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Motivated by the recent discovery of unconventional charge order, we develop a theory of electronically
mediated charge density wave formation in the family of kagome metals AV3Sb5 (A ¼ K;Rb;Cs). The
intertwining of van Hove filling and sublattice interference suggests a three-fold charge density wave
instability at TCDW. From there, the charge order forming below TCDW can unfold into a variety of phases
capable of exhibiting orbital currents and nematicity. We develop a Ginzburg Landau formalism to stake
out the parameter space of kagome charge order. We find a nematic chiral charge order to be energetically
preferred, which shows tentative agreement with experimental evidence.
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Introduction.—Density wave instabilities describe the
onset of translation symmetry breaking of the charge or
spin distribution in a Fermi liquid. While spin density
waves usually unambiguously derive from electronic inter-
actions, it is often subtle to tell whether electronic charge
order is cause or consequence [1,2]. For the latter, structural
transitions of any kind can accordingly manifest themselves
in the rearranged electronic charge profile. For the former,
the electron fluid minimizes its energy by translation
symmetry breaking, which is mediated by electronic
interactions. With regard to the charger order in the kagome
metal AV3Sb5 (A ¼ K, Rb, Cs) [3–12], a central observa-
tion to begin with is that it coincides with a Fermiology
close to van Hove filling, hinting at a significant enhance-
ment of electronic correlation effects. While it will still be
essential to further analyse the phonon profile of the
material [5,8], we take these observations to motivate
our assumption that the supposed charge order observed
in AV3Sb5 is electronically mediated, and that we will
constrain ourselves to the electronic degrees of freedom in
the following.
The kagome Hubbard model at van Hove filling has been

predicted to yield a charge density wave (CDW) instability
with finite angular momentum [13,14]. Generically, a charge
density wave interpreted as a condensate of particle-hole
singlets should tend to have zero angular momentum, in
order for the particle hole pair to minimize its energy with
respect to the screened Coulomb interactions. Instead, the
van Hove-filling kagome Fermi surface yields three nesting
vectors, all of which give rise to individual charge order
components. Individually, the particle-hole pairwave function
attains angular momentum l ¼ 1, reminiscent of the gener-
alization of the Peierls instability to two spatial dimensions
also named charge bond order (CBO). The reason this

instability is preferred over other instabilities roots in the
sublattice interference [15], which effectively increases the
relevance of nearest neighbor over on-site Coulomb repulsion
within the nesting channels.
In this Letter, we develop a theory of charge order for

AV3Sb5. In order to do so, we obtain an effective two-
dimensional tight binding model which manages to keep the
most salient features of the AV3Sb5 band structure. We find
that, assuming an electronically mediated charge order, the
Fermi pocket at van Hove filling should dominate. On a
mean-field level, we compare CBOwith l ¼ 1 against charge
density order (CDO) with l ¼ 0 angular momentum, both for
the same ordering wave vectors dictated by the Fermiology.
We confirm that the threefold CBO instability previously
found for the kagome Hubbard model at van Hove filling
[13,14] dominates in a large part of parameter space. Beyond
the instability level, the three CBO parameters can in
principle form condensates which vary in amplitude and
relative phase. We discuss the possibility using a Ginzburg
Landau analysis and find that the CBO instability preferably
breaks time-reversal symmetry. All three order parameters
appear simultaneously at the instability level, and yet there is
a tendency to nematicity through differing phases below
TCDW. These results appear to be in line with the measure-
ments from scanning tunneling microscopy.
Multi-orbital effective model.—Layered kagome metals

as the AV3Sb5 family are an exciting platform, hosting
electronic features like flat bands and nodal lines [4,16]. The
compounds can be treated as effectively two-dimensional
[17], since the electronic features are dominated by the
vanadium orbitals crystallizing in a kagome lattice structure.
We now discuss the symmetry properties of bands arising
from d orbitals in the kagome lattice, neglecting spin-orbit
coupling. Located in the wallpaper group p6mm (No. 17),
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the kagome structure consists of three sublattices that arise
from placing atoms on Wyckoff position 3g with site-
symmetry group D2h. The symmetry representations of
Bloch states depend on the irreducible representation of the
orbitals placed on these Wyckoff positions, as described by
the topological quantum chemistry framework [18]. Two
sets of orbitals contribute: First, a linear combination of the
dxy, dx2−y2 , dz2 orbitals forms a Wannier state in the Ag

