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We report a three-dimensional (3D) topological insulator (TI) formed by stacking identical layers of
Chern insulators in a hybrid real-synthetic space. By introducing staggered interlayer hopping that respects
mirror symmetry, the bulk bands possess an additional Z2 topological invariant along the stacking
dimension, which, together with the nontrivial Chern numbers, endows the system with aZ × Z2 topology.
A 4-tuple topological index characterizes the system’s bulk bands. Consequently, two distinct types of
topological surface modes (TSMs) are found localized on different surfaces. Type-I TSMs are gapless and
are protected by Chern numbers, whereas type-II gapped TSMs are protected byZ2 bulk polarization in the
stacking direction. Remarkably, each type-II TSM band is also topologically nontrivial, giving rise to
second-order topological hinge modes (THMs). Both types of TSMs and the THMs are experimentally
observed in an elastic metacrystal.
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The study of band topology has led to the discovery of a
kaleidoscope of topologically nontrivial systems across
many realms in physics [1–6], and is the focus of many
theoretical and experimental investigations. A Bloch band
is a compact manifold, and its topological characterization
depends on dimensionality [7–9], which can be either
reciprocal or synthetic or both. For even-dimensional
bands, an integer topological invariant known as Chern
number can be obtained by surface integrating their Berry
curvature [10,11]. For odd-dimensional systems, one can
compute the Chern-Simons integral, which yields quan-
tized values under chiral or inversion symmetry [9]. For
example, the Chern-Simons integral of one-dimensional
(1D) Bloch bands, such as those of a Su-Schrieffer-Heeger
chain, is equivalent to the winding number of the Berry
connection across the Brillouin zone, producing the well-
known Zak phase [12]. Because of the connection of the
Berry phase with the electrical polarization in crystalline
solids [13–17], the 1D Chern-Simons integral can also be
computed for the Berry connection defined along each
dimension in a higher-dimensional crystal. The results then
yield a bulk polarization, which can be quantized under
certain symmetries, thus becoming a topological invariant.
This idea has significantly enriched the topological band
theory by revealing the higher-order topological insulators
(TIs) [18,19].
The ascension to three dimensions (3D) has led to a

richer diversity of band topology. On the one hand, 3D
band topology can sometimes be characterized by a 3D
Chern-Simons invariant that associates with magnetoelec-
tric polarizability [7,9,20–22]. On the other hand, an
alternative way is to consider a combination of three
invariants defined on three orthogonal 2D tori T2 obtained
by slicing the 3D bands which are T3 [9]. Following the

discovery of quantum spin-Hall phase [23–25] and topo-
logical crystalline insulators [26], it was shown that 2D and
3D topological invariants are both needed to form the
combination ½ν0; ðν1; ν2; ν3Þ� for the classification of the 3D
“strong” and “weak” TIs [27–29]. A 3D strong TI has
nonzero 3D Chern-Simons invariant (the index ν0) [30],
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FIG. 1. (a) A conventional 3DWTI constructed by stacking 2D
TIs exhibits TSMs only on surfaces parallel to the stacking
direction. (b) The proposed 3D LCI sustains two types of TSMs
localized on different surfaces. In addition, it sustains second-
order THMs. (c) A schematic drawing of 2D Chern insulator on
xϕ plane with one spatial and one synthetic dimension. The
undulating sheet indicates the periodic modulation on hopping
enforced by ϕ. (d) Stacking the 2D Chern insulators with
staggered interlayer hopping t and s leads to the 3D LCI. The
cyan plane marks a specific synthetic coordinate chosen for
experiments.
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whereas a 3D weak TI (WTI) has ν0 ¼ 0 but
ðν1; ν2; ν3Þ ≠ 0, which are three Z2 invariants defined for
T2. Generally, a WTI can be obtained by stacking 2D TIs
[27,31,32]. Topological surface modes (TSMs) in such a
structure appear on surfaces parallel to the stacking
direction [Fig. 1(a)]. Under additional symmetry protec-
tion, it is also possible to have TSMs appearing on all
surfaces of a WTI [33]. These states are the extension of the
topological boundary modes of the 2D TIs. On the other
hand, the study on the band topology is not restricted to
purely reciprocal dimensions. Extra dimensionality can be
added to the Bloch band’s manifold by incorporating
synthetic dimensions, which composes of artificially engi-
neered internal degrees of freedom [34]. Synthetic dimen-
sions provide versatile paths to realize effective gauges,
which are desirable for complex or higher-dimensional
topological systems [35–39]. For example, mixing recip-
rocal and synthetic dimensions enables the study of
Hofstadter butterfly [40] or Weyl points [41,42] in a simple
lattice with one spatial dimension.
In this work, we present with both theory and experi-

