonequidistant geom-
etry: twisted-toroidal bundles. Motivated in large part by
the morphologies of condensed biopolymers [6,7],

theoretical models of twisted toroids have focused on their
orientational elasticity costs [38–40], ignoring the unavoid-
able frustration of interfilament spacing in this geometry.
While satisfying force balance in nonequidistant bundles
requires physical ingredients beyond the columnar strain
energy, which we consider elsewhere [36], for the purposes
of this Letter we take advantage of the full geometric
nonlinearity of Eq. (5) to explore the specific costs of
longitudinal gradients in spacing required by simultaneous
twist and bend.
We construct twisted toroids from equilibrium twisted

helical bundles of radius R and constant pitch, 2π=Ω by
bending them such that their central curve r0 is deformed
from a straight line into a circle of radius κ−10 [see Fig. 1(b)].
We then define perturbative displacements rðsþ δs;ρþ δρ;
ϕþ δϕÞ≃ r0 þ ρρ̂þ ∂srð0Þδsþ δρρ̂þ δϕϕ̂ relative to the
bent, pretwisted bundles, where ρ and ϕ describe the
(Eulerian) distance from the central curve and the angular
position relative to its normal in the plane perpendicular to
its tangent t0, and where ∂srð0Þ ¼ t0 þ Ωρϕ̂. The small-ρ
limit of the force balance equations for the strain energy
motivates the following displacements

0
BB@

δs

δρ

δϕ

1
CCA ¼

0
BB@

asΩκ0ρ3 sinϕ
aρΩ2κ0ρ

4 cosϕ

aϕΩ2κ0ρ
3 sinϕ

1
CCA; ð9Þ

where as, aρ, and aϕ are variational parameters. Notably, to
linear order in curvature, these parametrize the “almost
equidistant” Ansätze considered previously, including
splay-free [trðhÞ ¼ 0] [38] configurations and detðhÞ ¼ 0
[16] Ansätze.
We expand the energy to quadratic order in κ0, holding the

center of area at r0, which constrains as ¼ aρ − aϕ, then
minimizeEq. (4)with respect to the displacements for a given
ΩR. Examples of the distribution of pressureP ¼ −Sαα=2 are
shown in Fig. 1(b). Relative to the axisymmetric pressure
induced by helical twist in the straight bundle, bending into a
twisted toroid requires bunching (spreading) of the filaments
at the inner (outer) positions in the toroid, leading to a
polarization of the pressure toward the normal.
Because bending and twisting of bundles introduces

longitudinal strain variation, bending the pretwisted bundle
introduces additional stresses whose elastic cost can be
characterized by an effective bending stiffness B, defined
by Ebend ¼ ðB=2Þ R dsκ20, which derives purely from col-
umnar strain, rather than intrafilament deformations.
Figure 3 shows that longitudinal frustration leads to a
bending cost that increases with small twist as B ∼ ðΩRÞ4,
but eventually gives way to remarkable nonmonotonic
behavior at large pretwist. We note further that the bending
cost grows with the 2D Poisson ratio ν of the columnar
array, highlighting the importance of local compressional
deformations in optimal twisted toroids.

FIG. 2. A 2D schematic of local forces in a filament bundle (with
a uniform, parallel reference state), illustrating transverse stress S⊥⊥
with regions under compression in blue and those under extension
in red. The forces parallel and tangent to t are shown at two points,
and push material points to regions of vanishing stress.

PHYSICAL REVIEW LETTERS 127, 218002 (2021)

218002-3



We analyze the optimal modes of deformation via the
convective flow tensor, in particular, the trace trðhÞ (splay)
and deviatoric components hdev ¼ hαβ − trðhÞδαβ=2 (biax-
ial splay) [41], which characterize longitudinal gradients of
dilatory and shear stress in the columnar array. In contrast
to a heuristic view that optimal packings should favor the
uniform area per filament of splay-free textures, the inset of
Fig. 3 instead shows that optimal toroids incorporate a
mixture of both splay and biaxial splay where we define the
respective measures of average splay and biaxial splay,
Ψ≡ ð1=κ20VÞ

R
dVtrðhÞ2 and Γ≡ ð1=κ20VÞ

R
dVtrðh2devÞ.

Only in the incompressible limit, as ν → 1, does the splay
vanish, and only at the expense of additional biaxial splay
and energetic cost, implying counterintuitively that splayed
textures are in fact energetically favorable in longitudinally
frustrated twisted toroids. Indeed, the energetic preference
for splay in nonequidistant bundles can be traced to force
balance conditions in this geometry [36].
As an elastic theory, our treatment of reptation invariant

energetics neglects the nonconservative forces of tangential
friction in 2D ordered bundles. Such a descriptionwill apply,
by definition, to equilibria of any systemwith columnar order
(i.e., without long-range interaxial correlations between
filaments), conditions widely encountered in a range of
molecular bundle-forming systems, from supermolecular
fibers [42,43] to nanotube ropes [44–46]. For example,
simulations of nanotube ropes [44,45], confirm that interfila-
ment cohesion is sufficient tomaintain dense, 2Dorder while
columns reptate under highly contorted, twisted, and bent
deformations. Condensed states of DNA and other poly-
nucleotides, for example, exhibit columnar states [47], and
notably exhibit twisted, contorted, and 2D ordered packings
within viral capsids [7,48], although the existence of inter-
helical correlations in such structure and their effects on
observed packing remains a matter of open investigation
[49]. The question of when the reptation symmetric elastic

description captures geometrically nonlinear deformations of
macroscopic bundles, in which static friction between
filaments may transmit axial shears, is more complex.
While some recent experiments [12,50] with macroscopic
bundles of densely packed, 2D ordered, and twisted bundles
demonstrate that large degrees of distortion are possible
without noticeable effects of sliding friction, prevailing
theoretical models, backed up by finite-element simulations,
of twisted cables, indicate that the effects of static friction
lead tomechanical transitions between shear coupled and un-
coupled regimes [51,52]. Notably, models of bending in
pretwisted cables show that above a threshold bending
(which increases with static friction and pretension), defor-
mation transitions to a slipping regime [53,54]. In this
context, we might speculate that deformations in the post-
slipping regimes of thesemodels tends toward those captured
by theminimal reptation-invariant elasticity. Itmay indeed be
possible to explore this conjecture via a homogenization
approach to a suitable constitutive model of fibered elastic
composites [55–58], in which the interfiber matrix transmits
strictly no elastic shears, but instead only an elastoplastic
slipping of fibers determined by local transverse pressure
(i.e., Coulomb friction).
In summary, we have shown that gauge-theoretic princi-

ples underlie the geometrically nonlinear theory of columnar
elasticity, providing a means to quantify the cost of longi-
tudinal frustration in the mechanics of bundles. Unlike phase
field models of nonlinear elasticity (such as [59,60]), this
description neither depends on the presence of a planar
reference state, nor presupposes uniform crystalline order,
allowing us to both accommodate the effective curvature of
bundles of constant pitch helices [61], and provide a natural
generalization to arbitrary target metrics [25]. Because this
approach to elasticity relies only on the existence of local,
continuous zero modes, we note that it can be generalized to
other liquid crystals, like smectics, and anticipate that it may
have applications beyond liquid crystals, includingmechani-
cal metamaterials.
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