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(Received 9 June 2021; revised 19 August 2021; accepted 8 October 2021; published 19 November 2021)

The vibrational density of states DðωÞ of solids controls their thermal and transport properties. In
crystals, the low-frequency modes are extended phonons distributed in frequency according to Debye’s law,
DðωÞ ∝ ω2. In amorphous solids, phonons are damped, and at low frequency DðωÞ comprises extended
modes in excess over Debye’s prediction, leading to the so-called boson peak in DðωÞ=ω2 at ωbp, and
quasilocalized ones. Here we show that boson peak and phonon attenuation in the Rayleigh scattering
regime are related, as suggested by correlated fluctuating elasticity theory, and that amorphous materials
can be described as homogeneous isotropic elastic media punctuated by quasilocalized modes acting as
elastic heterogeneities. Our numerical results resolve the conflict between theoretical approaches
attributing amorphous solids’ vibrational anomalies to elastic disorder and localized defects.
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The distribution in the frequency, ω, of the vibrational
modes of solids, or density of states (DOS), is a fundamental
material property controlling, e.g., their specific heat and
thermal conductivity [1,2]. At small frequencies, crystals’
DOS is populated by phonons (plane waves) and follows
Debye’s law, DðωÞ ¼ ADω

2. The vibrational properties of
amorphous materials deviate from that of crystals in several
aspects. First, the reduced density of statesDðωÞ=ω2 exhibits
a peak at the Boson peak frequency, ωbp, in the terahertz
regime formolecular solids. The bosonpeak reveals an excess
of modes over Debye’s prediction. Competing theories have
attributed this anomaly to elastic disorder [3–8], localized
harmonic [9,10] or anharmonic vibrations [11,12], anhar-
monic effects [13,14], broadening of the lowest van Hove
singularity of the transverse phonon branch [15,16]. Second,
the low-frequency DOS of amorphous solids is the super-
position [17–20] of extended modes complying to Debye’s
prediction, DðωÞ ¼ ADω

2, and of quasilocalized modes
(QLMs) distributed in frequency as DlocðωÞ ¼ A4ω

4.
Finally, in amorphous solids, the extended low-frequency
modes are not phonons. Rather, phonons attenuate while
propagating with a frequency-dependent rate, ΓðωÞ. In the
absence of temperature induced anharmonic effects [21],
phonons’ attenuation rate Γ crossovers from a Rayleigh
scattering regime [22], Γ ∝ ω4, to a disordered-broadening
regime, Γ∝ω2 [23–27], as the phonon frequency increases,
as observed in recent studies [28–30].
Since the vibrational anomalies of amorphous solids

occur in different frequency regimes, it is not clear that
there should be a relation between them [29,31]. However,
there are indications suggesting such a relation. For

instance, numerical results indicate a correlation between
A4 and ωbp [31,32]. Furthermore, fluctuating elasticity
theory [3–5,33] (FET), in its extended version incorpo-
rating an elastic disorder correlation length ξe [34,35]
(corr-FET) suggests a correlation between ωbp and the
attenuation rate of sound waves in the Rayleigh scattering
regime, Γ=ωbp ∝ γðω=ωbpÞ4. Here, γ is a disorder para-
meter controlling the scaling of the fluctuations σ2μðNÞ of
the shear modulus on the coarse-grained size [3–5,33],
σ2ðNÞ=μ2 ¼ γ=N, μ being the average modulus, and ωbp ¼
cs=ξe with cs the sound velocity of transverse waves. A
connection between γ and A4 has also been observed
[36,37]. While sound attenuation appears to correlate with
the fluctuations of the elastic moduli [17,30], the validity of
corr-FET is debated. It has been suggested, for instance,
that corr-FET is only qualitatively accurate [29,38] or
that corr-FET prediction holds with ωbp replaced by
ω0 ¼ cs=a0, with a0 ¼ ρ−1=d and ρ the number density
[30]. Henceforth, it is still unclear if boson peak, quasi-
localized modes, and sound attenuation are related.
Here, we introduce and verify via extensive numerical

