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Building on recent developments in electronic-structure methods, we define and calculate the
flexoelectric response of two-dimensional (2D) materials fully from first principles. In particular, we
show that the open-circuit voltage response to a flexural deformation is a fundamental linear-response
property of the crystal that can be calculated within the primitive unit cell of the flat configuration.
Applications to graphene, silicene, phosphorene, boron nitride, and transition-metal dichalcogenide
monolayers reveal that two distinct contributions exist, respectively of purely electronic and lattice-
mediated nature. Within the former, we identify a keymetric term, consisting in the quadrupolar moment of
the unperturbed charge density. We propose a simple continuum model to connect our findings with the
available experimental measurements of the converse flexoelectric effect.
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Among their many prospective applications, two-dimen-
sional (2D) materials have received, in the past few years,
considerable attention as a basis for novel electromechani-
cal device concepts, such as sensors or energy harvesters
[1,2]. Such an interest has stimulated intense research, both
experimental and theoretical, to characterize the funda-
mentals of electromechanical couplings in monolayer (or
few-layer) graphene [3,4], boron nitride (BN) [5,6], and
transition-metal dichalcogenides [1,7]. For the most part,
efforts were directed at understanding piezoelectric and
piezotronic properties [1] with stretchable and tunable
electronics in mind; more recently flexoelectricity has been
attracting increasing attention [2,8].
Flexoelectricity, describing the coupling between a strain

gradient and themacroscopic polarization [9,10], is expected
to play a prominent role in 2D crystals due to their extreme
flexibility. Recently, several experimental works [4,7,8]
reported a significant out-of-plane electromechanical res-
ponse in graphene, BN, transition-metal dichalcogenides
(TMDs), and related materials. Experiments were generally
performed via piezoelectric force microscopy (PFM), which
probes the converse effect (deformations in response to an
applied voltage) in terms of an effective piezoelectric co-
efficient, deff33 . How the measured values of deff33 relate to the
intrinsic flexoelectric coefficients of the 2D layer is, however,
currently unknown. First, experiments are usually performed
on supported layers [7,8]; this implies a suppression of their
mechanical response due to substrate interaction [11], whose
impact on deff33 remains poorly understood. Second, flexoe-
lectricity is a nonlocal effect, where electromechanical
stresses depend on the gradients of the applied external
field; this substantially complicates the analysis compared to
the piezoelectric case, where spatial inhomogeneities in the
tip potential play little role [12]. In fact, even understanding

what components of the 2D flexoelectric tensor contribute to
deff33 is far from trivial [7]. Unless these questions are settled
by establishing reliable models of the converse flexoelectric
effect in 2D crystals, the analysis of the experimental data
remains to a large extent speculative, which severely limits
further progress toward a quantitative understanding.
Theoretical simulations are a natural choice to shed some

light on the aforementioned issues. Several groups have
studied flexoelectricity in a variety of monolayer crystals
including graphene, hexagonal BN, and transition metal
dichalcogenides; calculations were performed either from
first principles [3,5,13–16] or by means of classical force
fields [17,18]. Most authors, however, have defined and
calculated the flexoelectric coefficient as a dipolarmoment of
the deformed layer, which has twomain shortcomings. First,
calculating the dipole moment of a curved crystalline slab is
not free from ambiguities [19], and this has resulted in a
remarkable scattering of the reported results. Second, such a
definition has limited practical value, unless its relationship
with the experimentally relevant parameters (electric fields
and potentials) is established. The latter issue may appear
insignificant at first sight, but should not be underestimated,
as the Poisson equation of electrostatics is modified by
curvature in a nontrivial way [20]. Some controversies
around the thermodynamic equivalence between the direct
and converse flexoelectric effect [21,22] complicate the
situation even further, calling for a fundamental solution
to the problem.Thanks to the progress of the past fewyears in
the computational methods [20,23–28], addressing these
questions in the framework of first-principles linear-response
theory appears now well within reach.
Here we overcome the aforementioned limitations by

