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Motivated by the possible non-spin-singlet superconductivity in the magic-angle twisted trilayer
graphene experiment, we investigate the triplet-pairing superconductivity arising from a correlation-
induced spin-fermion model of Dirac fermions with spin, valley, and sublattice degrees of freedom. We find
that the f-wave pairing is favored due to the valley-sublattice structure, and the superconducting state is
time-reversal symmetric, fully gapped, and nontopological. With a small in-plane magnetic field, the
superconducting state becomes partially polarized, and the transition temperature can be slightly enhanced.
Our results apply qualitatively to Dirac fermions for the triplet-pairing superconductivity in graphene-based
moiré systems, which is fundamentally distinct from triplet superconductivity in 3He and ferromagnetic
superconductors.
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Introduction.—Since the incipient discovery of corre-
lated insulators and superconductivity in magic-angle
twisted bilayer graphene (MATBG) [1,2], the moiré gra-
phene systems continue to uncover exotic phases and excite
new ideas [3–21]. In particular, magic-angle twisted trilayer
graphene (MATTG) [19–21] establishes a second example
of the robust superconductivity in the moiré graphene
systems that reveals a clear Fraunhofer-like oscillation in
a Josephson interference pattern. In addition, the out-of-
plane displacement field can modify the band structure
significantly, providing a controllable way to tune the Van
Hove singularity as well as the superconductivity [19–21].
A recent experiment in MATTG [21] demonstrated that

the superconducting state survives with a large in-plane
magnetic field (until ∼10 T) that exceeds the Pauli limit
for spin-singlet superconductivity, prima facie implying a
non-spin-singlet superconducting state in MATTG.
Remarkably, the experiment also found a nonmonotonic
superconducting behavior as a function of the applied in-
plane magnetic field, which suggests a separate (reentrant)
superconducting phase for magnetic field beyond 8 T.
In this Letter, we study a spin-fermion model [22–27] for

Dirac fermions with spin, valley, and sublattice degrees of
freedom, as a proxy for investigating the possible spin-
triplet superconductivity in graphene-based moiré systems.
The idea is that the system is proximate to correlation-
induced ferromagnetism even when the long-ranged order
is not observed. The fluctuation of such a phase (i.e., spin
fluctuation) is captured by the spin-fermion model, and the
spin fluctuation generates superconductivity regardless of
the details in the band structure. We establish that the spin-
triplet superconducting state is f wave [see Fig. 1(a)] and

fully gapped due to the valley-sublattice structure in the
Cooper pairs. We also discuss the effect of a small in-plane
magnetic field and experimental characterization.
We note that the sublattice and valley structures in the

pairing states crucially determine the dominating pairing
instability, while the moiré band structures in twisted
graphene systems inherit Dirac fermions with internal
degrees of freedom (e.g., spin, valley, sublattice) from
monolayer graphene. Therefore, we anticipate that the
f wave is generically the dominating pairing symmetry
for spin-triplet superconductivity in the graphene based
systems.
Model.—The spin-fermion model [22–27] describes that

the low-energy itinerant electrons interact with the fluctu-
ating spin fields. Although the spin fields arise from the
electrons microscopically, we treat them as independent

FIG. 1. (a) f-wave pairing symmetry and the Brillouin zone.
The signs indicate the relative phase when an f-wave pairing is
rotated by π=3. K and K0 denote the valleys. (b) Angular
momentum and valley-sublattice structure. The electrons carry
finite angular momenta depending on the valley and sublattice as
depicted in the figure. Therefore, the Cooper pair wave function
might carry nontrivial z-directional angular momentum (Lz). A
and B denote the sublattices.
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degrees of freedom in the spirit of the spin-fermion model
[27]. In this work, we consider a spin-fermion model of
Dirac fermions which can be realized on a honeycomb
lattice, Ĥ ¼ Ĥe þ Ĥs þ Ĥes. The low-energy electron is
described by [28]

Ĥe ¼
X
k

ψ†
khkψk; ð1Þ

where

hk ¼ ℏvFσxτzkx þ ℏvFσyky − EF: ð2Þ
In the above expression, σa (τa) denotes the a component of
the Pauli matrices for the sublattice (valley), vF is the
Dirac velocity, EF is the Fermi energy, and ψk is an
eight-component fermionic field (valley, sublattice, and
the intrinsic spin) with momentum k. The reduced
Hamiltonian hk obeys a (T 2 ¼ 1) time-reversal operator,
Π̂h�−kΠ̂