ments a 3D topological system that belongs to a Z × Z2

classification. Different from existing examples of 3D TIs
and higher-order TIs, the bulk topology requires a 4-tuple
topological invariant consisting of three Chern numbers
and one quantized bulk polarization to fully characterize.
The system can be regarded as a 3D layered Chern insulator
(LCI) with staggered interlayer hopping [43]. Each layer is
a Chern insulator existing on a 2D reciprocal-synthetic
space [39,44]. Because the staggered interlayer hopping
respects mirror symmetry, the 1D Chern-Simons integral
along the stacking direction is quantized, thus becoming a
Z2 invariant as the fourth topological index. As a result, our
3D LCI not only sustains gapless TSMs on surfaces parallel
to the stacking direction (denoted as type-I) but also gapped
TSMs protected by the Z2 invariant (denoted as type-II)
[Fig. 1(b)]. Remarkably, the type-II TSMs are 2D topo-
logically nontrivial bands. The 3D LCI thus also supports
(3-2)-dimensional chiral topological hinge modes (THMs)
that close the type-II TSM gaps. Further, the 3D LCI is
experimentally realized using a flexural-wave elastic meta-
crystal. The real-space descendants of both types of TSMs
and the THMs are successfully observed.
We begin by considering a 1D Harper model that is

periodic in the x direction [45]. The Hamiltonian reads

Hðkx;ϕÞ ¼

2
64

0 κ1ðϕÞ κ3ðϕÞe−ikx
κ�1ðϕÞ 0 κ2ðϕÞ

κ�3ðϕÞeikx κ�2ðϕÞ 0

3
75; ð1Þ

wherein the modulations occur on hopping terms, i.e.,
κiðϕÞ ¼ κ0 þ δκ cosð2πbiþ ϕÞ with modulation frequency
b ¼ 1=3, unperturbed hopping amplitude κ0, modulation
strength δκ, and phase factor ϕ. The parameter ϕ constitutes
a synthetic dimension. This Harper chain is actually a 2D

system aligned on xϕ plane [Fig. 1(c)]. The system has
three isolated bulk bands. The periodic modulation
enforced by ϕ induces a quantized Landau flux within
each unit cell, leading to nonzero Chern numbers for all
three bulk bands as verified by integrating the Berry cur-
vature FkxϕðkÞ ¼ ∂kxAϕðkÞ − ∂ϕAkxðkÞ in 2D Brillouin
zone. Here, AkxðϕÞðkÞ ¼ ihuðkÞj∂kxðϕÞjuðkÞi is the Berry
connection wherein uðkÞ is the eigenstate at given kðkx;ϕÞ
The Chern numbers are found to be 1, −2, and 1,
respectively. Hence, Eq. (1) describes a 2D Chern insulator
residing on kxϕ plane [44,45]. When truncated in the x
direction, gapless topological boundary modes protected by
the nonzero Chern numbers are found, as displayed in
Fig. 2(a).
Stacking the 2D Chern insulator along the y direction

leads to a 3D LCI in a hybrid real-synthetic space, as
illustrated in Fig. 1(d). Here, we explore the interlayer
hopping, denoted as t and s, as a new degree of freedom.
We first set t ¼ s. In this case, the unit cell consists of three
sites and the LCI is described by a three-level Hamiltonian
H t¼sðkx;ϕ; kyÞ ¼ Hðkx;ϕÞ þ ð2t cos kyÞI3, where I3 is a
3 × 3 identity. The 3D Brillouin zone is isomorphic to a T3.
The bulk band topology can be characterized by slicing the
T3 to T2’s on three orthogonal planes. An integer invariant,
i.e., Chern number, can be computed for each T2 as
CμνðkεÞ ¼ ð1=2πÞ R TrðFμνÞdkμdkν, with μ; ν; ε cycli-
cally indexing the dimensions. Therefore, a triad of
ðCxϕ; Cyϕ; CxyÞ can fully describe the 3D bulk topology.
We found that Cxϕ are 1,−2, and 1 for the three bulk bands,
respectively, and they are constant in ky. Meanwhile,
Cyϕ ¼ Cxy ¼ 0. We remark that these Chern numbers
are computed by slicing the 3D bulk bands, instead of
using a single 2D layer. Therefore, the bulk band topology
of this 3D LCI falls into a Z classification. Bulk-surface
correspondence indicates the existence of gapless TSMs on
the ϕy surface, as depicted in Fig. 2(b).
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FIG. 2. (a) Eigenspectra of a finite Harper chain as a function of
ϕ with parameters κ0 ¼ 120, δκ ¼ 96. (b) Eigenspectra of the 3D
system truncated in x direction with uniform interlayer hopping,
i.e., t ¼ s. The bulk Chern numbers ðCxϕ; Cyϕ; CxyÞ are indicated
in (b).
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Next, we introduce staggered interlayer hopping, i.e.,
t ≠ s. The first consequence is the doubling of the sites per
unit cell, hence the Hamiltonian becomes a 6 × 6 matrix