defining and calculating flexoelectricity as the open-circuit
voltage response to a flexural deformation (“flexovoltage”)
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of the 2D crystal in the linear regime. Building on the
recently developed implementation of bulk flexoelectricity
in 3D [28,29], we show that the flexovoltage coefficient, φ,
is a fundamental linear-response property of the crystal
and can be calculated by using the primitive 2D cell of the
unperturbed flat layer. We demonstrate our method by
studying several monolayer materials as testcases (C, Si, P,
BN, MoS2, WSe2, and SnS2), which we validate against
direct calculation of nanotube structures. We find that the
overall response consists in two well-defined contributions,
a clamped-ion (CI) and a lattice-mediated (LM) term, in
close analogy with the theory of the piezoelectric response
[30]. At the CI level, our calculations show a remarkable
cancellation between a dipolar linear-response term and a
previously overlooked “metric” contribution, which we
rationalize in terms of an intuitive toy model of non-
interacting neutral spheres [20,25]. We further demonstrate
that φ describes both the direct and converse coupling
between local curvature and transverse electric fields in an
arbitrary geometry, ranging from nanotubes to flexural
phonons and rippled layers. Based on this result, we build a
quantitatively predictive model of a flexoelectric layer on a
substrate, and we use it to discuss recent experimental
findings.
The fundamental quantity that we shall address here is

the voltage drop across a thin layer due to a flexural
deformation, where the latter is measured by the radius of
curvature, R. At the leading order, the voltage drop is
inversely proportional to R,

ΔV ¼ φ

R
þOðR−2Þ; φ ¼ μ2D

ϵ0
; ð1Þ

where φ can also be expressed as a 2D flexoelectric
coefficient (in units of charge, describing the effective
dipole per unit area that is linearly induced by a flexural
deformation) divided by the vacuum permittivity, ϵ0. Our
goal is to calculate the constant of proportionality, φ, which
we shall refer to as the “flexovoltage” coefficient.
The underlying physical model is that of a nanotube of

radius R constructed by bending a flat layer, as illustrated in
Fig. 1(a); the voltage drop between the interior and the
exterior is then given by Eq. (1). Another obvious example
is that of a long-wavelength flexural phonon [see Fig. 1(b)].
Because of rotational invariance, the modulated strain field
locally recovers the same pattern as in Fig. 1(a). [See
Ref. [20] and Sec. 2.8.2 of Ref. [25].] At the leading order
in the wave vector, q, this results in a local jump in the
electrostatic potential across the layer of

ΔVðx; yÞ ¼ φKðx; yÞ; ð2Þ

where the local inverse radius of curvature, Kðx; yÞ ¼
−∇2uzðx; yÞ, is given by the Laplacian of the vertical
displacement field, uz (Supplemental Material [31]). As we

shall see shortly, the effect originates from the distortion
of both the electronic cloud and the crystal structure
[Fig. 1(c)].
To express the flexovoltage as a linear-response property,

we start by associating the flexural deformation with a
mapping between the Cartesian frame of the flat layer, and
the curvilinear frame of the bent nanotube [dashed grid in
Fig. 1(a)]. In a neighborhood of the nanotube surface, such a
mapping corresponds to a strain field with cylindrical
symmetry, of the type εxxðzÞ ¼ z=R, where ẑ is the normal
to the layer surface, x̂ runs over the tangential direction, and
εαβ is the symmetric strain tensor. This results in a macro-
scopic transverse strain gradient εxx;z ¼ ∂εxx=∂z ¼ 1=R,
whose amplitude is the inverse radius of curvature [25,42]
and will play the role of the perturbative parameter, λ,
henceforth.
To discuss the electrostatic potential, which defines the

open-circuit voltage φ, we shall frame our arguments on the
Poisson equation in the curvilinear frame of the bent layer,
following the guidelines of Refs. [20,25,42],

∇ · ðϵ ·EÞ ¼ ρ; ϵ ¼ ϵ0
ffiffiffi
g

p
g−1: ð3Þ

The main difference with respect to the Cartesian formu-
lation is that the vacuum permittivity here becomes a tensor
that depends on the metric of the deformation, g. Within the
linear regime, one can write ρ ¼ ρð0Þ þ λρð1Þ þ � � �, where
ρð0Þ is the unperturbed density and ρð1Þ the first-order
response in λ. (For the time being we shall assume that ρð1Þ
refers to the static response, inclusive of electronic and
ionic relaxations.) We find that the open-circuit potential φ
is given by