irreducible representation of D2h. We focus on the dxy
orbitals as their representative [see Fig. 1(a)]. They induce
the well-known kagome band structure with a p-type
van Hove singularity [19] at the M point [blue bands in
Fig. 1(b)]. Second, the dxz=yz orbitals in theB2g;3g irreducible
representations of D2h, indicated as two red tones in
Fig. 1(a), form a set of bands with opposite mirror
eigenvalues along the Γ-M line. These bands give rise to
a mirror-symmetry-protected Dirac cone on the Γ-M line
and additional p- as well as m-type van Hove singularities
[red bands in Fig. 1(b)]. Crossings between the dxy and the
dxz=yz bands are also protected by mirror symmetry.

P-type bands discussed above are subject to the sub-
lattice interference [15]: at eachM point, the Bloch states at
van Hove filling have support on only one of the three
sublattices [see Fig. 1(c)]. This effect is not an artifact of a
simplified effective model, but is also seen in the first
principles calculation to very high accuracy (corrected only
by a small admixture from p orbtials of the other sub-
lattices). It has a crucial influence on the character of Fermi
instabilities [13,15,20].
In order to unravel the origin of the observed Fermi

surface instability, we focus on nesting effects which are
most apparent in the dxy bands [see the nesting wave
vectors Qj, j ¼ 1, 2, 3, indicated in Fig. 1(c)]. We therefore
focus on the dxy orbitals exclusively in the following,
while keeping in mind that dxz=yz bands share their
important features—van Hove singularity and sublattice
interference—and can thus be expected to support the
ordering tendencies arising from the dxy bands (see Sec. I
in Ref. [21]).
The tight-binding description of the dxy orbital band

structure is H0 ¼
P

k;α;β c
†
k;αHk;α;βck;β, where c

†
k;α creates a

Bloch electron with momentum k in and support on
sublattice α ¼ 1, 2, 3. The Bloch Hamiltonian matrix
reads

Hk ¼ −2t

0
B@

μ cos ðka3Þ cos ðka2Þ
cos ðka3Þ μ cos ðka1Þ
cos ðka2Þ cos ðka1Þ μ

1
CA; ð1Þ

where we use the lattice vectors connecting sublattices as
a1;3 ¼ ð1=4;∓ ffiffiffi

3
p

=4ÞT, a2 ¼ ð1=2; 0ÞT, t ¼ 0.3 eV as the
overall hopping strength and μ as the chemical potential.
The corresponding band structure presented in Fig. 1(b)
shows an enhancement of the density of states around the
three M points at the van Hove filling n ¼ 5=12.
Charge density wave instability.—The emergence of the

charge density wave in AV3Sb5 has been experimentally
observed to break the translational symmetry of the kagome
lattice to a 2 × 2 unit cell [4,6,8–12], thereby necessitating
an instability with Q ≠ 0, specifically Q1;3 ¼ ðπ;∓ ffiffiffi

3
p

πÞT,
Q2 ¼ ð2π; 0ÞT [see Fig. 1(c)]. Experimental evidence in
AV3Sb5 is indicative of an electronically driven charge
order [5,22]. This is why we consider a mean-field treat-
ment of the kagome Hubbard model, realized by the
Hamiltonian

H ¼ H0 þHint

¼ μ
X
r;σ

c†r;σcr;σ − t
X
hr;r0i;σ

ðc†r;σcr0;σ þ H:c:Þ

þ U
X
r

nr;↑nr;↓ þ V
X

hr;r0i;σ;σ0
nr;σnr0;σ0 ; ð2Þ

(a)

(b)

(c)