−1 ¼ hk, where Π̂ ¼ τx. The fluctuating spin fields
are described by

Ĥs ¼
1

2

X
q

χ−1ðqÞS⃗−q · S⃗q; ð3Þ

where χ−1ðqÞ is the inverse spin-spin zero-frequency
correlation function and S⃗q ¼ ðSxq; Syq; SzqÞ encodes the
three-component fluctuating bosonic spin field at momen-
tum q. Finally, the spin-fermion coupling is given by

Ĥes ¼
gffiffiffiffi
A

p
X
k;q

�
ψ†
k−q

μ⃗

2
ψk

�
· S⃗q; ð4Þ

where g is the spin-fermion coupling constant, A is the area
of the system, and the Pauli matrices for the spin
μ⃗ ¼ ðμx; μy; μzÞ. The spin-fermion model here is motivated
by the non-spin-singlet superconductivity in the MATTG
experiment near ν ¼ −2 [21] since spin fluctuation pro-
vides a natural explanation for the spin triplet pairing
[29,30]. We further assume that the fluctuating spin fields
fail to develop a long range order at the temperatures of our
interest, but the spin-spin correlation function χðqÞ
is peaked at q ¼ 0, e.g., χðqÞ ¼ χ0=ðjqj2 þ ξ−2Þ where
χ0 > 0 and ξ is the correlation length. Such an assumption
is consistent with the absence of ground state magnetization
in MATTG experiment near ν ¼ −2 [21].
To obtain an effective interelectron interaction, we

integrate out the fluctuating spin fields in Eqs. (3) and
(4). The effective interaction is given by

ĤI ¼ −
g2

2A

X
k;k0;q

χðqÞ
�
ψ†
kþq

μ⃗

2
ψk

�
·

�
ψ†
k0−q

μ⃗

2
ψk0

�
: ð5Þ

ĤI describes the ferromagnetic interaction between
the intrinsic spins of the itinerant electrons which favors

spin-triplet pairing [29–31]. One possibility is paramagnon
mediated interactions.
Pairing symmetry.—Besides the spin degrees of free-

dom, the valley and sublattice structures play important
roles in the pairing symmetry of the superconductivity
[32,33]. We discuss only the intervalley Cooper pairs as the
intravalley Cooper pairs correspond to a lattice-scale
oscillating gap function in the position space. The s wave
and f-wave pairings are intrasublattice while the p wave
and d-wave pairings are intersublattice [33]. To see this, we
consider Cooper pairs in the position space and examine the
symmetry operations in the following. The wave function
under the threefold rotation (C3z) about a hexagon center is
given by C3zψ†ðrÞC−13z ¼ eið2π=3Þτzσzψ†ðR3rÞ because of the
site-dependent Bloch wave phase factors illustrated in
Fig. 1(b). In addition, the twofold rotation (C2z) about a
hexagon center is implemented by the valley and sublattice
exchanging as follows: C2zψ†ðrÞC−12z ¼ τxσxψ†ðR2rÞ. For a
pair of electrons from different valleys, C3z operation can
distinguish the swave and f wave (Lz mod 3 ¼ 0) from the
p wave and d wave (Lz mod 3 ¼ 1, 2); C2z operation can
distinguish the swave and d wave (Lz mod 2 ¼ 0) from the
p wave and f wave (Lz mod 2 ¼ 1). With both C3z and C2z,
we can classify angular momentum states associated with
jLzj ¼ 0, 1, 2, 3. Therefore, the sublattice structures are
fully determined for the intervalley s-, p-, d-, and f-wave
pairings [32,33].
The spin-triplet Cooper pair bilinears are summarized in

the following. (The spin-singlet operators are listed in Sec. I
of [31].) The p-wave spin-triplet Cooper pairs are inter-
sublattice and are given by

Φ⃗p;XðkÞ ¼ ψT
−k½ð−iτyÞσxðiμ⃗μyÞ†�ψk; ð6Þ

Φ⃗p;YðkÞ ¼ ψT
−k½τxðiσyÞðiμ⃗μyÞ†�ψk: ð7Þ

The subscripts X and Y correspond to the px and py

structure, respectively. The f-wave spin-triplet Cooper
pairs are described by

Φ⃗fðkÞ ¼ ψT
−k½ð−iτyÞðiμ⃗μyÞ†�ψk: ð8Þ

In addition to the p wave and f wave, we find a staggered
intrasublattice spin-triplet Cooper pair [34] given by

