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The study of the magnonic thermal Hall effect in magnets with Dzyaloshinskii-Moriya interaction (DMI)
has recently drawn attention because of the underlying topology. Topological phase transitions may arise
when there exist two or more distinct topological phases, and they are often revealed by a gap-closing
phenomenon. In this work, we consider the magnons in honeycomb ferromagnets described by a
Heisenberg Hamiltonian containing both an out-of-plane DMI and a Zeeman interaction. We demonstrate
that the magnonic system exhibits temperature (or magnetic field) driven topological phase transitions due
to magnon-magnon interactions. Specifically, when the temperature increases, the magnonic energy gap at
Dirac points closes and reopens at a critical temperature, Tc. By showing that the Chern numbers of the
magnonic bands are distinct above and below Tc, we confirm that the gap-closing phenomenon is indeed a
signature for the topological phase transitions. Furthermore, our analysis indicates that the thermal Hall
conductivity in the magnonic system exhibits a sign reversal at Tc, which can serve as an experimental
probe of its topological nature. Our theory predicts that in CrI3 such a phenomenon exists and is
experimentally accessible.
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Introduction.—In condensed matter physics, the notion
of topologically ordered phases has opened new avenues to
understand exotic phases of matter that cannot fit into
Landau’s paradigm. The integer quantum Hall effect in a
two-dimensional electron gas is one such example in which
the time-reversal symmetry is broken and the system is in a
topologically ordered phase characterized by a quantized
Hall conductance. Another prominent example is the
discovery of symmetry-protected topological orders in
topological insulators [1–3]. While these ordered phases
are not classified in Landau’s theory, they can be linked to
certain topological invariants. Apart from the above exam-
ples concerning fermions, the topological aspect of bosons
has also received considerable interest, e.g., a symmetry-
protected topological phase of 87Rb atoms trapped in a one-
dimensional lattice has been realized experimentally [4].
Also, the study of topological orders in systems consisting
of bosonic collective excitations such as magnons is
another important subject because it connects with the
possibility of a nonzero thermal Hall conductivity [5–15].
Unlike electrons, magnons are charge neutral, and thereby
not experiencing any Lorentz force. Therefore, the top-
ology of magnonic systems cannot be studied via a
standard Hall effect. However, it is shown [16] that in
magnonic systems an antisymmetric interaction such as
Dzyaloshinskii-Moriya interaction (DMI), between spin
moments plays a similar role as the Lorentz force and gives
rise to a thermal Hall effect.
The theoretical work on the thermal Hall effect in

quantum magnets with particular lattice structures such

as kagome lattice was first studied in Ref. [17].
Experimental evidence for the magnonic thermal Hall
effect in a ferromagnetic insulator with pyrochlore lattice
structure was also reported around the same time [18]. In
addition to pyrochlore, experiments on the thermal Hall
effect of Cu(1-3,bdc) with kagome lattice also reveal a
magnon origin [19]. Interestingly, the observed thermal
Hall conductivity in Ref. [19] undergoes an unusual sign
reversal by tuning the temperature. The origin of the sign
reversal can be understood by examining the topological
properties of the magnons in kagome ferromagnets
[15,20,21]. In essence, the contributions from the lowest
and higher magnonic bands to transport depend on the
thermal population and Berry curvature of these bands.
Because the Berry curvature of these bands may have
opposite signs, the sign of the thermal Hall conductivity can
change with the temperature without a topological phase
transition.
The magnonic thermal Hall effect is also theoretically

predicted to exist in honeycomb magnets [22,23] in
addition to widely studied kagome magnets [6,19,20,24].
It is found that Dirac points are gapped as the orbital time-
reversal symmetry is broken by a DMI, similar to the effect
of the next-nearest-neighbor interaction in the Haldane
model [25,26]. In contrast to kagome lattices, the sign of
the thermal Hall conductivity in magnets with honeycomb
lattice is predicted [23] to never change for all values of
relevant parameters considered such as the temperature
and the strength of an applied magnetic field. There,
many-body interaction effects are neglected. Recently,
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Pershoguba et al. [27] considered magnon-magnon inter-
actions in honeycomb ferromagnets and found that these
interactions lead to a notable momentum-dependent
renormalization of the magnon bands. Their theory suc-
cessfully resolved anomalies in the neutron-scattering data
for CrBr3 that had been unexplained for nearly fifty years.
It is to be noted that DMI is not taken into account in their
theory, although its presence in CrBr3 and CrI3 has recently
been experimentally confirmed [28,29].
The direction of DMI is essential in determining both the