FIG. 1. Electronic features of AV3Sb5. (a) Kagome lattice with
basis of three sublattices, occupied by vanadium dxy (blue) and
dxz=yz (red) orbitals. (b) Corresponding band structure induced by
dxy (blue) and dxz=yz (red) orbitals and corresponding nature of
van Hove singularities. Higher-lying bands of dxz=yz are not
displayed for simplicity. (c) Schematic of Fermi surfaces in the
hexagonal Brillouin zone. The V dxy Fermi surface, which is
nested by the ordering wave vectorsQj, j ¼ 1, 2, 3, has weight on
distinct sublattices at each M point, giving rise to the sublattice
interference mechanism. Dirac cones slightly above the Fermi
energy are indicated in red according to their orbital origin.
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where c†r;σ creates an electron on site r in the kagome
lattice with spin σ ¼↑;↓ and nr;σ ¼ c†r;σcr;σ. The on-site
Hubbard interaction is parametrized by U, while the
nearest-neighbor interaction strength is denoted by V.
Crucially, the hopping always acts between densities on
sites belonging to different sublattices.
In the following, we only consider charge orders, i.e., all

fermionic bilinear forms are implicitly summed over their
spin degree of freedom. Note that a spin bond order with
likewise finite relative angular momentum could, in prin-
ciple, be a close competitor [13], which could evade
conventional static measurements of local magnetic
moments [23] and hence would not contradict, e.g., the
absence of a local magnetic moment in μSR [24]. The
current related to the anomalous Hall signal [25], however,
manifestly is a charge current and not a spin current.
Additionally, recent optical spectroscopy experiments sup-
port the bulk nature of the CDW state [9], and as such hint
at an electronically mediated charge order as its origin.
The relative strength of on-siteU and nearest neighbor V

Hubbard interactions allow for different charge orders to
emerge. Inspired by the majority of charge instabilities, a
charge density order is an obvious possibility, described by
the order parameter

OCDOðkÞ ¼
X
α

Δ̃αhc†k;αckþQα;αi; ð3Þ

where α labels the three sublattices. It corresponds to a real
space pattern of the form

OCDOðrÞ ¼
X
α

Δ̃α cosðQαRÞhc†R;αcR;αi; ð4Þ

where c†R;α creates an electron in sublattice α of unit cell R,
while r ¼ Rþ rα is the actual position of the site (r1 ¼ 0,
r2 ¼ a3, r3 ¼ a2). Such an arrangement is visualized in the
right inset of Fig. 2.
Owing to the unique sublattice structure, however, the

inhomogeneous distribution of Fermi level density of states
reduces nesting effects for a local Hubbard interaction.
Consequently, the nearest-neighbor interaction V is pro-
moted, leading to a charge bond order, which modulates
the kinetic hopping strengths instead of on-site densities.
Correspondingly, the order parameter in reciprocal space
can be written as [13]

OCBOðkÞ ¼
X
α;j;β

Δj sin
�
Qjk

4π

�
hc†k;αckþQj;βijϵαjβj; ð5Þ

where ϵαjβ is the Levi-Civita tensor and α, β run over the
three sublattices. The k dependence of the order parameter
creates a nontrivial relative momentum structure, leading to
the formation of an unconventional CDW order. Note that
the relative angular momentum l ¼ 1 of the individual

particle hole pairs does not directly carry over to the
macroscopic charge order ground state formed by the
coherent superposition of these particle hole pairs.
Rather, the l ¼ 1 substructure of the particle hole pair
wave function unfolds in the nature of particle-hole
excitations above the ground state. In real space, the
emerging order corresponds to an alternating modulation
of the hopping strengths connecting the three sublattices,
giving rise to the enlarged 2 × 2 unit cell