Φ⃗s̃ðkÞ ¼ ψT
−k½ð−iτyÞσzðiμ⃗μyÞ†�ψk: ð9Þ

The σz indicates a staggered sublattice structure, which
might suggest a vanishingly small effect, similar to the
intravalley pairing terms.
The above bilinear exhaust all the possible spin-triplet

pairing. We note that all the spin-triplet Cooper pairs
discussed above can have a pairing potential with no
explicit dependence on momentum k. This should be
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contrasted with other spin-triplet superconductors such as
3He [29] and heavy fermion ferromagnetic superconductors
[30,35], where the spin-triplet pairing potential is an odd
function of momentum k.
Notice that it is important to use the bilinear operators

with respect to the basis in Eq. (1) because the expressions
of Cooper pairs are basis dependent. We adopt the micro-
scopic basis for Eq. (1) and the bilinear operators dis-
cussed above.
BCS theory.—To investigate the qualitative features

of the superconductivity, we employ the standard BCS
approach [29,36] and derive the pairing Hamiltonian
from Eq. (5) (with the attractive channels only) as
follows:

Ĥ0
I ¼ −

Ũ
A

X0

k;k0
½Φ⃗†

p;XðkÞ · Φ⃗p;Xðk0Þ þ Φ⃗†
p;YðkÞ · Φ⃗p;Yðk0Þ

þ Φ⃗†
s̃ðkÞ · Φ⃗s̃ðk0Þ þ Φ⃗†

fðkÞ · Φ⃗fðk0Þ�; ð10Þ
where Ũ > 0 is the momentum-independent effective
pairing strength, the prime in the momentum summation
indicates summing half of the Brillouin zone. The inter-
action Ũ is momentum independent, but we still find
unconventional pairings such as p wave and f wave
because of the valley and sublattice degrees of freedom.
Ũ can be derived from χðqÞ in Eq. (5), which is discussed in
Sec. II of [31]. Equation (10) describes attractive inter-
actions among the spin-triplet Cooper pairs, implying spin-
triplet superconductivity as the leading instability. The
spin-singlet terms, which are left out in Eq. (10) are given
in Sec. II of [31] and are checked to be repulsive as
expected from ferromagnetic spin-fluctuation pairing [29].
To study the superconductivity, we employ the mean-

field decoupling in Eq. (10) and express the mean field
theory in terms of the Bogoliubov-de Gennes (BdG)
Hamiltonian as follows:

ĤMFT ¼
X0

k

Ψ†
kHBdGðkÞΨk

þ A

Ũ
ðjΔ⃗p;Xj2 þ jΔ⃗p;Y j2 þ jΔ⃗fj2 þ jΔ⃗s̃j2Þ; ð11Þ

where ΨT
k ¼ ½ψT

k;ψ
†
−kð−iμyÞ�, Δ⃗p;X (Δ⃗p;Y) is the order

parameters for the px (py) pairing, and Δ⃗f (Δ⃗s̃) is the
order parameter for the f wave (staggered intrasublattice)
pairing. HBdGðkÞ is expressed by

HBdGðkÞ ¼ ðℏvFkxÞσxτz1̂κ þ ðℏvFkyÞσyκz − EFκ
z

þ ðΞ⃗ · μ⃗Þκþ þ ðΞ⃗† · μ⃗Þκ−; ð12Þ

Ξ⃗¼ Δ⃗p;Xð−iτyÞσxþ Δ⃗p;Yτ
xðiσyÞþ Δ⃗fð−iτyÞþ Δ⃗s̃ð−iτyÞσz;

ð13Þ

where the Pauli matrices (κx;y;z) and identity (1̂κ) in the
particle-hole space are introduced and κ� ¼ ðκx � iκyÞ=2.
One can easily confirm the particle-hole symmetry

P̂H�
BdGð−kÞP̂−1 ¼ −HBdGðkÞ; ð14Þ

where P̂ ¼ μyκy, corresponding to the P2 ¼ 1 particle-hole
symmetry.
Formally, we can derive the free energy associated with

Eq. (11) by integrating out the fermionic field in the
partition function. Then, the free energy density (F ) is
expressed by

F ¼ −
kBT
A

ln det ½−iωn1̂þHBdGðkÞ�

þ 1

Ũ
ðjΔ⃗s̃j2 þ jΔ⃗p;Xj2 þ jΔ⃗p;Y j2 þ jΔ⃗fj2Þ; ð15Þ

where kB is the Boltzmann constant. We perform a
perturbative expansion of F up to the quadratic order of
the order parameter. This can be done systematically with
the standard treatment in the matrix Green function
approach [29]. The Landau-type free energy density is
given by

