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We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region in the
Earth’s magnetotail. We observe significant magnetic field oscillations near the lower hybrid frequency
which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale
gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not
expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection
plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus, all
three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing.
These results shed light on the interplay between magnetic reconnection and current sheet drift instabilities
in electron-scale current sheets and highlight the need for adopting a 3D description of the EDR, going
beyond the two-dimensional and steady-state conception of reconnection.
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Magnetic reconnection is a fundamental plasma process
that results in the topological reconfiguration of the
magnetic field and the concurrent energization and accel-
eration of plasma species [1]. Reconnection is found in a
variety of environments in space and astrophysical plasmas
[2] and dedicated laboratory experiments [3,4]. A crucial
constituent of the collisionless reconnection process is the
electron diffusion region (EDR), where the demagnetiza-
tion of both ions and electrons enables the magnetic field
topology change. As a result, the processes that take place
in the EDR affect the system up to its global magnetohy-
drodynamics scales. Despite their central role, these proc-
esses are still largely unknown. The contribution of plasma
waves and instabilities to the EDR dynamics as well as to
the overall reconnection process remains unclear [5,6].
Waves and instabilities operating in the center of the current
sheet could affect the two-dimensional, steady, and laminar
reconnection picture. For guide-field reconnection, in
particular, the role of streaming instabilities leading to
turbulence development at the reconnection site has been
discussed in simulation studies [7,8] and electrostatic
turbulence promoting electron heating is observed at a
magnetopause EDR [9].

A class of current sheet drift instabilities with frequen-
cies in the lower hybrid frequency range has been exten-
sively studied in the last decades. The electrostatic lower
hybrid drift instability (LHDI) is one of the modes that has
initially received most of the attention since it could
potentially provide anomalous resistivity sustaining the
reconnection electric field [10,11]. However, spacecraft
observations at the magnetopause [12–14] and magnetotail
[15,16] suggest that electrostatic LHDI modes could not
supply the necessary resistivity, consistent with the fact that
these modes develop at the edges of the current sheet but
are stabilized in the center [17]. On the other hand,
eigenmode analysis and kinetic simulations [18–20] show
that electromagnetic modes in the lower hybrid frequency
range can penetrate into the center of the current layer and
induce current sheet kinking. Such modes are characterized
by lower growth rates and longer wavelength compared to
the electrostatic modes. Among these modes, the electro-
magnetic LHDI and the modified two stream instability
(MTSI) [21,22] have been considered, for a long time, two
separate instabilities. However, local [23] and nonlocal
theories [20] provide a unified formulation of LHDI and
MTSI. A local theoretical model [24,25], reproducing both
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LHDI and MTSI, was developed to interpret the electro-
magnetic fluctuations observed within a reconnecting cur-
rent sheet in the magnetic reconnection experiment (MRX)
[26]. The fluctuations observed at MRX are identified as
obliquely propagating electromagnetic LHDI modes [24].
Before the launch of the Magnetospheric Multiscale

(MMS) mission [27], observational evidence of these
instabilities occurring at the EDR were prevented by the
lower resolution of the available particle measurements and
by the limited knowledge of the EDR and related electron-
scale processes. Electrostatic [28] and electromagnetic [29]
lower hybrid drift waves (LHDWs) in the EDR have been
investigated only recently. However, how these instabilities
affect the structure of the EDR is still unknown.
In this Letter, we report MMS observations of a

magnetotail electron diffusion region and adjacent separa-
trix region characterized by unexpected electric field,
electron velocity and magnetic field oscillations. We
compare 2D fully kinetic simulations and four-spacecraft
observations to investigate the mechanism responsible for
the observed oscillations.
MMS encountered an EDR on August 10, 2017 at

12:18:33 UTC when it was located in the Earth’s magneto-
tail at ½−15.2; 4.6; 3.1�GSMRE (in the Geocentric Solar
Magnetospheric system). The indicative signatures of an
EDR [30–32]—including super-Alvénic electron jets,
enhanced electron agyrotropy, electron demagnetization,
intense energy conversion, and crescent-shaped electron
distribution functions—are observed [33]. During this
event, MMS stays mostly in the plasma sheet (B ∼ 7 nT
and n ∼ 0.17 cm−3). A weak guide field Bg ∼ 2 nT ∼
0.13Binflow is present (Binflow is the inflow magnetic field
computed in the interval 12:21:20–12:21:40 [33]). The
mean interspacecraft separation, ∼20 km, is comparable to
the electron inertial length, de ∼ 13 km. As a first step, we
determine the appropriate LMN coordinate system and
establish the MMS trajectory relative to the EDR by
adopting methods reported in Refs. [34,35]. For this we
use a 2D-3V kinetic particle-in-cell (PIC) simulation
performed with the VPIC code [36] which mimics the
MMS event (simulation run featuring upstream βe;∞ ¼
0.09 and Bg ¼ 0.1 [37]). The realistic ion-to-electron mass
ratio mi=me ¼ 1836 allows us to establish a one-to-one
correspondence between the dimensionless units of the
simulation and the physical units of MMS data.
Figure 1 shows an overview of the EDR crossing. All the