OCBOðrÞ ¼
X
α;j;β

Δj cosðQjRÞjϵαjβj

ðhc†R;αcR;βi − hc†R;αcR−2aj;βiÞ; ð6Þ

whose visualization is given in the left inset of Fig. 2.
We compare the transition temperature of the two orders
defined in Eqs. (3) and (5) on the mean-field level. The
results are visualized in Fig. 2. Clearly, a CBO is favored
for a wide range of interaction strengths, owing to the
unique sublattice structure of the kagome lattice [27]. This
allows nearest-neighbor interactions V to take the role of
mediating the unconventional charge order. By contrast,
the CDO is found in the limit of large on-site interaction U.
Experimentally, a transition temperature TCDW≈78–103K
has been observed [6]. Gauging our scales from this
input, it yields U=2 ¼ V ≈ 250 meV in our setting.
Naturally, for sufficiently large on-site interactions U,
the charge density order becomes dominant again, as seen
on the right side of Fig. 2. Exerting hydrostatic pressure
has been found to lead to a suppression of the charge

FIG. 2. Interaction strength phase diagram and corresponding
electronic order in AV3Sb5. Mean field critical temperatures of
the charge density order introduced in Eq. (3) and the charge
bond order introduced in Eq. (5) as a function of the electronic
interaction strengths U=V (μ ¼ −35 meV [26]). For U ≲ 2.1 V a
charge bond order dominates, which forms a complex star of
David pattern of strong and weak bonds. The inset highlights the
mean field parameters Δj, j ¼ 1, 2, 3, and their arrangement on
the kagome lattice. For systems with interaction scales above
U ¼ 2.1 V a charge density order emerges, modulating the real
space site occupation.
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order [10,26], related to both Fermi surface renormaliza-
tions and changes in the nearest-neighbor interaction V
(see Sec. II in Ref. [21]).
Ginzburg Landau formalism.—To study the interplay of

the triplet of order parameters in the CBO phase, we derive
the symmetry-constrained expansion of the Ginzburg
Landau free energy for Δ1, Δ2, Δ3 as defined in Eq. (6).
The relevant generating symmetries are translation
by 2a1, ðΔ1;Δ2;Δ3Þ → ðΔ1;−Δ2;−Δ3Þ, translation by

2a2, ðΔ1;Δ2;Δ3Þ → ð−Δ1;Δ2;−Δ3Þ six-fold rotation,
ðΔ1;Δ2;Δ3Þ → ðΔ�

3;Δ�
1;Δ�

2Þ, mirror with a2 normal to
the mirror plane, ðΔ1;Δ2;Δ3Þ → ðΔ�

3;Δ�
2;Δ�

1Þ, and time-
reversal acting as complex conjugation. For a more
compact notation, we decompose the complex order
parameter into phase ϕj and absolute value ψ j > 0 as
Δj ¼ ψ jeiϕj , for j ¼ 1, 2, 3. Up to third order in Δj, and
neglecting gradient terms, the free energy expansion
reads [29,30]

F ¼ α1
X
j

ψ2
j þ 2α2

X
j

ψ2
j cosð2ϕjÞ þ 2γ1ψ1ψ2ψ3 cosðϕ1 þ ϕ2 þ ϕ3Þ

þ γ2ψ1ψ2ψ3½8 cosðϕ1Þ cosðϕ2Þ cosðϕ3Þ − 2 cosðϕ1 þ ϕ2 þ ϕ3Þ�; ð7Þ

with the coefficients α1;2 and γ1;2 being temperature-
dependent real numbers. We discuss the effect of the
second- and third-order terms separately, with the vanishing
α1 � 2α2 at TCDW indicating the phase transition to the
charge bond ordered state [see Fig. 3(a)].
The second order terms are minimized by ϕj mod π ¼ 0

for α2 < 0, and ϕj mod π ¼ π=2 for α2 > 0, where the
latter case breaks time-reversal symmetry spontaneously
and induces orbital currents [31,32]. Our microscopic
calculation indeed yields α2 > 0, as seen in Fig. 3(a).
The resulting bond correlation hψGSjc†rcr0 jψGSi, with r, r0
being nearest-neighbor sites and ψGS the single Slater
determinant ground state wave function, replicates the
expected star of David pattern imprinted by the modulated
hopping elements. Additionally, orbital currents emerge
due to the time-reversal symmetry breaking and, even
though we have a bond order, the on-site densities
hψGSjc†rcrjψGSi are also modulated [see Fig. 3(b)].