F ¼ constþ
�
1

Ũ
− ξðTÞ

�
ðjΔ⃗p;Xj2 þ jΔ⃗p;Y j2Þ

þ
�
1

Ũ
− ηðTÞ

�
jΔ⃗fj2 þ

�
1

Ũ
− ζðTÞ

�
jΔ⃗s̃j2 þOðjΔj4Þ;

ð16Þ

where ηðTÞ > ξðTÞ > ζðTÞ > 0 (see Fig. 2 and Sec. IV
in [31]), and T is the temperature. The transition tempera-
tures can be determined by ŨξðTp

c Þ ¼ 1, ŨηðTf
cÞ ¼ 1,

and ŨζðTs̃
cÞ ¼ 1, where Tp

c , T
f
c , and Ts̃

c are the transition
temperatures for the p wave, f wave, and the

FIG. 2. Coefficients in the Landau free energy density. We plot
ηðTÞ (black curve), ξðTÞ (blue curve), and ζðTÞ (red curve) with
EF ¼ 30 meV and ℏvFΛ ¼ 50 meV. The unit in the y axis is
ðℏvFÞ−2 meV−1. The results show that η̃ðTÞ > ξ̃ðTÞ > ζ̃ðTÞ in
the parameter regime relevant to MATTG experiment, suggesting
that the f wave is the dominating pairing symmetry.
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staggered intrasublattice spin-triplet pairings, respectively.
Remarkably, we obtain that Tf

c > Tp
c > Ts̃

c, suggesting that
the f wave is the dominating superconducting state. This
result is due to the valley-sublattice structure [32,33] (see
Sec. IV in [31] for a discussion) rather than the detail band
structure, and we anticipate that the f wave is generically
the dominating pairing symmetry for spin-triplet super-
conductivity in the graphene based systems including
MATTG, independent of the pairing mechanism. We note
that the possibility of realizing f-wave superconductivity
was also discussed previously in the context of graphene
and MATBG [33,37–43].
f-wave superconductivity.—In the rest of this Letter, we

focus on the f-wave pairing spin-triplet superconductivity.
With only the f-wave order parameter, the free energy
density given by Eq. (15) can be derived exactly (see Sec. V
of [31]) and is expressed by

F ¼ −2kBT
X
s;r¼�

Z
k
ln

2
642 cosh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k;s þ Δ2

r

q
2kBT

1
CA
3
75þ jΔ⃗fj2

Ũ
;

ð17Þ

where ϵk:� ¼ ℏvFjkj � EF, Δ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ⃗fj2 � jiΔ⃗f × Δ⃗�

fj
q

,

and
R
k denotes

R ½d2k=ð2πÞ2�. Without a magnetic field,
the free energy is minimized when iΔ⃗f × Δ⃗�

f ¼ 0 (i.e.,

Δ⃗fkΔ⃗�
f). Therefore, the order parameter can be expressed

by Δ⃗f ¼ eiϕO⃗, where O⃗ is a real-valued vector. Note that the
phase ϕ can be gauged away. We find that the f wave BdG
Hamiltonian satisfies a (T 2 ¼ 1) time-reversal symmetry:

Π̂H�
BdGð−kÞΠ̂−1 ¼ HBdGðkÞ; ð18Þ

where Π̂ ¼ σyτzμy [44]. The superconducting state
here belongs to the class BDI, which is topologically
trivial in two dimensions based on the tenfold way classi-
fication [45]. As such, we conclude that the spin-triplet
f-wave pairing superconducting state is unitary (i.e.,
iΔ⃗f × Δ⃗�

f ¼ 0), time-reversal symmetric, fully gapped,
and topologically trivial.
To derive the gap equation, we minimize the free energy

in Eq. (17) with respect to jΔ⃗fj2 (with iΔ⃗f × Δ⃗�
f ¼ 0). The

gap equation is expressed by

1

Ũ
¼

Z
k

"
tanhðEk;þ

2kBT
Þ

Ek;þ
þ
tanhðEk;−

2kBT
Þ

Ek;−

#
; ð19Þ

where Ek;� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k;� þ jΔ⃗fj2

q
. To regularize the momen-

tum space integral, we introduce a momentum cutoff (Λ).
For jΔ⃗fj ≪ jEFj, ℏvFΛ, we derive the asymptotic
expressions for the zero temperature gap, 2Δ0≡
2jΔ⃗fðT ¼ 0Þj, and the transition temperature, Tf

c , as
follows [46]:

2Δ0 ¼ 2jEFjA exp

�
−

1

ŨNðEFÞ
�
; ð20Þ

kBT
f
c ¼ jEFj

eγ

π
A exp

�
−

1

ŨNðEFÞ
�
; ð21Þ

where A ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðℏvFΛ − jEFjÞ=ðℏvFΛ þ jEFjÞ�

p
×

exp ½ðℏvFΛ − jEFjÞ=jEFj� is a dimensionless parameter,
γ is the Euler-Mascheroni constant, and NðEFÞ ¼
jEFj=ð2πℏ2v2FÞ is the density of states at the Fermi energy.
To gain an intuitive understanding, we expand the free

energy density (without an applied magnetic field) in
Eq. (17) up to the quartic order of the order parameter
as follows:

F ¼ constþ
X

a¼x;y;z

�
2

g2U
− ηaðTÞ

�
jΔa

fj2

þ a4ðTÞ½jΔ⃗fj4 þ jiΔ⃗�
f × Δ⃗fj2� þOðjΔfj6Þ; ð22Þ

where a4ðTÞ > 0 and ηaðTÞ ¼ ηðTÞ in the absence of a
magnetic field. The absence of iΔ⃗f × Δ⃗�

f is the manifes-
tation of the positive a4ðTÞ in the Landau theory.
In the presence of a small in-plane magnetic field, the

electronic band develops a Zeeman splitting. Then, −Bμz is
added to hk [Eq. (2)], where 2B denotes the Zeeman
splitting and the z direction is rotated to the field direction.
Similar to the expansion in Eq. (16), we treat the order
parameter perturbatively. In addition, we also treat −Bμz
perturbatively in the Green functions. (See Sec. VI of [31]
for a derivation.) The free energy density acquires a
term proportional to −iBΔ⃗f × Δ⃗�

f · ẑ, implying iΔ⃗f × Δ⃗�
f ·

ẑ ≠ 0 and a finite magnetization in the superconducting
state. The quadratic terms in the free energy density are also
affected by B as illustrated in Fig. 3. Specifically,
ηxðT; BÞ ¼ ηyðT; BÞ ¼ ηðT; 0Þ þ B2δηðTÞ and ηzðT; BÞ ¼
ηðT; 0Þ − B2δηðTÞ, where δηðTÞ > 0 (Sec. VI of [31]).
Thus, Δx

f and Δy
f are the favored states, suggesting that

equal-spin pairing is the dominating pairing structure
with a Zeeman splitting [See Eq. (8)]. Recall that

FIG. 3. Sketch of ηaðT; BÞ versus B2. In the absence of
Zeeman splitting (i.e., B ¼ 0), ηxðT; 0Þ ¼ ηyðT; 0Þ ¼ ηzðT; 0Þ.
For a small finite B, ηxðT; BÞ ¼ ηyðT; BÞ > ηzðT; BÞ and
ηxðT; BÞ − ηzðT; BÞ ∝ B2. See main text for a detailed discussion.
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Δ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ⃗fj2 � jiΔ⃗f × Δ⃗�

fj
q

. Thus, there are two gaps in

the superconducting state. For a small B, the gap formed by
“up” spins is increased while the gap formed by the “down”
spins is suppressed. This is consistent with the previous
theoretical results in [47] for MATBG. We conclude that
the superconductivity with a small in-plane field is f wave,
spin-triplet, and equal-spin pairing.
Relation to MATTG experiment.—A recent MATTG

experiment found that the superconductivity near ν ¼ −2
persists for a large magnetic field (10 T) beyond the Pauli
limit for the spin-singlet superconductivity [21]. A natural
explanation is that the superconductivity is spin-triplet,
which we emphasize in this Letter. However, there is no
clear sign of magnetism in the experiments. A possible
explanation is that the electrons are spin polarized, but the
coherence length is too small to develop a true long-range
order. In such a scenario, the phenomenological spin-
fermion model provides a natural starting point. In addition,
our predicted f-wave superconducting state can withstand
finite Zeeman splitting, and the gap (from the up spins) is
enhanced for a small in-plane magnetic field. To compare
with the MATTG experiments, we take vF ¼ 4 × 104 m=s,
ℏvFΛ ¼ 50 meV (half of the MATTG bandwidth [19]),
jEFj ¼ 30 meV, and Ũ ¼ 30 meVnm2. Putting these
numbers in Eq. (21), we obtain Tf