topological properties and types of magnon-magnon
interaction in honeycomb ferromagnets [30]. The near-
est-neighbor (NN) DMI is absent and the next-nearest-
neighbor (NNN) DMI vector is allowed and along the
out-of-plane direction according to the Moriya’s rules [31].
This is the situation we consider here. When structural
inversion asymmetry is present, an in-plane DMI between
nearest neighbors is permitted and generates particle-
number-nonconserving processes. This in-plane DMI,
along with an out-of-plane magnetic field, leads to impor-
tant topological phenomena such as the existence of chiral
edge states [30].
From this discussion, it is clear that both DMI and many-

body effects play an important role and cannot be ignored.
Therefore, in this Letter, we incorporate DMI and magnon-
magnon interactions into our model Hamiltonian to inves-
tigate the topological aspect of honeycomb ferromagnets.
We find that topological phase transitions in honeycomb
ferromagnets are driven by the magnon-magnon inter-
actions and these transitions are marked by the sign change
of the thermal Hall conductivity at a finite magnetic field
and a finite temperature. It is in sharp contrast to the
previous theoretical results on kagome ferromagnets where
the sign flip is not accompanied with a topological phase
transition [15,20,21]. Here we will first introduce our
theoretical formalism and then present our results on the
topological properties of honeycomb ferromagnets.
Background theory.—We consider localized spin

moments arranged on a honeycomb lattice in the xy plane
as shown in Fig. 1(a). The corresponding Hamiltonian
associated with these spins is

H ¼ −J
X
hiji

Ŝi · Ŝj − J0
X
⟪ij⟫

Ŝi · Ŝj

þ
X
⟪ij⟫

Dij · Ŝi × Ŝj − gμBBẑ ·
X
i

Ŝi; ð1Þ

where the first two terms are the NN and NNN ferromag-
netic Heisenberg exchange coupling, i.e., J; J0 > 0. The
third term is an out-of-plane NNN Dzyaloshinskii-Moriya
interaction with Dij ¼ νijDẑ, where νij ¼ þ1ð−1Þ for
clockwise(counterclockwise) hopping. The last term is a
Zeeman term. We define h≡ gμBB, where g is the g factor,
μB is the Bohr magneton, and Bẑ is an out-of-plane
magnetic field. Because of the presence of the Zeeman

field, the magnons are no longer protected by the Goldstone
theorem and the spectrum is gapped at the Γ point [22]. The
magnetic field also tends to align the localized spins along
its direction as depicted in Fig. 1(b).
We convert the spin operators in Eq. (1) into magnon

creation (ĉ†) and annihilation (ĉ) operators by using the
Holstein-Primakoff (HP) transformations: Ŝx þ iŜy ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − ĉ†ĉ

p
ĉ, Ŝx − iŜy ¼ ĉ†

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − ĉ†ĉ

p
, and Ŝz ¼ S − ĉ†ĉ.

In the low temperature limit, 2S≫ hn̂i¼hĉ†ĉi, and the squ-
are roots can be expanded in powers of 1=

ffiffiffi
S

p
. Truncated

to S
1
2, we obtain the noninteracting Hamiltonian in the

momentum space, H0 ¼
P

k Ψ
†
kH0ðkÞΨk, where Ψ†

k ¼
ðâ†k b̂†kÞ is a spinor denoting the degrees of freedom for the
two sublattices andH0ðkÞ¼h0ðkÞσ0þhxðkÞσx−hyðkÞσyþ
hzðkÞσz. Here, h0ðkÞ ¼ v0 − 2vt cos ϕpk, hxðkÞ ¼
−vsReðγkÞ, hyðkÞ ¼ −vsImðγkÞ, and hzðkÞ ¼
2vt sinϕρk. In the above expressions, γk ≡P3

n¼1 e
ik·δn with

δn being the three NN vectors, v0 ¼ 3vs þ 6v0s þ h,
vt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02s þ v2D

p
, vsðvs0 ÞðvDÞ ¼ JSðJ0SÞðDSÞ, ϕ ¼

arctanðD=J0Þ, pk ¼ P
3
n¼1 cos ðk · ζnÞ, and ρk ¼P

3
n¼1 sin ðk · ζnÞ, where ζn are the three NNN vectors.