simulations a simple picture relating amorphous solids’
vibrational anomalies. First, we validate corr-FET and its
proposed connection between boson peak, elastic hetero-
geneities and sound attenuation. Then, we show that low-
frequency corr-FET predictions emerge from the mechani-
cal model introduced by Rayleigh in his seminal work [22],
a homogeneous elastic continuum of shear modulus μ0
punctuated by defects with shear modulus μ0 þ δμd,
provided that the defects have linear size ξd ∝ ξe, cons-
tant number density n, and that δμd ∝ μ0. Finally, we
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demonstrate that QLMs satisfy these constraints. Our
results clarify that the low-frequency vibrational properties
of amorphous solids are those of an elastic continuum
punctuated by quasilocalized vibrational modes. Hence, our
work establishes a relation between the different vibrational
anomalies of amorphous solids and resolves the contrast
between theoretical models attributing the boson peak
anomaly to elastic disorder and localized defects.
We resort to numerical simulations to investigate vibra-

tional properties and attenuation rate of model amorphous
materials, focusing on systems of particles interacting via
an Lennard-Jones-like potential Vðr; xcÞ. Here, xc is a
parameter setting the extension of the attractive well [39],
which vanishes at xcσ. This parameter influences the
relaxation dynamics [40] and the mechanical response
[36,37,39,41]. We follow the model of Ref. [40]. We
simulate systems with a varying number of particles N,
up toN ¼ 8 192 000, in a cubic box with periodic boundary
conditions, at fixed number density ρ ¼ 1.07. We generate
amorphous solid configurations by minimizing, via con-
jugate gradient, the energy of systems in thermal equilib-
rium at T ¼ 4.0ϵ, above the glass transition temperature for
the considered xc values [40].
We determine the two parameters entering corr-FET

predictions [3–5,33–35], ξe and γ, investigating the de-
pendence of the elastic properties on the system size as well
as the dependence of coarse-grained elastic properties on
the coarse-graining length. We have found these two
approaches [36,42–44] to give consistent results, as we
recap in the Supplementary Material [45]. Importantly,
we find that a single length scale [36,44] characterizes
the dependence the shear modulus fluctuations on the
system size, so that γ is a nondimensional measure of
the correlation volume, γ ∝ ðξe=a0Þ3. In Fig. 1(a), we
observe the elastic length scale ξe, or equivalently γ, to
decrease with the attraction range xc, consistently with
previous results [36].
The estimation of ξe, γ, and cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=ðmρÞp

allows us to
validate if the boson peak frequency scales as ωbp ∝ cs=ξe,
as predicted by corr-FET for stable glasses [46]. To check
this prediction, we evaluate DðωÞ via the Fourier transform
of the velocity autocorrelation function of N ¼ 256 000
particle systems, and ωbp via the scaling collapse of
Fig. 1(b). The inset shows that the boson peak frequency
is proportional to cs=ξe, validating corr-FET.
Considering that γ ∝ ξ3e, FET [3–5,19] and corr-FET

[4,5,34,35] predictions for the attenuation rate (see [45])
can be summarized as follows:

Γ
ω3
0

ω4
∝

(
γ FET

γ2 ∝
�

ω0

ωbp

�
6

corr-FET
: ð1Þ

We remark that these predictions concerns the harmonic
T → 0 limit of our interest. At low temperature, Γ ∝ Tω2 for

ω → 0, due to anharmonic effects [24,47,48]. corr-FET can
be extended to account for these anharmonic effects [49].
To validate these predictions, we evaluate Γ by exciting

[50,51] a transverse acoustic wave with wave vector κ in
which two among κx, κy, and κz are zero. We then evolve
the system in the linear response regime to evaluate the
velocity autocorrelation function, which we average over
30 phonons from independent samples forN ≤ 512 000, and
over 15 phonons for N ≥ 512 000. A subsequent fit of this
averaged velocity autocorrelation function to cosðωtÞe−Γt=2
allows extracting attenuation rate Γ and frequency ω as a
function of κ.
The normalized attenuation rate Γω3

0=ω
4 attains a con-

stant value at low frequency, demonstrating the existence of
a well-defined Rayleigh scattering regime, as illustrated in
Fig. 2(a). This finding [28–30] demonstrates that, in this
regime, anisotropic long-range spatial correlations in the
elastic moduli [52,53] do not influence sound damping
[50,54]. We test FET and corr-FET predictions, Eq. (1),
by plotting αγ and βγ2, with α and β constants and γ as in
Fig. 1(a). Corr-FET correctly predicts the relation between
sound attenuation and boson peak frequency. Furthermore,
Fig. 2(a) indicates that Rayleigh’s scattering regime sets in
at a frequency smaller but close to ωbp, confirming another
corr-FET prediction.
Previous works did not support corr-FET.