c ¼ 3 K, which is com-
parable to the extracted TBKT in the experiments [19,20].
We also note that Ũ cannot be larger than Ũc ∼ 1=ρ0 (with
ρ0 being the density of states at Fermi level) as the Stoner
ferromagnetism must be absent in the normal state.
Although the spin-fluctuation mechanism proposed in this
work is likely, we cannot not rule out the acoustic-phonon
mechanism which might realize f-wave spin-triplet super-
conductivity also [33,48,49].
The f-wave spin-triplet superconductivity can be exam-

ined experimentally. The spin-triplet Cooper pair cannot
tunnel into a spin-singlet superconductor (i.e., zero
Josephson current) but can tunnel into an “Ising” super-
conductor (such as NbSe2 [50,51]) as long as the spin-
triplet Cooper pair has zero out-of-plane spin projection.
Since the small magnetic field can partially polarize the
superconducting state, the MATTG-NbSe2 junction with a
small magnetic field can distinguish the spin-triplet
pairing from the spin-singlet pairing. In addition, the
f-wave symmetry can be confirmed by a hybrid corner
Josephson junction as discussed in Sec. VII of [31].
Relation to the Hubbard model.—The phenomenological

spin-fermion model used in this work might be derived
from the Hubbard model [27]. In the single-band square
lattice SUð2Þ Hubbard model, the antiferromagnetism
arises at half filling for a large on-site repulsion, and the
Nagaoka ferromagnetism takes place when doping slightly
away from the half filling. We expect that the pheno-
menological spin-fermion model here should capture the
gross features of the possible spin polarized states in the

MATTG bands. However, the microscopic justification
remains an important question, both whether there is
superconductivity in the Hubbard model [52] and whether
the Hubbard model is relevant to MATTG [43,53,54].
Our work, however, transcends these questions and applies
as long as spin fluctuations mediate the observed
superconductivity.
Outlook.—The present work can be straightforwardly

generalized to the MATTG bands [55–57], which is an
important direction for future work. We anticipate that the
f wave remains the main pairing symmetry because of
the valley-sublattice structure unique to graphene. In this
Letter, we concentrate only on the zero and the low in-plane
magnetic field limits. With a sufficiently large in-plane
magnetic field, the spin fields are fully polarized, and a
sizable Zeeman splitting in the electronic bands develops.
The transverse fluctuation of the polarized spin fields
(analogous to the magnon) can still mediate the effective
interaction. The presence of spin fluctuations implies that
the Pomenranchauk effect applies to the system [58,59].

We are grateful to Andrey Chubukov, Pablo Jarillo-
Herrero, andAndreaYoung for stimulating correspondence.
Y.-Z. C. also thanks Zhentao Wang for useful discussions.
This work is supported by the Laboratory for Physical
Sciences (Y.-Z. C. and S. D. S.), by JQI-NSF-PFC
(supported by NSF Grant No. PHY-1607611, Y.-Z. C.),
and NSF DMR1555135 (CAREER, J. D. S.). F. W. is
supported by startup funding of Wuhan University.

*yzchou@umd.edu
[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.

Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras et al., Nature (London) 556, 80 (2018).

[2] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[3] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K.
Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R.
Dean, Science 363, 1059 (2019).

[4] H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K.
Watanabe, T. Taniguchi, C. R. Dean, and A. F. Young,
Nat. Phys. 15, 1011 (2019).

[5] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O.
Rubies-Bigorda, K. Watanabe, T. Taniguchi, T. Senthil,
and P. Jarillo-Herrero, Phys. Rev. Lett. 124, 076801 (2020).

[6] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K.
Watanabe, T. Taniguchi, M. Kastner, and D. Goldhaber-
Gordon, Science 365, 605 (2019).

[7] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das,
C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang et al.,
Nature (London) 574, 653 (2019).

[8] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M.
Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C.
Dean et al., Nature (London) 572, 95 (2019).

[9] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J.
Mao, and E. Y. Andrei, Nature (London) 573, 91 (2019).

PHYSICAL REVIEW LETTERS 127, 217001 (2021)

217001-5

https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/s41567-019-0596-3
https://doi.org/10.1103/PhysRevLett.124.076801
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41586-019-1460-4


[10] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T.
Taniguchi, B. A. Bernevig, and A. Yazdani, Nature
(London) 572, 101 (2019).

[11] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R.
Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael et al., Nat.
Phys. 15, 1174 (2019).

[12] M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K.
Watanabe, T. Taniguchi, L. Balents, and A. Young, Science
367, 900 (2020).

[13] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Nature (London) 592, 43 (2021).

[14] G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi et al.,
Nature (London) 572, 215 (2019).

[15] G.W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H.
MacDonald, and E. Tutuc, Phys. Rev. Lett. 123, 197702
(2019).