quantities are shown in the LMN coordinate system
(L ¼ ½0.96;−0.15;−0.22�, M ¼ ½0.17; 0.98; 0.03�, N ¼
½0.22;−0.07; 0.97� in GSM, obtained via an optimization
approach aided by simulation data [34]). The MMS
trajectory relative to the EDR is shown in Fig. 1(i). The
trajectory is reconstructed in interval A − F (12:18:28.9–
12:18:36.5) of Fig. 1. The part of trajectory corresponding
to interval 12:18:28.9–12:18:33.8 (from the A-labeled line
to the magenta line in Fig. 1) is reconstructed by adapting

the method of Ref. [35] to include the electron velocity ve;M
and the electron temperature anisotropy. For the part of the
trajectory corresponding to interval 12:18:33.8–12:18:36.5
(from the magenta line to the F-labeled line in Fig. 1),
we use the method of Ref. [34] (including EN and BL)
which allows us to reproduce the observed electric field
oscillations.
MMS is initially located southward and tailward of the

reconnection site, corresponding to BL < 0 [Fig. 1(a)],
BN < 0 [Fig. 1(c)] and Vi;L < 0 (not shown). Then, MMS
crosses the diffusion region diagonally so that BL and BN
change from negative to positive. MMS samples mainly
the positive lobes of the Hall quadrupolar field [BM > Bg,
Fig. 1(b)]. Figure 1(g) shows the electron temperature
anisotropy Te;k=Te;⊥, where parallel and perpendicular
refer to the local magnetic field direction. The Te;k=Te;⊥
peak observed at 12:18:30.5 indicates that MMS performed
a brief excursion into the inflow region, where Te;k=Te;⊥ is
expected to increase [42,43], before approaching the inner
EDR (interval C −D) [44]. Interestingly, during the current
sheet crossing (interval B − E), MMS observes significant
magnetic field oscillations δB [Fig. 1(h)] reaching ∼20% of
the upstream magnetic field in the plasma sheet (∼7 nT).
Applying the timing method [45] on the sharp BL variation
in interval 12:18:32.0–12:18:33.3 we estimate the current
layer width to be dcs ∼ 2de, in agreement with Ref. [33].
This small width implies that MMS crossed an electron
scale current sheet.
While the typical signatures of an EDR encounter are

observed overall, the multispacecraft analysis of electric
and velocity fields along the spacecraft trajectory allows us
to identify signatures which are distinctive of this event.
Figure 1(f) shows the normal component of the electric
field, EN , exhibiting a bipolar behavior consistent with
Hall dynamics. While the different spacecraft see similar
EN in interval A −D (12:18:28.9–12:18:33.4), significant
differences between the spacecraft are observed in interval
D − F (12:18:33.4–12:18:36.5). The largest difference is
observed between spacecraft with the largest separation in
the N direction [MMS1 and MMS2, Fig. 1(j)] while
spacecraft which are close to each other in the N direction
and separated both in L (MMS2 and MMS4) and M
direction (MMS2 and MMS4, not shown) observe nearly
identical signals. The difference between EN measured at
MMS1 and MMS2 (which are only 1.1de apart along the N
direction) reaches a maximum value of ∼30 mV=m.
Analogously to the differences in EN , also significant
differences are observed in ve;L [Fig. 1(e)], reaching
2000 km=s. These differences indicate the presence of
strong gradients on spatial scales ∼de.
However, the most intriguing feature of this EDR

crossing is the presence of large fluctuations in EN , ve;L
along the separatrix (regionD − F) and of δB in the current
sheet center (interval B − E). Such oscillations are not
expected for a smooth crossing of a laminar EDR, and their
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presence indicates that the EDR crossing is perturbed by
some process. We investigate these oscillations in detail in
order to identify this process.
Figure 2 focuses on the separatrix region characterized

by the strong gradients. Both ve;L and EN [Figs. 2(b) and
2(c)] show very different profiles at each spacecraft.
Notably, MMS2 and MMS4 observe a strongly fluctuating
and mostly negative EN while EN is mostly positive for
MMS1 and the fluctuations are not as prominent. Indeed,
the difference between EN measured by MMS1 and MMS2
[ΔEN ¼ EN;MMS2 − EN;MMS1, Fig. 2(d)] and analogously
Δve;L ¼ ve;L;MMS2 − ve;L;MMS1 show large variations. Such

large variations in the observed gradients can be either
caused by kinking of the current sheet as a whole or by
temporal variations of the gradients at electron scales, or by
a combination of the two.
Figures 2(e) and 2(f) show 2D PIC simulation data of EN

