
Multichannel High-Order Harmonic Generation from Fractal Bands
in Fibonacci Quasicrystals

Jia-Qi Liu1,2 and Xue-Bin Bian1,*
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,
Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 24 April 2021; revised 28 August 2021; accepted 20 October 2021; published 17 November 2021)

High-order harmonic generation (HHG) in solids was expected to be efficient due to their high density.
However, the strict transition laws in crystals restrict the number of HHG channels. Quasicrystals with
fractal band structures could solve this problem and produce multichannel HHG emissions, which has been
rarely studied. We simulate the Fibonacci quasicrystal (FQ) HHG for the first time and investigate the
electron dynamics on the attosecond timescale. Our results reveal that (i) the acceleration theorem is
approximately applicable in FQ, which provides us a valuable tool to analyze the electron trajectories.
(ii) Fractal bands lead to more excitation channels, analogous to the forbidden nonvertical electron
transitions in crystals. (iii) The broken symmetry results in more frequent backscattering of electrons.
(iv) Compared with crystals, multichannel HHG in FQ has a higher yield and wider spectral range. Our
results pave the way to understand and control the HHG in quasicrystals and shed light on a potential
shorter and stronger attosecond light source based on compact solids.
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High-order harmonic generation (HHG) in different
materials driven by lasers has been investigated to produce
coherent extreme ultraviolet sources [1] and ultrashort
attosecond pulses [2]. Gas HHG has made considerable
progress in the direction of wide spectral ranges for many
years [3,4], and then crystal HHG has attracted much
attention [5–11]. Recently, liquids have been also of great
interest as a source of HHG [12,13] due to their fluidity and
ubiquity. Condensed matters with a high density are
expected to produce efficient HHG. However, the potential
is not fully released because of many restrictions in the
HHG processes. The vertical transition and recollision
condition in crystal HHG exclude the contribution of
many electrons [10]. The statistical effect in disordered
liquid HHG leads to a finite coherence distance [13].
Quasicrystals are special ordered systems without transla-
tional periodicity [14,15]. Since the Bloch theorem or the
statistical laws are not applicable to quasicrystals, the
restrictions on HHG may be broken. To our knowledge,
quasicrystals as one crucial kind of solid have not been
studied to produce HHG.
Among many quasicrystal models, the one-dimensional

(1D) Fibonacci quasicrystal (FQ) is relatively simple but
has rich physical contents [15–18]. In 1985, Merlin et al.
[19] made the first superlattice of FQ by using the
molecular beam epitaxy method. Based on nonlinear
optics, Feng et al. [20] theoretically analyzed the sec-
ond-harmonic generation (SHG) and third-harmonic gen-
eration in FQ superlattices composed of LiNbO3 crystals in
1990. Compared with the periodic structure, the 1D FQ

system has more reciprocal lattice vectors, which is
beneficial to the realization of quasi–phase matching. In
1997, Zhu et al. [21] realized the LiTaO3 superlattice with a
Fibonacci sequence and obtained the SHG of multiple
center waves in experiments. Subsequently, the nonlinear
optical effects of superlattices arranged according to other
sequences have also been extensively studied [22–24].
However, the extreme nonlinear optical up-conversion
HHG process in FQ has not been studied. The particular
order of quasicrystals makes the essential difference from
disordered (e.g., doped, amorphous) systems [25–27]. We
will see that the dense reciprocal vectors of FQ result in
frequent backscattering and significant wavelength depend-
ence, which is different from HHG in disordered systems.
Atomic units (a.u.) are used throughout unless stated
otherwise.
To simulate FQ, we construct a 1D atomic chain. The

arrangement of atomic spacing follows class A generalized
Fibonacci model [GFðm; 1Þ] [23,24] with a positive integer
m. GFðm; 1Þmodel is a quasiperiodic sequence obtained by
a direct extension of the Fibonacci sequence (the rabbit
problem), and its substitution rule is B → A, A → AmB. As
displayed in Fig. 1(a), from the high-dimensional projec-
tion method (HDPM) [28,29], the 1D quasicrystal can be
obtained by the projection of the two-dimensional (2D)
periodic lattice, with tan θ is irrational. There are Ll (long)
and Ls (short) two atomic spacings in the quasicrystal, as
shown in Fig. 1(b). For the GFðm; 1Þ model, the angle θ