[16] C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J.
Liu, J. Tian, K. Watanabe et al., Nat. Phys. 16, 520 (2020).

[17] Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park,
K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Nature
(London) 583, 215 (2020).

[18] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. H.
Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath
et al., Nature (London) 583, 221 (2020).

[19] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Nature (London) 590, 249 (2021).

[20] Z. Hao, A. Zimmerman, P. Ledwith, E. Khalaf, D. H.
Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath,
and P. Kim, Science 371, 1133 (2021).

[21] Y. Cao, J. M. Park, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Nature (London) 595, 526 (2021).

[22] P. Monthoux and G. G. Lonzarich, Phys. Rev. B 59, 14598
(1999).

[23] K. B. Blagoev, J. R. Engelbrecht, and K. S. Bedell, Phys.
Rev. Lett. 82, 133 (1999).

[24] R. Roussev and A. J. Millis, Phys. Rev. B 63, 140504(R)
(2001).

[25] A. Abanov, A. V. Chubukov, and A. Finkel’stein, Europhys.
Lett. 54, 488 (2001).

[26] A. V. Chubukov, A. M. Finkel’stein, R. Haslinger, and D. K.
Morr, Phys. Rev. Lett. 90, 077002 (2003).

[27] A. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys.
52, 119 (2003).

[28] F. Wu, Phys. Rev. B 99, 195114 (2019).
[29] P. Coleman, Introduction toMany-Body Physics (Cambridge

University Press, Cambridge, England, 2015), ISBN:
v9780521864886.

[30] V. P. Mineev, Phys. Usp. 60, 121 (2017).
[31] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevLett.127.217001 for some technical details
for the main results in main text.

[32] F. Wu, A. H. MacDonald, and I. Martin, Phys. Rev. Lett.
121, 257001 (2018).

[33] F. Wu, E. Hwang, and S. Das Sarma, Phys. Rev. B 99,
165112 (2019).

[34] This pairing can be derived from the f-wave state as the
difference is a σz in the expression. TheC2z and C3z operations

are consistent with s wave, but this is not the conventional
s-wave state due to the staggered sublattice structure.

[35] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R.
Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione et al., Science
365, 684 (2019).

[36] K. V. Samokhin and V. P. Mineev, Phys. Rev. B 77, 104520
(2008).

[37] R. Nandkishore, R. Thomale, and A. V. Chubukov, Phys.
Rev. B 89, 144501 (2014).

[38] Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 98, 214521
(2018).

[39] X. Wu, W. Hanke, M. Fink, M. Klett, and R. Thomale, Phys.
Rev. B 101, 134517 (2020).

[40] Y. Wang, J. Kang, and R. M. Fernandes, Phys. Rev. B 103,
024506 (2021).

[41] R. E. Throckmorton and S. Das Sarma, Phys. Rev. Research
2, 023225 (2020).

[42] M. Alidoust, M. Willatzen, and A.-P. Jauho, Phys. Rev. B
99, 155413 (2019).

[43] A. L. Szabó and B. Roy, Phys. Rev. B 103, 205135 (2021).
[44] Formally, Π̂ ¼ τxμy, corresponding to T 2 ¼ −1, is the

physical time-reversal symmetry. The existence of T 2 ¼
1 time-reversal operation is resulted from the spin-conser-
vation. Thus, the irreducible diagonal block Hamiltonian
should be viewed as a system with effectively T 2 ¼ 1.

[45] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[46] We note that Eqs. (21) and (21) fail when EF ¼ 0 (Dirac
point), which is in fact an unstable non-Fermi-liquid fixed
point, indicating the breakdown of BCS theory without a
finite Fermi surface.

[47] F. Wu and S. Das Sarma, Phys. Rev. B 99, 220507(R)
(2019).

[48] F. Wu and S. Das Sarma, Phys. Rev. B 101, 155149
(2020).

[49] Y.-Z. Chou, F. Wu, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 127, 187001 (2021).

[50] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, H.
Berger, L. Forró, J. Shan, and K. F. Mak, Nat. Phys. 12,
139 (2016).

[51] M. Kim, G.-H. Park, J. Lee, J. H. Lee, J. Park, H. Lee, G.-H.
Lee, and H.-J. Lee, Nano Lett. 17, 6125 (2017).

[52] D. P. Arovas, E. Berg, S. Kivelson, and S. Raghu,
arXiv:2103.12097.

[53] A. Fischer, Z. A. Goodwin, A. A. Mostofi, J. Lischner,
D. M. Kennes, and L. Klebl, arXiv:2104.10176.