Diagonalizing H0ðkÞ, we obtain the single-particle magnon
energies,

εαðkÞ ¼ h0ðkÞ þ λϵðkÞ; ð2Þ

where ϵðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2xðkÞ þ h2yðkÞ þ h2zðkÞ

q
and λ ¼ 1ð−1Þ

for the up(down) band, α ¼ uðα ¼ dÞ. The corresponding
wave function is given by

(a)

(c)(b)

FIG. 1. (a) Schematics of a honeycomb lattice. Three nearest-
neighbor and next-nearest-neighbor vectors are labeled as δn and
ζn (n ¼ 1, 2, 3), respectively. (b) The localized spins are
represented by red arrows and point along the z axis, same as
the external magnetic field, in the T ¼ 0 limit. (c) The Feynman
diagram for the Hartree-type self-energy. Here the Green’s
functions to be contracted are denoted by the dashed arrows
with α and γ representing the up or down band.
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jψαðkÞi ¼
1ffiffiffi
2

p

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ hzðkÞ

ϵðkÞ
q

λe−iΦðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ hzðkÞ

ϵðkÞ
q

1
CCA; ð3Þ

whereΦðkÞ ¼ arg ½hxðkÞ þ ihyðkÞ�. From Eq. (2), it is easy
to see that the spectrum remains gapped at the Dirac points
K� with a gap size of 2jhzðK�Þj provided that the DMI is
nonzero.
The Berry curvature of each energy band can be

computed by ΩαðkÞ ¼ ∇k × hψαðkÞji∇kjψαðkÞi. The
topological phases of our system are characterized by
the Chern numbers of each band, defined as the integration
of the corresponding Berry curvature over the Brillouin
zone (BZ), Cα ¼ ð1=2πÞ RBZ d2kΩz;αðkÞ. For the up and
down bands of the noninteracting Hamiltonian, the Chern
numbers are −1 and þ1, respectively. The thermal Hall
conductivity is also related to the Berry curvatures by the
following expression derived in Ref. [16]:

κxyðTÞ ¼ −
k2BT

ð2πÞ2ℏ
X
α

Z
BZ

d2kc2ðnαÞΩz;αðkÞ; ð4Þ

where nα ¼ ½eβεαðkÞ − 1�−1 is the Bose distribution function
and β¼1=kBT, c2ðxÞ¼ð1þxÞflog½ð1þxÞ=x�g2−ðlogxÞ2−
2Li2ð−xÞ, and Li2 is the dilogarithm. We will demonstrate
later that the sign of the thermal Hall conductivity is the
same as that of the Chern number for the up band. For
the noninteracting Hamiltonian, the system is always in the
same topological phase ðCu ¼ −1; Cd ¼ þ1Þ and κxyðTÞ
stays negative [23] for all parameter regimes as long as the
magnetic field is not flipped.
Next, we consider the next order in S−

1
2 of the HP

transformation to obtain magnon-magnon interactions.
Using the eigenstates of the noninteracting Hamiltonian,
we express the interacting part Hint of the full Hamiltonian
as,

Hint ¼
1

4SN

X
fkig

�
V1;fkigû

†
k1
û†k2

ûk3
ûk4

þ V2;fkigû
†
k1
û†k2

ûk3
d̂k4

þ V3;fkigû
†
k1
û†k2

d̂k3
d̂k4

þ V4;fkigû
†
k1
d̂†k2

ûk3
ûk4

þ V5;fkigû
†
k1
d̂†k2

ûk3
d̂k4

þ V6;fkigû
†
k1
d̂†k2

d̂k3
d̂k4

þ V7;fkigd̂
†
k1
d̂†k2

ûk3
ûk4

þ V8;fkigd̂
†
k1
d̂†k2

ûk3
d̂k4

þ V9;fkigd̂
†
k1
d̂†k2

d̂k3
d̂k4

�
× δ−k1−k2þk3þk4;0; ð5Þ

where fkig ¼ fk1;k2;k3;k4g and N is the total number
of sublattice sites. Hint is expressed in the ud basis related
to the ab basis by the relation ð ûk d̂kÞT ¼P†ð âk b̂kÞT ,
where P is the unitary transformation matrix associated
with Eq. (3). The process of obtaining V1;fkig to V9;fkig is

given in the Supplemental Material [32]. To properly take
into account many-body correlation effects from the
magnon-magnon interactions, we employ the standard
Green’s function technique to determine the first-order
self-energy and from which we obtain renormalized
energy spectrums. The self-energy we consider here is
of the Hartree type and the corresponding Feynman
diagram is shown in Fig. 1(c) [29]. The self-energy can
be expressed as,