H ðkx;ϕ; kyÞ ¼
�

Hðkx;ϕÞ ðtþ se−ikyÞI3
ðtþ seikyÞI3 Hðkx;ϕÞ

�
: ð2Þ

Interestingly, Eq. (2) can be block diagonalized by a
similarity transformation H̃ ¼ W−1H W, where

W ¼
�

1 w

−w−1 1

�
⊗ I3; ð3Þ

and w ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ se−ikyÞ=ðtþ seikyÞ

p
. The outcome is

H̃ ¼
�
Mþ 0

0 M−

�
; ð4Þ

wherein M� ¼ Hðkx;ϕÞ � VðkyÞI3 and VðkyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2 þ 2ts cos ky

q
. Equation (4) implies that the 3D

LCI is equivalent to two copies 3D TIs described by M�.
Then, we can characterize the bulk band topology of the 3D
LCI by computing the Chern numbers of the bulk bands of
each block. It is found that the Chern numbers Cxϕ for the
three bulk bands of each block are quantized to be 1, −2,
and 1, respectively, while Cyϕ ¼ Cxy ¼ 0. Thus, each copy
of 3D TIs produces its own gapless type-I TSMs, as shown
in Fig. 3(a). Depending on the magnitudes of t and s, the
bulk bands from these two blocks can overlap. When t ¼
30 and s ¼ 120, the 3D LCI exhibits four bulk bands, in

which the second and third bands are the overlap of oneMþ
band and one M− band [Fig. 3(a)].
The staggered interlayer hopping introduces addi-

tional nontrivial topology in the stacking direction. To
show this, we compute the Wannier bands wy ¼
ð1=2πÞ R π−π TrðAkyÞdky, where Aky ¼ ihuðkÞj∂ky juðkÞi is
the Berry connection in the ky direction. Note that wy is
equivalent to a 1D Chern-Simons integral. When jt=sj < 1,
wy ¼ 1=2 for all bands for all ðkx;ϕÞ, which is the
consequence of mirror symmetry. This result indicates that
the 3D LCI has a quantized bulk polarization along the
stacking direction Py ¼ ½1=ð2πÞ2� RΩ wydkxdϕ ¼ 1

2
, where

Ω is the kxϕ plane of the 3D Brillouin zone. We have also
confirmed that wy ¼ 0 for all bands when jt=sj > 1. We
have further computed wx and wϕ. The results are not
quantized, which conforms with the absence of the mirror
symmetry along x and ϕ directions. The above analyses
show that our 3D LCI has a combined Z × ℤ2 bulk
topology, which is fully characterized by a 4-tuple topo-
logical index ðCxϕ; Cyϕ; Cxy;PyÞ. Such a topological index
combination clearly sets our system apart from the 3D TIs
that are characterized by combinations of Z2 indices.
The quantized nonzero Py protects a different type of

TSMs (type-II). In Fig. 3(b), we see three bands of the type-
II TSMs (teal), which owe their existence to the nonzero Py

and they do not close the bulk band gaps. The type-II TSMs
are localized on xϕ planes, as shown in Fig. 3(e). Since
the three type-II TSMs are 2D bands on kxϕ plane, we
can further compute their Chern numbers and found
CTSM
xϕ ¼ 1;−2; 1, respectively. In other words, all three
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type-II TSM bands are topologically nontrivial. The bulk-
boundary correspondence indicates the existence of topo-
logical modes that closes the TSM gaps. These findings are
verified in the eigenspectra and eigenstates. As shown in
Figs. 3(c)–3(f), the type-I and type-II TSMs coexist, and
additional modes that make the type-II TSMs gapless are
found. These modes are (3-2)-dimensional THMs that are
1D states localized in the synthetic dimension ϕ [Fig. 3(f)].
The THMs here are thus protected by the nonzero combi-
nations of Py and CTSM

xϕ , making them distinct from the
previously reported higher-order topological modes.
When the interlayer hopping becomes jt=sj > 1 so that

