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Simulating the full dynamics of a quantum field theory over a wide range of energies requires
exceptionally large quantum computing resources. Yet for many observables in particle physics,
perturbative techniques are sufficient to accurately model all but a constrained range of energies within
the validity of the theory. We demonstrate that effective field theories (EFTs) provide an efficient
mechanism to separate the high energy dynamics that is easily calculated by traditional perturbation theory
from the dynamics at low energy and show how quantum algorithms can be used to simulate the dynamics
of the low energy EFT from first principles. As an explicit example we calculate the expectation values of
vacuum-to-vacuum and vacuum-to-one-particle transitions in the presence of a time-ordered product of two
Wilson lines in scalar field theory, an object closely related to those arising in EFTs of the standard model
of particle physics. Calculations are performed using simulations of a quantum computer as well as
measurements using the IBMQ Manhattan machine.
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It is well known that quantum computers can in principle
simulate the time evolution of quantum field theories [1].
The main technique involves disretizing the spatial degrees
of freedom by introducing a lattice [2–4], and digitizing the
field values at a given lattice point [5–13]. This turns the
uncountably infinite dimensional Hilbert space of standard
quantum field theories into a finite dimensional Hilbert
space of dimension

nH ¼ nðN
dÞ

ϕ ; ð1Þ

where nϕ denotes the dimensionality of the Hilbert space
for a given lattice point, N is the total number of lattice
points in each spatial direction, and d represents the number
of spatial dimensions. The physical volume of the lattice is
determined by the distance between adjacent lattice points
δx in each direction and is given by

V ¼ ðNδxÞd ≡ Ld: ð2Þ

The total number of qubits required for such a simulation is
given by

nQ ¼ Oðlog2nHÞ ¼ OðNdlog2nϕÞ: ð3Þ

The discretization and finite volume of space introduce
upper and lower cutoffs to the energies E over which the
resulting lattice field theory is a good approximation for the
continuum. In particular, one finds

1

Nδx
≲ E≲ 1

δx
; ð4Þ

which implies that the range of energies that can be
described is directly proportional to the number of lattice
sites per dimension. In principle, to have access to the full
dynamics of the Large Hadron Collinder (LHC), one would
need to describe the energy range between Oð10 MeVÞ
(the smallest resolvable transverse momentum between
hadrons) and 7 TeV (the beam energy of the LHC). To
fully capture this energy range would require a lattice with
Oð106Þ lattice points in each dimension, and more than
1018 qubits to reproduce the resulting physical system.
Even if one does not require the full energy range up to the
LHC center-of-mass energy, the number of qubits required
for a full simulation will clearly remain beyond the realm of
feasibility for a long time to come.
For many observables of interest at the LHC, physics at

short distances is reliably computed in fixed order pertur-
bation theory, and high precision can be reached with
existing techniques. Physics at lower energies introduces
new significant challenges. Asymptotic freedom [14,15]

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 127, 212001 (2021)

0031-9007=21=127(21)=212001(7) 212001-1 Published by the American Physical Society

https://orcid.org/0000-0001-9820-5810
https://orcid.org/0000-0003-1024-0932
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.212001&domain=pdf&date_stamp=2021-11-18
https://doi.org/10.1103/PhysRevLett.127.212001
https://doi.org/10.1103/PhysRevLett.127.212001
https://doi.org/10.1103/PhysRevLett.127.212001
https://doi.org/10.1103/PhysRevLett.127.212001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


implies that the strong coupling constant becomes large
at low energies, increasing the production of additional
particles. An energetic particle can thus easily radiate
additional soft and collinear particles, resulting in a
collimated jet of particles. This means that fixed order
perturbative calculations are of little use to describe lower
energy effects such as the precise makeup of jets, and other
techniques such as resummation [16–18] and parton
showers [19,20] have to be used to make predictions. At
even lower energies, the fully nonperturbative dynamics of
hadronization dominate. While classical lattice methods
provide spectral information about the strongly coupled
limit of the theory, the dynamics of hadronization is
currently only understood through phenomenological mod-
els and form factors extracted from data. While these
techniques have been quite successful and it has even been
shown that quantum algorithms can be used to include
quantum interference effects in some models of parton
showers [21], it would be a significant breakthrough were it
possible to simulate these low energy dynamics from first
principles.
In this Letter we show that this is indeed possible by