and ve;L in the LN plane. The location of MMS corre-
sponding to the E-labeled line is shown in Figs. 2(a)–2(d).
The simulation data [Fig. 2(e) and 2(f)] exhibit large
differences in EN and ve;L at the different spacecraft
locations, thus electron scale gradients, as the ones
observed in situ, are also present in the simulation.
However, considering the laminar character of the
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FIG. 1. Top: Four spacecraft (a) BL, (b) BM, and (c) BN measured by FGM [38]; (d) ve;M and (e) ve;L from FPI [39]; (f) EN from EDP
[40,41]; (g) Te;k=Te;⊥; (h) jδBj computed high-pass filtering FGM data with f > 0.5 Hz (the high-pass filter allows us to separate the
scale associated with the fluctuations from the scale associated with the magnetic field variations due to the current sheet crossing). The
green shaded interval indicates the inner EDR. Bottom: (i) 2D PIC simulation data of Te;k=Te;⊥ with the reconstructed MMS trajectory
crossing the EDR. The magnetic flux contour lines are superposed; (j) spacecraft position relative to MMS1 in the LN plane.
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simulation data, if one were to consider a smooth MMS
trajectory across a steady-state 2D reconnection plane (see,
e.g., [32,34]), one would expect the difference between EN
and ve;L observed at different spacecraft to be rather
constant and the related gradients to be uniform along
the separatrix. This is in striking contrast with the large
variations in the gradients observed by MMS. The 2D
simulation can be matched to the in situ data only if we use
a rather complex trajectory [Figs. 2(e) and 2(f)]. This
trajectory is overall tangential to the separatrix, yet it
exhibits several back-and-forth motions which are neces-
sary to reproduce the oscillating ΔEN and Δve;L observed
in situ.

In order to identify the process responsible for the
complex EDR crossing, we analyze the observed δB
fluctuations [see Fig. 1(h)]. Figure 3(a) shows that the
δB fluctuations, with similar amplitude in all three com-
ponents, are present in the current sheet center, where the
current density peaks [Fig. 3(b), yellow shaded interval
12:18:30.3–12:18:36.5]. In addition, the observed δB
fluctuations are compressional (not shown). Figures 3(c)
and 3(d) show the wavelet power spectra of the electric and
magnetic fields observed by MMS1. Both the magnetic
and electric powers clearly drop for frequencies f > fLH
(fLH ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi

fcifc;e
p

is the lower hybrid frequency) and in
the inner EDR the waves have f ∼ fLH. The parameter
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ðE=BÞð1=vphÞ [Fig. 3(e)], where vph is the phase speed of
the observed waves [see Fig. 3(g)], is used to quantify
the electrostatic and electromagnetic component of the
waves. Theoretically, the parameter ðE=BÞð1=vphÞ → ∞
for purely electrostatic waves. Averaging this parameter in
the yellow shaded interval of Fig. 3 and in the frequency
range 1 Hz < f < 5 Hz, we obtain a mean value of
ðE=BÞð1=vphÞ ∼ 15 which is much smaller than the typical
value observed in the quasielectrostatic case. For example,
ðE=BÞð1=vphÞ ∼ 400 (0.3 < f=fLH < 0.8) for the quasie-
lectrostatic fluctuations reported in Ref. [46]. Thus, the
fluctuations in the center of the reconnecting current
sheet are characterized by a significant electromagnetic
component.
To better characterize these fluctuations, we compute

the dispersion relation from the phase differences of δBN
between spacecraft pairs, using multispacecraft interfer-
ometry [46,47]. Figure 3(g) shows that the normalized
power Pðf; kÞ=Pmax peaks at f ∼ 1.4 Hz (black dashed

line) which is close to fLH at the current sheet center.
The wave number at the Pðf; kÞ=Pmax peak is kρe ∼ 0.3
(and k

ffiffiffiffiffiffiffiffi

ρeρi
p ∼ 2.7, where ρe ∼ 24 km and ρi ∼ 2150 km

are the electron and ion gyroradius averaged over the
yellow shaded region of Fig. 3) which corresponds to
phase speed vph ∼ 660 km=s and wavelength λ ∼ 500 km.
Figures 3(h) and 3(i) shows that the wave vector k is
directed mainly along theM direction, i.e., antialigned with
the direction of the current and perpendicular to the
reconnection plane. The average direction of propagation
of the fluctuations is k̂ ¼ ½0.12; − 0.92; 0.38� in LMN
coordinates and it is mainly perpendicular to the magnetic
field direction (θk ¼ arccos½ðk · BÞ=ðjkjjBjÞ� ∼ 70°, not
shown). Similar results are obtained if a different compo-
nent of δB is considered for the analysis. These signatures
are consistent with lower hybrid drift fluctuations propa-
gating in the out-of-reconnection-plane direction.
The δB fluctuations in the current sheet center and the