φ ¼ D½ρð1Þ�
ϵ0

þ φM; φM ¼ −
Q½ρð0Þ�
2ϵ0

; ð4Þ

FIG. 1. Schematic illustration of the flexoelectric response in
BN. (a) Cross-section of a BN nanotube; the voltage drop
between its inner and outer sides is highlighted. (b) Flexural
phonon, corresponding to an in-plane modulation of the same
strain field as in (a). (c) Lattice-mediated and purely electronic
effects contributing to the dipole. Gray and green circles represent
the B and N atoms, respectively. The deformed electronic orbitals
are shown as yellow shaded ellipses.
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where

D½f� ¼
Z

dz zfðzÞ Q½f� ¼
Z

dz z2fðzÞ: ð5Þ

indicate the first (dipolar) and second (quadrupolar) moment
of the function f along the out-of-plane direction z, and
ρð0ÞðzÞ and ρð1ÞðzÞ are the in-plane averages of the respective
microscopic response functions. D½ρð1Þ� corresponds to the
λ-derivative of the “radial polarization” (p) as defined in
Ref. [19]; the second term in Eq. (4) is a metric contribution
that depends only on the unperturbed density ρð0Þ, and
originates from the linear variation of ϵ in Eq. (3). As we
shall see shortly, the dipolar linear-response part is always
large and negative,while themetric term is large and positive,
typically leading to an almost complete mutual cancellation.
The challenging part of the problem consists in comput-

ing the dipolar linear-response contribution. To facilitate
our progress toward a practical method, we shall use
ρð1Þ ¼ −∇ · Pð1Þ, where Pð1Þ is the microscopic polariza-
tion response to the deformation. (The zeroth moment of

Pð1Þ
z along z yields D½ρð1Þ�, after an integration by parts.)

Then, by using the formulation of Ref. [20], we can write
the radial component of Pð1Þ as

Pð1Þ
z ðzÞ ¼ zPU

z;xxðzÞ þ PG
zz;xxðzÞ: ð6Þ

The cell-periodic response functions PU
z;xxðzÞ and PG

zz;xxðzÞ
(in-plane averaging is assumed) have the physical inter-
pretation of a local piezoelectric (U) and flexoelectric (G)
coefficient [42]. The rationale behind such a decomposition
is rooted on the availability of efficient first-principles
methods to calculate both terms in Eq. (6), as we shall
illustrate in the following.
To perform the actual calculations, we shall accommo-

date the unperturbed (flat) monolayer in a standard super-
cell, where the out-of-plane dimension L is treated as a
convergence parameter. Regarding the gradient (G) con-
tribution, we find

φG ¼ 1

ϵ0

Z
dzPG

zz;xxðzÞ ¼
L

ϵ0ϵzz
μzz;xx; ð7Þ

where ϵzz is the out-of-plane component of the macroscopic
dielectric tensor, and μzz;xx is the transverse component of
the flexoelectric tensor of the supercell. Clearly, both μzz;xx
and ϵzz depend on L (averaging over an arbitrary supercell
volume is implied, and short-circuit electrical boundary
conditions are usually imposed [28] in the calculation of μ).
However, they do so in such a way that their ratio
multiplied by L does not (assuming that L is large enough
to consider the repeated layers as nonoverlapping).
Regarding the contribution of the first term on the right-
hand side of Eq. (6), we have

φU ¼ D½PU
z;xx�

ϵ0
¼ Q½ρUxx�

2ϵ0
; ð8Þ

where ρUxxðzÞ is the first-order charge-density response to a
uniform strain (ρUxx ¼ −∂PU

z;xx=∂z). The total flexovoltage
of the slab is then given by

φ ¼ dV
dλ

¼ φG þ φU þ φM; ð9Þ

where neither of φG, φU or φM depend on L, and should
therefore be regarded as well-defined physical properties of
the isolated monolayer. One can verify that, by applying the
present formulation to crystalline slabs of increasing thick-
ness, we recover the results of Ref. [42] once φ is divided
by the slab thickness, t, and the thermodynamic limit
performed. (φG and φU þ φM tend to the bulk and surface
contributions to the total flexoelectric effect, respectively.)
Equation (9) is directly suitable for a numerical imple-

mentation, as it requires only response functions that are
routinely calculated within density-functional perturbation
theory (DFPT). The partition between “G” and “U”
contributions, however, is hardly meaningful for an atomi-
cally thin 2D monolayer, where essentially everything is
surface and there is no bulk underneath. Thus, we shall
recast Eq. (9) in a more useful form hereafter, by seeking a
separation between CI and LM effects instead [Fig. 1(b)],