using effective field theories (EFTs) which have been
designed to reproduce the desired long distance physics.
(For work on simulating EFTs not related to collider
physics, see [22–27]). The dynamics of these EFTs can
then be simulated directly and from first principles on a
quantum computer. Since the energy range that needs to be
simulated is much smaller than that of the full theory, the
resource requirements are orders of magnitudes smaller
than those required to simulate the full theory. Additionally,
the EFT simplifies the description of the initial and final
state and significantly reduces the resource requirements of
their implementation. For example, consider an observable
measured on two jets, each with an energy of Oð1 TeVÞ
and an invariant mass of Oð50 GeVÞ. Even restricting
ourselves to observables insensitive to hadronization, a
generic observable of the momenta of final state particles
in the full theory requires a simulation of the range
1 GeV≲ E≲ 2 TeV. As we discuss below, the EFT only
needs to capture 1 GeV≲ E≲ 50 GeV. The number of
qubits required to simulate the EFT is smaller by a factor of
ð2000=50Þ3 ≈ 105, and this factor increases rapidly as the
range of the full theory is increased.
The EFT relevant for hadronic jet physics is soft-

collinear effective theory (SCET) [28–31]. Using this EFT,
a typical cross section describing a physical observable at
the LHC can be factorized into separate pieces [32–35]

σ ¼ H ⊗ J1 ⊗ … ⊗ Jn ⊗ S: ð5Þ

Here H denotes a coefficient describing the short distance
physics which can be computed reliably in standard pertur-
bation theory, while Ji and S denote squares of matrix
elements of operators in SCET. The jet function Ji denotes

physics arising from collinear degrees of freedom that all
have small momentum relative to each other (while moving
collectively with a large energy), with the different jet
functions completely decoupled from one another. The soft
function S denotes physics arising from soft degrees of
freedom, which all have small absolute momentum (in the
frame of the collider). These matrix elements describe the
transition of a simple initial state produced in the short
distance interaction H into a final state, with the dynamics
described by the EFT Hamiltonian. The final states that arise
can contain a large number of particles. State of the art
techniques use operator renormalization to compute the
overall scale dependence of the jet and soft functions, and
then compute the relevant matrix elements perturbatively,
such that the effects arising from the high multiplicity final
states or hadronization cannot be properly included.
Classical lattice techniques are also not suitable for the
computation ofmatrix elements of SCEToperators, since the
long-distance dynamics is governed by massless modes
which are inherently Minkowskian in nature. Having a
simulation of the dynamics of SCET (or a different EFT
for other problems) will allow for a full nonperturbative
calculation of any matrix elements.
The EFT reproduces the full theory result up to power

corrections, whose size depends on the kinematics of the
process studied. For many observables of interest, these
power corrections are considerably smaller than the per-
turbative corrections present in either the full theory or EFT
matrix elements.
Since individual jet functions do not interact with one

another, their dynamics can be simulated in the reference
frame where all particles have small absolute momentum
[36,37]. This requires simulating the dynamics of the
original field theory (with any degrees of freedom that
only contribute to short distance effects removed), but with
a much smaller energy range required to be simulated. To
achieve this on a quantum computer, one needs a setup very
similar to that for the full theory, but reliable calculations
can be achieved with much coarser lattices than those one
would need for a simulation of the full theory.
In the soft function, on the other hand, the energetic