Py ¼ 0, both the type-II TSMs and THMs are absent [46].
It is also noteworthy that since the THMs close the type-II
TSM gaps, they spectrally overlap with the 3D bulk bands
when ϕ is between �0.3π, thus becoming 1D bounded
states in the 3D continuum [Fig. 3(c)].
When ϕ is fixed, the 3D LCI can be experimentally

realized in 2D elastic-wave systems [47–51]. Here, we
propose a flexural-wave metacrystal that can reproduce a
tight-binding Hamiltonian with high fidelity. The system is
comprised of circular disks connected with Z-shape beams
[Fig. 4(a)]. The disks’ second-order mode is chosen to be
the onsite orbital [Fig. 4(b)]. The Z-shape beams are
introduced to realize the hopping coefficients in Eq. (2),
which are conveniently tunable by adjusting only the width.
A systematic discussion on the metacrystal design is
presented in [46]. Here, we set ϕ ¼ 0.4π, κ0 ¼ 120,
δκ ¼ 96, t ¼ 30, and s ¼ 120. Finite-element simulations
(COMSOL Multiphysics) produce eigenspectra with good

agreement with the tight-binding model (discrepancies
in eigenfrequencies are <0.28%), as shown in Figs. 4(c)
and 4(d). By examining the vibrational profiles, the type-I,
type-II TSMs, and THMs are unambiguously identified.
Three representative modes are shown in Figs. 4(f)–4(h).
The elastic metacrystal is fabricated from a stainless-

steel sheet using laser cutting. A waveform generator
(Keysight 33500B) sends a short pulse covering 16 to
20 kHz through a voltage amplifier (Aim-TTi WA301) to a
piezoelectric buzzer (radius 4.9 mm) glued to the center
of a selected disk. A laser Doppler vibrometer (Polytec
VGO-200) mounted on a translation stage measures the
out-of-plane displacement of all disks in the lattice. The
signal is recorded using a digital oscilloscope (Keysight
DSO2024A). In Fig. 4(e), the gray area is the bulk
response, in which four peaks are clearly seen. To measure
the TSM responses, we place the buzzer at the correspond-
ing edge (but away from the corner) and then measure the
edge response several sites away. Both type-I and type-II
TSMs are clearly observed [Fig. 4(e)]. We used the trans-
lational stage to scan the vibrational profiles of the entire
lattice close to the peak frequencies. The results show that
the modes are strongly localized along the corresponding
edges, which agrees with our prediction about the TSMs
[Figs. 4(f) and 4(g)]. Likewise, the THMs are observed as
corner modes, as shown in Fig. 4(h). We have also
fabricated and measured an additional elastic lattice with
jt=sj > 1, in which the type-II TSMs and THMs are absent.
The results are shown in [46].
In summary, we have theoretically studied and exper-

imentally demonstrated a new type of 3D LCI that
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distinguishes from previous 3D TIs. Our results show that
new topological phases can be constructed by means of
product topology that compounds distinct topological
classes in different dimensions. This method constitutes
a new strategy to engineer a diversity of novel band
topology, such as the stacking of topologically distinct
layers [52], or the introduction of interlayer gauge flux. The
method is also suitable for analyzing topological systems in
even higher dimensions [39,53]. The TSMs and gapless
THMs in our system are topologically protected by unique
combinations of different classes of topological indices. In
particular, the THMs are distinct from the higher-order
topological modes protected by quantized polarization or
multipole moments [54–58], and they closely resemble the
one-way hinge transport behaviors found in the 3D
quantum Hall effect [31]. We anticipate that the 3D LCI
is realizable in systems with only spatial dimensions, in
which Chern insulating states can be achieved by breaking
the time-reversal symmetry [59–61]. In this case, it is even
possible to engineer THM bands with nontrivial quantized
polarization such that 0D topological modes can emerge.
Nevertheless, the synthetic dimensions offer additional
versatility that can merit applications, such as topological
waveguiding (see [46] for an example), topological Fano
devices [62–64], etc. Last, our elastic metacrystal proves to
be a convenient and versatile platform for realizing com-
plex tight-binding systems, making it an excellent venue
for studying topological phenomena in solids.
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