References [29,55] tested it by measuring the fluctuations
of coarse-grained elastic constants defined via the so-called
fully local approach [56]. We speculate this approach leads
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FIG. 1. (a) Dependence of elastic disorder correlation length
ξe ∝ γ1=3 and disorder parameter γ on xc, a parameter controlling
the extension of the attractive well. Error bars are smaller than the
symbol size. (b) Reduced DðωÞ, normalized by its maximum
value, as a function of ω=ωbp. We found ωbp ≃ 4.5cs=ξe (inset).
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to unreliable results as it fails to recover self-averaging [42].
Reference [30] supported the validity of FET, rather than
of corr-FET, studying sound attenuation and elastic proper-
ties as a function of a parameter artificially affecting the
prestress contribution to the dynamical matrix of a given
system. We suspect this approach breaks the relation
γ ∝ ξ3e, leading to changes in γ at constant ξe, but the
matter deserves further investigation.
To further support our findings, we consider that corr-

FET prediction of Eq. (1) can be tested without the direct
measurement of the disorder parameter, but rather inferring
it from measurements of the boson peak frequency, as
γ ∝ ðω0=ωbpÞ3. We exploit this result to validate corr-FET
against numerical data for the boson peak frequency [29]
and sound attenuation [55] of ultrastable glasses. The result
of this investigation further support the validity of corr-
FET, as we illustrate in Fig. 2(b). The validation of corr-
FET is our first main result.
We now turn our attention to the connection between

corr-FET and QLMs. Fluctuating elasticity theory has been
introduced considering that, in an amorphous material, “it
is difficult to distinguish between ‘host’ and ‘defect”’ [10].
However, the analysis of the vibrational properties of

amorphous materials revealed the existence of QLMs,
extended soft mechanical regions that act as structural
defects controlling the mechanical response under shear
[57] and, possibly, the relaxation dynamics of supercooled
liquids [58]. Hence, there could be a relation between FET
and QLMs.
We establish this relation within Rayleigh’s elastic

model [22], an elastic continuum with shear modulus μ0
punctuated by n defects per unit volume, each defect being
a region of linear size ξd with shear modulus μ0 þ δμd.
Within this model, FET disorder parameter [45] results in

γ ∝ ðna30Þ
�
ξd
a0

�
3 δμ2d
μ20

; ð2Þ

and the boson peak frequency is ωbp ∝ cs=ξd, so that
Rayleigh’s seminal result for the attenuation rate [22]
of low-frequency phonons, Γ ∝ ðδμd=μ0Þ2ξ6dω4, can be
expressed as ΓðωÞðξd=csÞ ∝ γðωξd=csÞ4.
Corr-FET and the defect model are consistent in their

predictions for the boson peak frequency if

ξd ∝ ξe: ð3Þ

If this relation holds, then the models are consistent in their
predictions for the attenuation rate if Eq. (2) is satisfied,
or equivalently, given Eq. (3), if nδμ2=μ20 ¼ const. This
occurs, e.g., if

n ¼ const ð4Þ

δμd ∝ μ0: ð5Þ

We now show that QLMs satisfy Eqs. (3)–(5).
Equation (4) is suggested by previous studies [36]. Here,

we validate it investigating QLMs’ density of states to
estimate their number density, n. We determineDlocðωÞ via
the direct diagonalization of the Hessian of a small systems,
N ¼ 4000, to lift the minimum phonon frequency [59],
∝ cs=N1=3, and make the low-frequency spectrum pre-
dominantly populated by localized modes. We average
our results over at least 104 independent realizations.
Figure 3(a) shows that data for different potentials collapse
when Dloc is nondimensionalized resorting to the boson
peak frequency. Assuming thatωbp is the maximumQLMs’
frequency, this result indicates that

DlocðωÞ ¼ A4ω
4 ¼ 5n

ωbp

�
ω

ωbp

�
4

; ω < ωbp; ð6Þ

where n ¼ R ωbp

0 DðωÞdω ≃ 0.005 is the constant density
of vibrational modes. This result validates Eq. (4).
Interestingly, Ref. [31] reported A−1=5