φ ¼ φCI þ φLM: ð10Þ

We find (Supplemental Material [31]) that the CI
contribution has the same functional form as the total
response,

φCI ¼ L
ϵ0ϵ̄zz

μ̄zz;xx þ
Q½ρ̄Uxx�
2ϵ0

−
Q½ρð0Þ�
2ϵ0

; ð11Þ

with the only difference that the flexoelectric (μ), dielectric
(ϵzz), and uniform-strain charge response (ρU) functions
have been replaced here with their CI counterparts, indi-
cated by barred symbols. Regarding the LM part,

φLM ¼ 1

Sϵ0
ẐðzÞ
κα Φ̂−1

κα;κ0βĈ
κ0
βz;xx; ð12Þ

we have a more intuitive description in terms of the out-of-

plane longitudinal charges ẐðzÞ
κα ¼ ZðzÞ

κα =ϵ̄zz, the pseudoin-
verse [43] of the zone-center force-constant matrix, Φ̂−1

κα;κ0β,
and the atomic force response (Supplemental Material [31])
to a flexural deformation of the slab, Ĉκβz;xx. Note that the
“mixed” contribution [24] to the bulk flexoelectric tensor
exactly cancels (Supplemental Material [31]) with an equal
and opposite term in the LM contribution to φU, hence its
absence from Eq. (10).
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Our calculations are performed in the framework ofDFPT
[44,45] within the local-density approximation, as imple-
mented in ABINIT [29,46]. (Computational parameters and
extensive tests, including calculations performed within
the generalized-gradient approximation, are described in
the Supplemental Material [31]). In Table I we report the
calculated bending flexovoltages for several monolayer
crystals. Both the CI and LM contributions show a consid-
erable variety in magnitude and sign: while the former
dominates in the TMDs, the reverse is true for BN, and SnS2
seems to lie right in the middle. The case of phosphorene is
interesting: its lower symmetry allows for a nonzero φLM in
spite of it being an elemental crystal like C and Si; it also
allows for a substantial anisotropy of the response. If we
assume a physical thickness t corresponding to the bulk
interlayer spacing, we obtain an estimate (see Table 6 of
the Supplemental Material [31]) for the volume-averaged
flexoelectric coefficients, of jμj ¼ jμ2Dj=t ∼ 1–5 pC=m.
(μ, unlike μ2D, is inappropriate [19] for 2D layers given
the ill-defined nature of the parameter t; we use it here for
comparison purposes only.) This value is in the same
ballpark as earlier predictions [13,15–17], although there
is a considerable scatter in the latter. For example, the value
quoted by Ref. [17] for graphene is very close to ours, but
their results for other materials are either much larger
(TMDs, silicene) or much smaller (BN); other works tend
to disagree both with our results and among themselves.
These large discrepancies are likely due to the specific
computational methods that were adopted in each case
(often the total dipole moment of a bent nanoribbon
including the boundaries was calculated, rather than the
intrinsic response of the extended layer), or to the afore-
mentioned difficulties [19] with the definition of the dipole
of a curved surface.
Very recently Ref. [19] reported first-principles calcu-

lations of some of the materials presented here by using
methods that bear some similarities to ours, which allows
for a more meaningful comparison. By converting our
results for Si and C to the units of Ref. [19] via Eq. (1),
we obtain μC ¼ −0.0063e and μSi ¼ þ0.0032e; these,

however, are almost two orders of magnitude smaller,
and with inconsistent signs, with respect to the correspond-
ing results of Ref. [19]. We ascribe the source of disagree-
ment to the neglect in Ref. [19] of the metric term in
Eq. (11). Indeed, for the dipolar linear-response contribu-
tion [first two terms in Eq. (11)] we obtain μdipC ¼ −0.22e
and μdipSi ¼ −0.19e, now in excellent agreement (except for
the sign) with the results of Codony et al. This observation
points to a nearly complete cancellation between the
dipolar and metric contribution to φ, which is systematic
across the whole materials set (see Table 3 of the
Supplemental Material [31]).
To clarify this point, we have performed additional