should satisfy tanθ¼ð1=δmÞ¼f½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ4

p
−ð2−mÞ�=2mg,

where δm ¼ 1þ ð1=τmÞ ¼ ½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4

p
þ 2 −mÞ=2� and
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τm ¼ ½ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4

p
Þ=2� [24]. The positions of atoms in

the linear chain satisfy [15,23,24],

xi ¼ iLs þ ðLl − LsÞ
�
i
δm

�
; i ∈ ½0; N − 1�; ð1Þ

where the symbol bc stands for preserving the integer
part. As manifested in Fig. 1(b), to satisfy Ll=Ls ¼ 1þ
tan θ in HDPM, we set Ls ¼ L1

s þ L2
s , Ll ¼ L1

l þ L2
l ,

and make L1
s ¼ L1

l ¼ l, L2
s ¼ lð1 − τmηÞ, L2

l ¼ lð1þ ηÞ,
with η ¼ ½2ðδm − 1Þ=ð1þ δmτmÞ� ¼ f½ðmþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4

p
−

m2 − 2m − 2�=ð2mþ 3Þg [20,21,24]. It is easy to know
that Ll=Ls ¼ δm, δm¼1 ¼ τm¼1 ¼ ð ffiffiffi

5
p þ 1Þ=2, and as

m → ∞, δm → 1 (θ → 45°), therefore FQ (m ¼ 1) is
naturally related to the crystal (m → ∞) by GFðm; 1Þ.
Local Gaussian potentials are used to describe the Coulomb
interaction between adjacent atoms ðxi < x < xiþ1Þ [13],

V ionðxÞ ¼−V0

�
exp

�
−
ðx− xiÞ2
2α2

�
þ exp

�
−
ðx− xiþ1Þ2

2α2

��
;

ð2Þ

with l ¼ 2.2 a:u:, V0 ¼ 0.8 a:u:, α ¼ 0.16l, and N ¼ 300.
The potentials are nearly independent of each other. It is
similar to the off-diagonal FQ model [18] (in 1D tight-
binding approximation) where the electron energy spec-
trum is a singularly continuous Cantor set and the eigen-
states are self-similar (fractal) or chaotic critical wave
functions [16–18], neither localized nor extended in a
standard fashion.

The electron energy spectra ofm ¼ 1 (FQ) andm ¼ 100
(crystal) are given in Fig. 1(c) by diagonalizing the
field-free Hamiltonian. The energy bands in FQ have a
three-split fractal structure similar to the off-diagonal
model. All eigenstates with negative energies are occupied
valence states. Figure 1(d) demonstrates the spatial dis-
tribution of the 150th eigenstate in the FQ and crystal, and
the former is a fractal wave function [16,18]. We refer to
the eigenstate with critical wave function as the critical
state, and the criticality has been verified by calculating
the multifractal dimension [30], as shown in Fig. S1 of
Supplemental Material [31].
The interaction between the laser and FQ is simulated by

solving the time-dependent Schrödinger equation. Similar
to the time-dependent density functional theory with
frozen Kohn-Sham potentials [26,33–35], all valence states
(i ≤ N) are selected as initial states and evolve independ-
ently. The total current is JðtÞ ¼ P

N
i

R
dxjiðx; tÞ, with

jiðx; tÞ ¼−i½ψ�
i ðx; tÞ∂xψ iðx; tÞ−ψ iðx; tÞ∂xψ

�
i ðx; tÞ�=2. The

harmonic spectrum is obtained by the Fourier transform
of JðtÞ. The laser field is EðtÞ ¼ E0fðtÞ cosðωtÞ, with
E0 ¼ 0.0069 a:u. The total duration Lt is 10 optical cycles
(o.c.) with a trapezoidal envelope fðtÞ, including two
rising and two falling cycles. The vector potential AðtÞ ¼
−
R
dtEðtÞ, with the amplitude A0 ¼ E0=ω. The open

boundary condition is used, including vacuum regions
(where the Coulomb potential is 0) at both ends of the
linear chain. A cos1=8 function is adopted to absorb the
reflection near the boundary.
Figure 2(a) shows the HHGs of FQ (m ¼ 1) and crystal