The third order terms in Eq. (7) mediate interactions
between the three order parameters. They demonstrate that
the simultaneous nucleation of all three order parameters is
energetically favorable. Our microscopic calculation yields
γ1 < 0 and γ2 ¼ 0. Minimization of the third order terms
alone then implies ϕ1 þ ϕ2 þ ϕ3mod 2π ¼ 0, which forces
the ϕj to deviate from �π=2, while maintaining the time-
reversal symmetry breaking. This competition between
second and third order terms, together with the fourth order,
leads to a transition from an isotropic to an anisotropic
charge order upon lowering temperature. Specifically, a
difference between the phase factors ϕ1 ≠ ϕ2;3 ≠ π=2
emerges within the charge order phase, while maintaining
a complex order parameter with ψ1 ¼ ψ2 ¼ ψ3. This results
in a nematic chiral charge order, where the bond correlations
spontaneously break theC6-rotational symmetry (see Sec. III
in Ref. [21]). Such a scenario has been observed in numerous
experiments [4,33–35].

(a) (b) (c)

FIG. 3. Ginzburg Landau free energy and resulting current pattern. (a) The second order coefficient α1 as a function of temperature T
signals the second order phase transition of the emerging charge bond order by a sign change at kBTCDW ≈ 1.011 eV, whereas the
coefficient α2 is purely positive, requiring an imaginary order parameter Δj, breaking time-reversal symmetry (V ¼ 1 eV,

μ ¼ −35 meV). (b) The bond correlation pattern hψGSjc†rcr0 jψGSi in this setting (Δj ¼ 0.1i) shows a star of David arrangement of
strong and weak bonds, equipped with a nonzero current. The current is homogeneous on the lattice, however alternating in its flow,
indicated with blue arrows. Additionally, the order parameter modulates the on-site occupation within and between the hexagons.
(c) The resulting band structure in the reduced Brillouin zone shows a gap opening around the M points, reducing the density of states
(DOS) at the Fermi level (Δj ¼ 0.1i).

PHYSICAL REVIEW LETTERS 127, 217601 (2021)

217601-4



We conclude from this Ginzburg Landau analysis three
points that are in accordance with the experimental find-
ings, in particular in AV3Sb5: (i) the CBO breaks time-
reversal symmetry spontaneously, (ii) all three order
parameter components nucleate together, and (iii) their
competition can result in a nematic CBO.
In Fig. 3(c) the band structure of the time-reversal

symmetry breaking CBO mean-field state is shown. We
observe that the order parameter does not open a full gap,
but significantly reduces the density of states at the Fermi
level inducing two peaks above and below, in accordance
with experimental findings [9,34,36–40].
Conclusion and outlook.—We have developed a minimal

tight-binding model capturing the central features relevant
for the discussion of charge density wave order in the
kagome metals AV3Sb5. Motivated by recent experimental
verification, we have investigated the motif of electroni-
cally driven charge order through a mean-field treatment of
the kagome Hubbard model. Owing to the unique sublattice
structure of the Fermi surface instability, a charge bond
order with particle hole pairs of nonzero angular momen-
tum emerges. From a Ginzburg Landau expansion of the
free energy, we go beyond the instability level and find that
the charge order in AV3Sb5 tends to yield orbital currents as
a manifestation of time-reversal symmetry breaking, and is
naturally prone to the onset of nematicity. The recently
observed 2 × 2 × 2 CDW in ðRb;CsÞV3Sb5 [5,41] can
likely be explained by extending the CBO order parameter
in Eqs. (5) and (6) to three dimensions [42]. Intertwining
these novel charge orders with the topological features
of AV3Sb5 opens a phletora of exciting phenomena, in
particular with respect to possibly highly exotic descendant
superconducting pairing.
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Note added.—Upon completion of this work, we became
aware of Ref. [43] which investigates a slightly different
charge bond order for AV3Sb5. Repeating our mean-field
analysis for this order parameter yields a lower kBTCDW ≈
423 meV (for V ¼ U ¼ 1 eV), rendering this order ener-
getically less favorable.
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