4 =ωbp ¼ ð5nÞ−1=5 ≃
2.1 (see their Fig. 6), in quantitative agreement with our
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FIG. 2. (a) The frequency dependence of the scaled attenuation
rate is consistent with corr-FET as concern the limiting low-
frequency value, ∝ γ2. We combine data for N ¼ 32 k, 64 k,
256 k, 512 k, 2048 k, and 8192 k. Symbols are as in
Fig. 1. (b) Analogous results are obtained investigating the scaled
sound attenuation rate of amorphous solid configurations prepared
minimizing the energy of ultrastable liquids in equilibrium at
temperature Tp, below the mode coupling one. Data are from
Refs. [29,55], towhichwe refer for further details. Symbols identify
the system size: 192 k (squares), 96 k (circles), 48 k (triangles).
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result, investigating a different system. This suggests n
might be a universal constant. We leave to the future the
investigation of this intriguing question.
We verify Eq. (3), which is supported by previous

investigations [20,37], evaluating QLM size via the mode
participation ratio e ¼ ð1=NÞ½PN

i¼1ðu⃗i · u⃗iÞ2�−1, where u⃗i
is the displacement vector of particle i in the considered
mode. The participation ratio is Oð1Þ for extended modes,
and Oð1=NÞ for localized ones. Hence, Ne estimates the
number of particles involved in the mode, and we expect
ξ3d ∝ γ ∝ limω→0NeðωÞ if Eq. (3) holds. While our Ne
data are noisy, despite our significant statistics, they are
indeed compatible with this expected scenario as we
demonstrate in Fig. 3(b), where full lines correspond to
aγðxcÞ, with a constant.
Since QLMs correspond to soft mechanical regions, we

assume that their typical shear modulus is encoded in the
left tail of the distribution of the shear modulus coarse
grained at the QLMs’ size ξd, PðμξdÞ, which is known to be
anomalous [30,42]. Hence, if Eq. (5) holds, the left tails of
distributions corresponding to different xc should collapse,
when the distributions are plotted versus μξd=μ0 − 1, with
μ0 the average shear modulus. To check this prediction, we
associate to each particle a shear modulus, taking into
account the nonaffine contribution, and coarse grained it at
different length scales [45]. Figure 4(a) shows that the left
tails of the distribution of the shear modulus coarse grained

at w ¼ ξd collapse—indeed, the whole distribution does it.
We remark that this collapse is not trivial as it occurs at a
coarse-graining length scale at which the distributions
are far from being Gaussian. Indeed, the collapse does
not occur at smaller coarse-graining length scale, as we
illustrate in Fig. 4(b) where we fix, as an example,w ¼ 4a0.
Overall, these results show that QLMs satisfy

Eqs. (3)–(5) and demonstrate that corr-FET predictions
are recovered within a defect picture, if defects are identified
with the QLMs. Hence, elastic disorder and defect based
interpretations of the anomalous vibrational properties of
amorphous materials are intimately related rather than
contrasting. This result is our second major finding.
To rationalize this result, we consider that within

Rayleigh model sound attenuation is strongly dependent
on the defect size, Γ ∝ ξ6d, and the deviation of the elastic
properties of the defects from the average, Γ ∝ δμ2d.
We thus understand that QLMs dominate sound attenuation
as they stand out as the largest and softest elastic
heterogeneities [58].
In the defect picture, the density of states of amorphous

materials is approximated by

DðωÞ ¼ n
ω4

ω5
bp

θðωbp − ωÞ þ AD
ω2

ω3
D
θðωD − ωÞ ð7Þ

with θðxÞ the Heaviside step function, n weakly system
dependent if not constant, and AD fixed by the normali-
zation constraint. The characteristic QLMs size determines
the boson peak, which is therefore not related to the first
van Hove singularity of transverse waves [60].
The defect picture does not rely on the introduction of

defects of a specific size but rather on the existence of a
characteristic size, ξd. It is then of interest to consider the
distribution of the defect sizes, PðξÞ. This distribution can
be obtained from the distribution in frequency of the
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modes, given the QLMs “dispersion relation” ξ ¼ ξðωÞ,
one might infer from Fig. 3, as DlocðωÞdω ¼ PðξÞdξ.
The relation between boson peak, sound attenuation,

and QLMs we have established calls for reconsidering
previous works relating the elastic properties of amorphous
materials to those of disorder mass-spring networks, e.g.,
see for a review [61]. While elastic disorder induces a
boson peak, our results suggest that only elastic networks
with a disorder engineered to reproduce the observed
connection between boson peak, localized modes and
sound attenuation are relevant models for amorphous
materials.
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