(m ¼ 100) when the wavelength λ ¼ 0.5 μm. It can be seen
that the HHG in FQ with a cutoff of 15th order has a wider
energy spectrum and a higher intensity than it does in the
crystal with a cutoff of seventh order. We will explain in
the following discussion that the extension of cutoff and the

FIG. 1. (a) Schematic diagram of HDPM to obtain a 1D
quasicrystal. θ is the angle between the vectors xk and X,
controlling the sequence of atoms. (b) Schematic diagram of
the 1D atomic chain based on HDPM. (c) Energy spectrum of FQ
(m ¼ 1, black circles) and the crystal (m ¼ 100, magenta circles).
The dashed gray line separates the valence band (VB) and
conduction bands. (d) Modulus of the 150th eigenstate in FQ
and the crystal.
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FIG. 2. Numerical results of HHG in FQ (m ¼ 1) and crystal
(m ¼ 100). The wavelength λ is 0.5 and 1 μm in (a) and (b),
respectively. In (b), the black arrows are the cutoff positions
predicted by our theory. Other laser parameters are shown in
the text.
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enhancement above seventh order in FQ come from the
more excitation channels. In Fig. 2(b), HHGs of FQ and
crystal for λ ¼ 1 μm are drawn. The increase of wavelength
has little effect on the harmonic intensity and cutoff energy
in the crystal. However, it has greatly changed the structure
of the harmonic spectrum in FQ, and the most significant
characteristic is the emergence of a multiplateau structure.
We will see that more plateaus are caused by the back-
scattering. As shown in Fig. 1(c), the direct band gap of FQ
is slightly smaller than that of crystal. We have verified that
it does not affect our conclusion, except the third (fifth)
order harmonic enhancement for λ ¼ 0.5ð1Þ μm. More
details can be found in the Supplemental Material [31].
Previous research [7–11,35–37] on crystal HHG illus-

trates that it comes from the intraband currents and
interband polarizations. It inspires us to study the mecha-
nism of FQ HHG in reciprocal space. The positions of
reciprocal lattice sites (or Bragg peaks) in GFðm; 1Þ
quasicrystal are

Gpq ¼
2π

D

	
pþ q

δm



; p; q ∈ Z; ð3Þ

which corresponds to the Fourier transform of atomic posi-
tions [determined by Eq. (1)] [15,23,24], and D ¼ Ls þ
ðLl − LsÞ=δm. Similar to the method in Refs. [26,33,35],
the eigenstates were Fourier transformed from position to k
space, and the modulus was plotted as a linear scaled
contour plot vs k and the eigenvalue to get the energy bands
of the FQ and crystals, as displayed in Figs. 3(a) and 3(b),

respectively. A more extended discussion of this method
can be found in Supplemental Material [31]. In crystals,
the crystal momentum k is the quantum number of the
translation operator’s eigenvalue, and equivalent to the
Fourier transformed momentum of eigenstates [26,33,35].
As mentioned in the Refs. [38–40], the quasicrystals have
“modified” Bloch states, ψkðxÞ ¼ fkðxÞeikx, which will be
called quasi-Bloch states. fkðxÞ and V ionðxÞ are quasiperi-
odic functions [39,40], which can be expanded by the dense
reciprocal lattice vectors. Based on the quasi-Bloch state, it
is proved that the plane wave expansion method (PWEM)
of crystals [41] can be extended to the calculation of FQ’s
band, and the results are in good agreement with Fig. 3(a)
(see Fig. S2 and more details in Supplemental Material
[31]). For FQ, k is the wave vector of the quasi-Bloch state,
defined as the quasicrystal momentum, which is equivalent
to the Fourier transformed momentum of eigenstates. From
Figs. 1(d) and S1 (in the Supplemental Material [31]), most
of the eigenstates in FQ (except a few edge states) are
critical and extended states. Both of them are distributed in
the whole space, but the former is more strongly modulated
locally, which leads to multiple peaks in momentum space,
as shown in Fig. S4(b) of the Supplemental Material [31].
Under the laser field, we find that these peaks in the k space
obey something like the acceleration theorem [Figs. S4(c),
S5, and S6 [31] ]. Since the quasi-Bloch state in FQ has the
same form as the Bloch state in crystals, we theoretically
prove that the acceleration theorem in crystals can be
approximately extended to our FQ model, based on the
continuous band approximation. For details of derivation,
please refer to the Supplemental Material [31].
In Fig. 3(a), it can be seen that the energy band of FQ has