electric and velocity field fluctuations at the separatrix have

FIG. 3. Top: (a) three components of δB. Offsets of 2.3 nT and 4.3 nT are added to δBM and δBN , respectively; (b) J calculated from
particle moments. Spectrum of (c) B wave power; (d) E wave power; (e) log10½ðE=BÞð1=vphÞ�. (f) βe. The black line indicates fLH.
Bottom: normalized power of magnetic field fluctuations δBN versus (g) jkjρe and frequency; (h) kLρe and kMρe
(0.5 Hz < f < 2.5 Hz); (i) kMρe and kNρe (0.5 Hz < f < 2.5 Hz);. The dashed line in (g) corresponds to f ¼ 1.4 Hz.
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similar time scales which are comparable to the lower
hybrid frequency [Figs. 3(c) and 3(d) and Fig. 2(d)]. This
similarity suggests that they are related to each other. As
shown in Fig. 2, we can match the observed oscillating
ΔEN and Δve;L to the steady-state 2D reconnection
structure if we employ a complex motion of the 2D
reconnection plane. Both such complex motion and the
δB fluctuations in the current sheet center can be produced
by kinking of the current sheet propagating in the out-of-
reconnection-plane direction (see a qualitative representa-
tion in Fig. 4). On the other hand, given the electron-scale
interspacecraft separation which does not allow the sam-
pling of the larger scales, we cannot establish whether the
oscillations shown in Figs. 2(b)–2(d) are indeed produced
exclusively by the rigid motion of the reconnection plane,
or if a more complex behavior including time evolution is
present. However, the analyses discussed above provide
evidence that the current sheet kinking is perturbing the
EDR crossing. Hence, we conclude that the time-dependent
processes, if present, are secondary sources of the observed
EDR crossing perturbation.
The fluctuations observed during the EDR crossing are

related to one of the various drift instabilities that are
eigenoscillations resulting in current sheet kinking [18,19].
Several modes that have been considered as distinguished
in the past actually belong to the same class of instabilities
ranging from the electrostatic LHDI (fast growing, short-
wavelength mode with kρe ∼ 1) localized at the edges of
the current sheet [17] to the electromagnetic, longer-wave-
length modes with k

ffiffiffiffiffiffiffiffi

ρiρe
p ∼ 1 located close to the current

sheet center which arise in later phases of the instability
[18,19,48–50]. In the event reported here, MMS observe
obliquely propagating electromagnetic fluctuations with
rather long wavelength (kρe ∼ 0.3 is smaller than the
typical kρe ∼ 0.5–1 observed for LHDW at the magneto-
pause [14,51]) located within the EDR. The observed
fluctuations are somewhat consistent with the obliquely
propagating electromagnetic drift instability [24] which can
occur at higher βe observed in the current sheet center [see
Fig. 3(e)]. The local theory of Ref. [24] was developed in
order to explain the electromagnetic fluctuations that have
been observed at the MRX [26].

Despite the similarities, the comparison between our
observations and the analytical and simulation studies
[18,19,24] or laboratory [26] and spacecraft observations
[52] focusing on current sheet instabilities is constrained by
the fact that the current sheet thickness in these studies is
dcs ∼ di while our event presents a very thin current sheet
dcs ∼ 2de ¼ 0.05di. Also, the plasma considered in pre-
vious studies is usually homogeneous [53], reconnection is
not present [18,19,24] or it is asymmetric [54]. Further
detailed comparison with theoretical models [18,19,24] are
beyond the scope of this Letter and will be investigated in
future work. Independently of the specific instability
operating in the current sheet, when the direction of
propagation is perpendicular to the reconnection plane
the out-of-plane direction cannot be treated as an invariant
axis of the system. Thus, a 3D description is required to
understand the dynamics of the process.
In conclusion, we report MMS observations of a per-

turbed EDR crossing. We observe oscillations of the
electron-scale gradients at the separatrix and magnetic field
fluctuations in the current sheet center. These features are
not expected for a simple crossing of a steady-state 2D
EDR. We find an overall good agreement between the
observations and 2D PIC simulations of reconnection, but
we can only match the observed oscillations to the 2D
model if we consider a complex motion of the spacecraft in
the fixed 2D reconnection plane. We attribute such complex
motion to a kinking of the current sheet associated with
electromagnetic drift instability propagating in the out-of-
reconnection-plane direction. Despite the overall quasi-2D
geometry of the event, these results suggest that we need to
take into account the three-dimensionality of the system to
fully understand the observed EDR crossing. Further in situ
data analysis and three-dimensional simulations enabling
the out-of-plane dynamics are needed to establish the role
of current sheet instabilities in affecting the EDR structure.

MMS data are available at the MMS Science Data
Center, see Ref. [55].
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