calculations on a toy model, consisting of a hexagonal
layer of well-spaced rare gas atoms [31]. This is a system in
which no response should occur, as an arbitrary “mechani-
cal deformation” consists in the trivial displacement of
noninteracting (and spherically symmetric) neutral atoms.
We find that φdip and φmet are, like in other cases, large and
opposite in sign; this, however, is just a side effect of the
coordinate transformation (i.e., a mathematical artefact),
and does not reflect a true physical response of the system
to the perturbation. For a lattice parameter that is large
enough, the cancellation becomes exact and our calculated
value of φ vanishes as expected on physical grounds. This
further corroborates the soundness of our definition of μ2D,
which is based on the electrostatic potential. The latter, in
addition to being an experimentally relevant parameter,
behaves as a true scalar under a coordinate transformation;
it is therefore unaffected, unlike the charge density, by the
(arbitrary) choice of the reference frame [31].
As a further consistency check, we have performed

explicit calculations of BN nanotubes of increasing radius
R, and extracted the voltage drop between their interior and
exterior, ΔV, at the clamped-ion level. In Fig. 2 we plot the

TABLE I. Clamped-ion (CI), lattice-mediated (LM), and total
flexovoltages (nV · m) of the 2D crystals studied in this work.
Because of its lower symmetry, for phosphorene two independent
bending directions (armchair and zigzag) exist.

φCI φLM φ

C −0.1134 0.0000 −0.1134
Si 0.0585 0.0000 0.0585
P (zigzag) 0.2320 −0.0151 0.2170
P (armchair) −0.0130 −0.0461 −0.0591
BN −0.0381 −0.1628 −0.2009
MoS2 −0.2704 −0.0565 −0.3269
WSe2 −0.3158 −0.0742 −0.3899
SnS2 0.1864 0.1728 0.3592

FIG. 2. CI flexovoltage coefficient calculated as φ ¼ ΔVR,
plotted as a function of the nanotube radius R. Our linear-
response result [Eq. (11)] is shown as a red line. The inset shows
φ as a function of 1=R, the dashed line being a linear extrapo-
lation from the last two calculated points to R → ∞.
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estimated flexovoltage, given by RΔV, as a function of R.
The asymptotic convergence to the linear-response value of
φCI is clear, consistent with Eq. (1). The convergence rate,
however, appears rather slow: at the largest value of R,
corresponding to a nanotube primitive cell of 128 atoms,
the deviation from φCI is still of about 10%. This result
highlights the difficulties at calculating flexovoltages in 2D
systems by using the direct approach [47]; conversely, our
method provides an optimally converged solution within
few minutes on a modern workstation, and is ideally suited,
e.g., for high-throughput screening applications.
The implications of our findings for the interpretation of

the experiments are best discussed in terms of the inter-
action between the flexural modes of a flat layer and an
external, generally inhomogeneous, out-of-plane electric
field, Ezðx; yÞ. In full generality, Eq. (2) leads to the
following coupling (energy per unit area),

Eflexoðuz; EzÞ ¼ μ2DEz∇2uz; ð13Þ

which reduces to Eflexo ¼ −q2μ2DEzuz for monochromatic
fields of the type Aðx; yÞ ¼ A cosðq · rÞ [A ¼ ðuz; EzÞ�. By
deriving Eflexo with respect to the displacement uz we
obtain the converse flexoelectric effect, in the form of a
vertical force per unit area, F z ¼ q2μ2DEz, in response to
the field. Explicit first-principles calculations of a BN layer
under an applied Ez (Supplemental Material [31]) nicely
confirm this prediction: Eq. (13) is the main source of out-
of-plane electromechanical response in this class of mate-
rials. Note that the longitudinal out-of-plane flexoelectric
coefficient of a free-standing layer, which we extract as a
by-product of our main calculations, always vanishes (see
the Supplemental Material [31]) due to translational invari-
ance and thus cannot contribute to the coupling, contrary to
the common belief [7,8].
This allows us to generalize the existing models [48] of

supported 2D layers by incorporating flexoelectricity and
thereby extract two important messages (Supplemental
Material [31]). First, the amplitude of the response is
highly sensitive to the substrate interaction strength, g,
consistent with the results of recent measurements per-
formed on suspended layers [11]. Second, the response
displays a strong dispersion in q, indicating a marked
sensitivity on the length scale of the inhomogeneities in the
applied field. Both outcomes call for a reinterpretation of
the existing PFM measurements of flexoelectricity [7]:
information about g and the tip geometry appears essential
for a quantitative estimation of μ2D. We hope that our
results will stimulate further experimental research along
these lines and more generally to facilitate the design of
piezoelectric nanocomposites [49] based on the flexo-
electric effect.
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