a very novel structure. From the perspective of energy, it is
divided by many small gaps and forms the fractal structure,
consistent with Fig. 1(c). These gaps fold the bands and
lead to the translational band structure in the horizontal k
space. Next, we try to reconstruct the FQ band from an
effective-crystal (EC), whose periodic atomic potential
comes from the spatial average of FQ’s V ionðxÞ [31], to
reduce the complexity and extract the electron dynamics
information. From Eq. (3), the reciprocal lattice vector of
GFðm; 1Þ quasicrystal can be thought of as two parts:
(i) Gp ¼ 2π=Dp, representing the reciprocal lattice vectors
of the EC with lattice constant D; (ii) Gq ¼ 2π=ðDδmÞq
implying that the reciprocal lattice vectors in (i) will be
shifted by an integer multiple of ΔGq ¼ 2π=ðDδmÞ, which
corresponds to the translation of energy bands and
Brillouin zone (BZ), consistent with translational band
structure in Fig. 3(a). We calculated the energy band
structures of EC and crystal by PWEM [41], as shown
by the solid black lines in Figs. 3(c) and 3(d), respectively.
In Fig. 3(c), the EC band (q ¼ 0), has been shifted by
Eq. (3) to reconstruct the FQ band. Both the fractal (energy
space) and the translational (k space) structures are the
results of the broken translational periodicity. The latter can

FIG. 3. Band structures of (a) FQ (m ¼ 1) and (b) crystal
(m ¼ 100) in k space. (c) EC band (solid black line, q ¼ 0) and
(d) crystal band are calculated by PWEM. In (c), we translate the
EC band by Eq. (3) with p ∈ ½−40; 40� and q ¼ �1;�2;�3 to
reconstruct the FQ band.
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be perfectly reproduced by shifted EC bands and Eq. (3)
(see Fig. S7 and more details in Supplemental Material
[31]), while the former cannot.
As demonstrated in Fig. 4(b), in crystals, the excitation

rate is high around the minimum band gap (black arrow 1),
while it is small at large gaps (black arrow 3). And
nonvertical transitions cannot occur (black arrow 2) without
considering lattice vibration. The translational band struc-
ture in FQ causes more electron excitation channels, as
marked by the black arrows in Fig. 4(a). Since FQ bands
can be thought of as a series of shifted EC bands with
Δk ¼ 2π=ðDδmÞq, q can be used as an indicator to describe
different EC bands. Ev

q1ðk0Þ and Ec
q2ðk0Þ represent the

energy of electrons before and after vertical excitation at k0.
When q1 ¼ q2, the transition is like it in crystals (black
arrow 1). q1 ≠ q2 leads to more excitation paths (black
arrows 2 ∼ 4), and Ec

q1ðk0Þ ≠ Ec
q2ðk0Þ. In the latter case, we

can always find the energy Ec
q2ðk0Þ in the initial EC band,

that is, Ec
q1ðk0Þ ¼ Ec

q2ðk0Þ and k0 ≠ k0, analogous to a
nonvertical transition in the crystal. In Fig. 2(a), A0 ¼
0.0718 a:u: is very small, and the backscattering is very

weak (discussed later). More excitation channels in FQ will
help more electrons participate in the harmonic radiation
and extend the harmonic cutoff. To prove this, the highest
occupied state has been taken as the initial state, whose
time-dependent electron population (TDEP) is calculated
by projecting the time-dependent wave function onto all the
eigenstates at each moment. The energy-resolved TDEP is
displayed in Figs. 4(c) and 4(e). In Fig. 4(c), after the
electric field starts, some electrons are excited directly to
higher bands and then driven by the field. In Fig. 4(d), the
vertical brown dotted lines are draw on the FQ band to
mark the vertical transitions of the highest valence electron.
The ordinate of the intersections of above dotted lines and
shifted EC bands correspond to the energy of the directly
excited electrons in Fig. 4(c). The purple horizontal dotted
lines are used to guide the eye. It proves that our conclusion
is correct.
In crystals, backscattering occurs only at high symmetry

points. In Fig. 4(b), the blue arrows ① and ② represent the
k-space electron trajectories in two adjacent 1=4 o.c.,
without backscattering. The backscattering occurs at the
BZ boundary (points p1 or p2), and the trajectories after