particles no longer contribute to the dynamics of the theory.
Instead, their effect is captured by a so-called Wilson line,
which describes the interaction of a charge moving along a
fixed world line with the bath of soft degrees of freedom.
The physics underlying this observation is that soft par-
ticles cannot change the direction of energetic particles in
a meaningful way. This implies that energetic particles can
be included in the EFT as a static object (Wilson line)
described by the relevant quantum numbers (charge, color,
etc.) moving along a fixed world line along a lightlike
direction. Matrix elements in the soft theory therefore need
to compute the dynamics of a Hamiltonian describing the
soft bath of particles in the presence of such Wilson lines.
For gauge theories, such as those describing the three
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fundamental forces contained in the standard model,
Wilson lines are given by path ordered exponentials of
the relevant gauge fields [31]

Yn ¼ P exp

�
ig
Z

∞

0

dsn · Aðxμ ¼ nμsÞ
�
: ð6Þ

Here Aμ is the soft gauge field and nμ describes the
direction of the lightlike direction nμ ¼ ð1;nÞ with n2 ¼
1 such that nμnμ ¼ 0. Thus, the gauge field is evaluated on
a path going from the origin to spatial infinity along the
world line characterized by the direction nμ. The dynamics
of the soft gauge field is described by its full theory
Hamiltonian.
The soft function for a process containing two energetic

particles of zero total charge moving back-to-back requires
two Wilson lines, Yn for the particle moving in the n
direction and Y†

n̄ for the antiparticle moving in the n̄μ ¼
ð1;−nÞ direction. The matrix elements required in the soft
sector are given by

hXjT½YnY
†
n̄�jΩi; ð7Þ

where T denotes the time-ordering operator, jΩi denotes
the ground state of a Hilbert space containing only the
gauge degree of freedom, and jXi is the final state. If
reproducing multiparticle weakly coupled final states, jXi
will contain a fixed number of gauge momentum modes
with given momenta kμi . To compute the soft function for a
given observable one needs to sum over all possible final
states that can contribute to this observable. Traditional
perturbative calculations [38–44] can only compute these
matrix elements for final states jXi containing a small
number of particles and at low order in perturbation theory,
since the complexity of the calculation increases factorially
with the power of the coupling constant g. They therefore
do not compute the full matrix element for a given
observable, but only a perturbative approximation. For
large coupling constants, which is the relevant case for
quantum chromodynamics (QCD) at low energies, such
perturbative calculations can give rise to large uncertainties.
Simulating the full dynamics of the field theory would

provide the full nonperturbative result for the soft matrix
element. To evaluate the matrix element on a quantum
computer one first needs to define circuits that perform time
evolution of the system, as well as circuits that can create
and measure the ground and excited states of the theory. In
addition, one needs to create circuits that can correctly
interleave the implementation of nonlocal Wilson line
operators with the evolution of the system to reproduce
their time-ordered product.
In the following we discuss how to compute matrix

elements of Wilson line operators Yn analogous to Eq. (7),
but for a massless scalar, rather than gauge, theory. The
EFT is insensitive to the precise origin of the Wilson lines,

but a particularly straightforward realization would result
from a pair of highly energetic fermions coupled to
massless scalars through a Yukawa coupling. When con-
structing the explicit circuit we also limit ourselves to
(1þ 1) dimensions, mainly to restrict the quantum resour-
ces required such that it can be implemented on currently
existing hardware. This allows us to omit some technical
complications that arise when dealing with gauge theories
(gauge transformations, the existence of unphysical polar-
izations, etc.), while capturing all the resulting simplifica-
tion of working within an EFT.
To be precise, we consider a massless field theory in

(1þ 1) dimensions with Hamiltonian and Wilson lines
defined by

H ¼
Z

dx
1

2
ð _ϕ2 − ϕ∂2ϕÞ;