[54] B. Roy and V. Juričić, Phys. Rev. B 99, 121407(R) (2019).
[55] X. Li, F. Wu, and A. H. MacDonald, arXiv:1907.12338.
[56] E. Khalaf, A. J. Kruchkov, G. Tarnopolsky, andA.Vishwanath,

Phys. Rev. B 100, 085109 (2019).
[57] D. Călugăru, F. Xie, Z.-D. Song, B. Lian, N. Regnault, and

B. A. Bernevig, Phys. Rev. B 103, 195411 (2021).
[58] A. Rozen, J. M. Park, U. Zondiner, Y. Cao, D. Rodan-

Legrain, T. Taniguchi, K. Watanabe, Y. Oreg, A. Stern, E.
Berg et al., Nature (London) 592, 214 (2021).

[59] Y. Saito, F. Yang, J. Ge, X. Liu, T. Taniguchi, K. Watanabe,
J. Li, E. Berg, and A. F. Young, Nature (London) 592, 220
(2021).

PHYSICAL REVIEW LETTERS 127, 217001 (2021)

217001-6

https://doi.org/10.1038/s41586-019-1422-x
https://doi.org/10.1038/s41586-019-1422-x
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1038/s41586-021-03366-w
https://doi.org/10.1038/s41586-019-1393-y
https://doi.org/10.1103/PhysRevLett.123.197702
https://doi.org/10.1103/PhysRevLett.123.197702
https://doi.org/10.1038/s41567-020-0825-9
https://doi.org/10.1038/s41586-020-2260-6
https://doi.org/10.1038/s41586-020-2260-6
https://doi.org/10.1038/s41586-020-2458-7
https://doi.org/10.1038/s41586-021-03192-0
https://doi.org/10.1126/science.abg0399
https://doi.org/10.1038/s41586-021-03685-y
https://doi.org/10.1103/PhysRevB.59.14598
https://doi.org/10.1103/PhysRevB.59.14598
https://doi.org/10.1103/PhysRevLett.82.133
https://doi.org/10.1103/PhysRevLett.82.133
https://doi.org/10.1103/PhysRevB.63.140504
https://doi.org/10.1103/PhysRevB.63.140504
https://doi.org/10.1209/epl/i2001-00266-0
https://doi.org/10.1209/epl/i2001-00266-0
https://doi.org/10.1103/PhysRevLett.90.077002
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1103/PhysRevB.99.195114
https://doi.org/10.3367/UFNe.2016.04.037771
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.217001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.217001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.217001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.217001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.217001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.217001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.217001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevB.99.165112
https://doi.org/10.1103/PhysRevB.99.165112
https://doi.org/10.1126/science.aav8645
https://doi.org/10.1126/science.aav8645
https://doi.org/10.1103/PhysRevB.77.104520
https://doi.org/10.1103/PhysRevB.77.104520
https://doi.org/10.1103/PhysRevB.89.144501
https://doi.org/10.1103/PhysRevB.89.144501
https://doi.org/10.1103/PhysRevB.98.214521
https://doi.org/10.1103/PhysRevB.98.214521
https://doi.org/10.1103/PhysRevB.101.134517
https://doi.org/10.1103/PhysRevB.101.134517
https://doi.org/10.1103/PhysRevB.103.024506
https://doi.org/10.1103/PhysRevB.103.024506
https://doi.org/10.1103/PhysRevResearch.2.023225
https://doi.org/10.1103/PhysRevResearch.2.023225
https://doi.org/10.1103/PhysRevB.99.155413
https://doi.org/10.1103/PhysRevB.99.155413
https://doi.org/10.1103/PhysRevB.103.205135
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.99.220507
https://doi.org/10.1103/PhysRevB.99.220507
https://doi.org/10.1103/PhysRevB.101.155149
https://doi.org/10.1103/PhysRevB.101.155149
https://doi.org/10.1103/PhysRevLett.127.187001
https://doi.org/10.1103/PhysRevLett.127.187001
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nphys3538
https://doi.org/10.1021/acs.nanolett.7b02707
https://arXiv.org/abs/2103.12097
https://arXiv.org/abs/2104.10176
https://doi.org/10.1103/PhysRevB.99.121407
https://arXiv.org/abs/1907.12338
https://doi.org/10.1103/PhysRevB.100.085109
https://doi.org/10.1103/PhysRevB.103.195411
https://doi.org/10.1038/s41586-021-03319-3
https://doi.org/10.1038/s41586-021-03409-2
https://doi.org/10.1038/s41586-021-03409-2