Σαγðk; TÞ ¼
1

4SNℏ

X
q;λ

Sλαγðk;qÞnλðq; TÞ; ð6Þ

where α and γ represent either the up (u) or down (d) mode
and Sλαγðk;qÞ is a function of momenta k and q. It is
understood from the Feynman diagram that the subscripts
and the momentum of the self-energy correspond to those
of the external Green’s functions. The derivation of Eq. (6)
is in the Supplemental Material [32].
Ournext step follows fromDyson’s equation,G−1ðk;ωÞ ¼

iω1 − ℏ−1εðkÞ − Σðk;ωÞ, where G−1 is the inverse of the
dressed Green’s function, ω is the bosonic Matsubara
frequency, εðkÞ is the diagonalized matrix of H0, and
Σðk;ωÞ is the self-energy matrix. It suggests that the effect
of Hint can be integrated into an effective single-particle
Hamiltonian by adding the contribution from the self-
energy, given in Eq. (6), to H0. That is,

Heff ¼
X
k

ð û†k d̂†k Þ
 
εu þ ℏΣuu ℏΣud

ℏΣdu εd þ ℏΣdd

!�
ûk
d̂k

�
:

ð7Þ

By directly diagonalizing the above effective Hamiltonian,
we obtain the renormalized energy bands arising from the
many-body correlation. We note here that before evaluating
the thermal Hall conductivity of our setup, one needs to
rewrite Heff with the original ab basis, that is, Heff ¼P

k Ψ
†
kHeffðkÞΨk. There are some intriguing phenomena

that occurred as a consequence of incorporating the first-
order self energy. One of the major results in the Letter is the
recovery of the sign reversal of the thermalHall conductivity
when the magnon-magnon interactions are included. Below
we shall present and discuss our theoretical results in detail.
Results and discussion.—In this work, the following

parameters are fixed unless otherwise stated: S ¼ 1
2
and

J0 ¼ D ¼ 0.1J [32]. Since Curie temperature (TCurie) is
normally a few times larger than k−1B J [18,28,29,33], the
temperature considered ranges from kBT ¼ 0 to kBT ¼ 2J.
In Fig. 2(a), we plot dispersion relations at three different
temperatures when h ¼ 0.1J. As can be seen from Eq. (6),
the self-energy effect vanishes at T ¼ 0 because the
Bose function for nonzero energies at low temperature
approaches zero. As a result, the renormalized energies at
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T ¼ 0 are the same as the bare energies of Eq. (2) reported
in Ref. [22]. As the temperature increases, the gap at the
Dirac point Kþ decreases and the spectrum becomes
gapless at T ≈ J for this particular h. If we further increase
the temperature, the gap reopens and its size increases with
T. Note here that the magnonic excitation energy at Γ is
given by h and is independent of the temperature. This is
because the Zeeman interaction in Eq. (1) only couples to
the Ŝz term which is exact when expanding the HP
transformation.
To see the temperature dependence of the gap at Kþ, we

extract the gap for three different Zeeman energies as shown
in the inset of Fig. 2(b). We find that as h increases, the gap-
closing temperature Tc also increases. Although only the gap
atKþ is shown, it is in fact the same as the gap atK− because
of the inversion symmetry. It is straightforward to show
explicitly that both the perturbed and unperturbed
Hamiltonian possesses the inversion symmetry by examining
the relation σxHð−kÞσx ¼ HðkÞ where H ¼ H0 or
H ¼ Heff . One can also draw the same conclusion from
the fact that the magnetic field we consider here is out-of-
plane and does not break the inversion symmetry.On theother
hand, the orbital time-reversal symmetry condition
H�ð−kÞ ¼ HðkÞ [27] does not hold because of the presence
of the DMI. Consequently, the gap sizes at Kþ and K− are
identical but the gapless feature is no longer protected.
The gap reopens at T ¼ Tc; this suggests that there may

be a topological phase transition at Tc. To confirm this, we
compute the Chern number of each band above and below
Tc and verify that it indeed changes sign at Tc. For
definiteness, we plot in Fig. 2(c) the phase boundary
between these two distinct topological phases where the
Chern numbers in phase 1 (phase 2) are Cu ¼ −1ðþ1Þ and
Cd ¼ þ1ð−1Þ. The phase boundary in the h − T phase
diagram is determined by studying the gap at Kþ as in the
inset of Fig. 2(b). We note here that the Berry curvatures at
Kþ andK− change sign simultaneously due to the inversion
symmetry. This is in contrast to the Haldane model [25]
with a nonzero onsite energy.