FIG. 4. (a) and (b) Schematic diagrams of electron excitation channels and backscattering of FQ and crystals in k space, respectively.
The bands come from Figs. 3(c) and 3(d). The energy-resolved TDEP is displayed for (c) λ ¼ 0.5 μm and (e) λ ¼ 1 μm, respectively,
taking the highest valance state as the initial state. (d) The band is the same as it is in Fig. 3(c), and the brown dotted lines mark the
vertical transition of the highest valence electron. (f) EC band and its band gap between all bands and VB are drawn in solid black and
red lines, respectively.
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backscattering are displayed by the green and magenta
arrows. A0 is required to be large enough to make the
electron reach BZ boundaries. Unlike crystals, the trans-
lational band structure of FQ causes frequent backscatter-
ing without large A0 requirement. Figure 4(a) shows the
k-space electron trajectories of FQ. The blue arrows
①∼④ manifest the electron movement on a EC band
in one cycle. Some trajectories after backscattering are
displayed with green and magenta arrows. In the first
half cycle, electrons are scattered at p1, p2, and p3 in
turn and then driven by the field. Compared with the
trajectories of backscattering at p2 and p3, the former can
obtain higher photon energy, so A0 can significantly
affect HHG by backscattering. To verify the contribution
of backscattering, we also calculated the energy-resolved
TDEP of the highest valance electron in FQ, as exhibited
in Fig. 4(e), with λ ¼ 1 μm. In addition to the direct
excitation channels, the energy-resolved TDEP accumu-
lates with time in some energy range, such as 0.6 ∼
1.5 a:u: or 1.6 ∼ 2.1 a:u:, which comes from frequent
backscattering.
Next, we extract the harmonic cutoff from energy-

resolved TDEP. Figure 4(f) displays the EC band and its
vertical gap between each band and VB in the solid black
and red lines, respectively. The magenta horizontal lines
project the maximum energy of different electron paths in
Fig. 4(e) to the EC band in Fig. 4(f) and give the projection
points. The green polylines assign the above projection
points to the band gap at the same k, and the band gap
energies correspond to the cutoffs. As shown in Fig. 4(f),
cutoff 1 ¼ 0.6 a:u: (13.17ω), cutoff 2 ¼ 1.15 a:u: (25.2ω),
cutoff 3 ¼ 1.48 a:u: (32.5ω), cutoff 4 ¼ 2.2 a:u: (48.3ω),
and cutoff 5 ¼ 2.9 a:u: (63.6ω), with λ ¼ 1 μm. We
correspond the above cutoffs to the harmonic spectrum
in Fig. 2(b), as manifested by the black arrows, which are
qualitatively consistent with the results of the time-
dependent Schrödinger equation. Therefore, multiplateau
structure of FQ HHG in Fig. 2(b) is the result of back-
scattering. And multiexcitation channels and backscatter-
ing together contribute to the harmonic emission before the
33rd order, while backscattering mainly contributes to the
higher harmonics order.
In conclusion, to our knowledge, the mechanism of HHG

in FQ is studied for the first time. We find that the band
theory is approximately valid for FQ HHG, and the fractal
band leads to more excitation channels and frequent
backscattering. The former could enhance harmonic yield
by orders and extend the cutoff obviously, while the latter
makes the multiplateau structure of HHG. Our Letter
elucidates the ultrafast electron dynamics in laser-quasi-
crystal interactions and opens the possibility of detecting
novel electronic properties (such as band structure) of
quasicrystals by all-optical means in strong-field physics.
Compared with crystals, FQs have the advantages of
producing HHG with higher intensity and wider spectrum,

so we expect that our work could push forward the efficient
and compact HHG sources in condensed matters.
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