As mentioned earlier, the topological phase transition
can be experimentally confirmed from the sign reversal of
the thermal Hall conductivity κxy. Owing to the two-band
property that ΩuðkÞ ¼ −ΩdðkÞ, one can directly associate
the thermal Hall conductivity in Eq. (4) to ΩuðkÞ. In
addition, we have checked numerically that ΩuðkÞ has the
same sign as the Chern numberCu for all k in the BZ. From
the fact that c2ðxÞ is monotonic, one can deduce that κxy
changes sign when the magnonic system of honeycomb
ferromagnets undergoes a topological phase transition. In
Fig. 2(b), we plot κxy as functions of T for the same three
Zeeman interactions in the inset. One can easily see that κxy
evolves continuously with T and goes from being negative
at low T (T < Tc) to being positive at high T (T > Tc).
Here, we provide evidence that the sign reversal of the
transport quantity is clearly a strong indication for a
topological phase transition. This also makes the honey-
comb ferromagnet a good candidate for observing topo-
logical phase transitions in a bosonic system. We
emphasize here that the sign reversal of κxy does not share
the same origin as that reported in Ref. [16] where the gap
does not close and reopen when the magnetic field
continuously decreases to zero and changes its direction.
Qualitatively speaking, the new phenomenon we predict

and the underlying physics are rather generic and can be
applied to real materials that are well described by the
model Hamiltonian, Eq. (1), such as CrBr3 and CrI3 [27–
29]. To connect our theory with experiments, we take CrI3
as an example and adopt the following parameters obtained
from fitting to experiments [29]: S ¼ 3=2, J ¼ 2.01 meV,
J0 ≈ 0.08J, D ≈ 0.15J [34]. We find that, as shown in
Fig. 2(d), below TCurie ≈ 45 K topological phase transitions
occur with a critical magnetic field small compared to the
case with S ¼ 1

2
. Specifically, the critical magnetic field for

h ¼ 0.1J in Fig. 2(c) is on the order of 1 T if the same
strength of J is assumed there. Nevertheless, our theory
suggests that the sign flip phenomenon of the thermal Hall
conductivity for CrI3 is experimentally accessible in the
low B limit by varying the temperature [19].

(a) (b) (c)

(d)

FIG. 2. (a) Magnonic band structures for three different temperatures along the path Γ − Kþ −M − Γ. Here Kþ is a Dirac point.
(b) The thermal Hall conductivities vs temperature for three different Zeeman fields are plotted. The connecting lines are guides to the
eye. The inset shows the gap Δ at the Dirac point Kþ as a function of temperature for the same three Zeeman fields. (c) The phase
diagram as a function of temperature and Zeeman field for the same parameters as in (a) and (b). (d) The log-log plot of the phase
diagram for CrI3 as a function of temperature and Zeeman field (see main text).
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From the topological point of view, the DMI plays an
essential role as opening up a gap for the magnonic bands.
These noncrossings are the origin of a nonzero and well-
defined Berry curvature and lead to nonzero topological
invariants, i.e., Chern numbers. It is similar to the role of a
spin-orbit interaction in electronic topological insulators
[35]. The major difference is that the topological phases of
our system are characterized by the sign of the thermal Hall
conductivity in contrast to the quantized Hall conductivity
in electronic quantum Hall systems. It is worth mentioning
that magnonic integer quantum Hall effects are also
predicted to exist in a 2D spin-ice model under an out-
of-plane field [36] or in a 2D clean insulating magnet under
a skewed-harmonic electric potential where the quantized
Hall conductance is associated with the Chern number for
almost flat bands [37].
Recently, the topological properties of two-dimensional

square-lattice ferromagnets derived from a magnon-phonon
coupling have also been investigated [38–40]. In particular,
the phonons play a role when addressing the Γ-point
physics [38]. Since the topological properties in honey-
comb ferromagnets are mainly determined by the Dirac-
point physics, we do not expect our results will be
drastically changed when the magnon-phonon coupling
is considered. In addition, it is argued in Ref. [40] that an
in-plane DMI in honeycomb magnets, which is absent in
our setup, is directly responsible for the coupling between
magnons and phonons. Nevertheless, incorporating a mag-
non-phonon coupling in our formalism may open a new
venue in the field.
Conclusion.—To summarize, when incorporating the

Hartree-type self-energy related to the magnon-magnon
interactions into the single-particle Hamiltonian, the system
possesses two topological phases, ðCu ¼ −1; Cd ¼ þ1Þ
and ðCu ¼ þ1; Cd ¼ −1Þ. The topological phase of the
system can be tuned either by the temperature or external
magnetic field. The corresponding continuous topological
phase transitions driven by these magnon-magnon inter-
actions are accompanied with a gap-closing phenomenon.
The sign of the thermal Hall conductivity directly reflects
the Chern numbers that characterize the topological phase.
Therefore, the reversal of the sign occurs during topological
phase transitions and can serve as an indicator in future
experiments. We note here that similar results are also
reported in Ref. [30] where particle-number-nonconserving
interactions are the key ingredients.

This work is supported by MOST of Taiwan Grant
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