Yn ¼ P exp

�
ig
Z

∞

0

dsϕðxμ ¼ nμsÞ
�
: ð8Þ

In the Supplemental Material [45], we discuss how working
in (1þ 1) dimensions gives rise to several effects not
present in higher dimensions, and how these generalize to
higher dimensions.
We discretize the position x into an odd number of lattice

points, labeling the positions by x0;…; xN−1. To eliminate
the zero-momentum mode of the theory, we impose twisted
boundary conditions [46–49]. The result is a theory defined at
discrete positions x andmomentap given by xi ¼ xmin þ iδx
and pi ¼ pmin þ iδp with xmin ¼ −ðN − 1Þδx=2, pmin ¼
−π=δx and δp ¼ 2π=Nδx. Writing ϕi ≡ ϕðxiÞ, the
twisted boundary conditions correspond to the condition
ϕiþN ¼ −ϕi. The Hamiltonian becomes [5]

H ¼ δx
2

XN−1

i¼0

½ _ϕ2
i − ϕi½∇2ϕ�j�; ð9Þ

where the lattice operator ∇2 is defined through its action
on a field as ½∇2ϕ�i ¼ ð2ϕi − ϕi−1 − ϕiþ1Þ=δx2. Because
of the twisted boundary conditions ½∇2ϕ�0 ¼ ð2ϕ0 þ ϕN−1 −
ϕ1Þ=δx2 and ½∇2ϕ�N−1 ¼ ð2ϕN−1 − ϕN−2 þ ϕ0Þ=δx2. The
Wilson line operators can be written as

Yn ¼ P exp

�
igδx

X2n0
i¼n0

ϕxiðt ¼ xi − n0Þ
�
;

Y†
n̄ ¼ P exp

�
−igδx

Xn0
i¼0

ϕxiðt ¼ n0 − xiÞ
�
; ð10Þ

where n0 ¼ ðN − 1Þ=2 denotes the point at the center of the
lattice.
We represent the field theory through the field values at

each lattice position, and in order to describe the theory
on a digital quantum computer one needs to digitize the
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continuous field value at each lattice point [8]. Choosing
nQ qubits per lattice site allows for nϕ ≡ 2nQ different
field values. For each lattice point, the possible field

values are chosen to be by ϕðkÞ
i ¼ −ϕmax þ kδϕ, with

δϕ ¼ 2ϕmax=ðnϕ − 1Þ. The value of ϕmax has to be chosen
to optimize the digitized description, which for free fields is
accomplished by

ϕmax ¼
1ffiffiffiffiffiffiffiffi
δxω̄

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2

ðnϕ − 1Þ2
nϕ

s
; ð11Þ

where

ω̄ ¼ 1

N

X
i

ωi; ωi ¼
2

δx

���� sinpiδx
2

����: ð12Þ

For ω̄ ¼ 1, as is the case for a single lattice site with ω ¼ 1,
corresponding to a single harmonic oscillator, Eq. (11)
reproduces the empirical numerical values obtained in [8].
To implement the Wilson line operator we first rewrite

the time-ordered product of the two Wilson lines as

T½YnY
†
n̄� ¼ e−iHn0δx exp½igδxðϕx2n0

− ϕx0Þ�
× eiHδx exp½igδxðϕx2n0−1

− ϕx1Þ�
×… × eiHδx exp½igδxðϕxn0

− ϕxn0
Þ�; ð13Þ

where we have used the time translation operator to make
the time dependence on the field operators explicit. Thus,
the Wilson line operator consists of a sequence of time-
evolution operators for a time interval corresponding to
the lattice spacing and exponentials of the field operator.
The last time evolution evolves the state back from the
largest time to which the Wilson lines can be sensibly
evolved, namely, tmax ¼ n0δx, to t ¼ 0 at which all states
are defined.
Ultimately, to make contact with the continuum field

theory any such simulation will have to be performed on a
series of increasing lattices, and the result extrapolated to
the N → ∞, δx → 0 limit. Any parameters of the theory
present in the continuum must be suitably matched for this
procedure to yield meaningful results. For local terms in the
Hamiltonian, this procedure is discussed in detail in [5].
Dealing with a massless theory simplifies this procedure
since only local interactions (of which in the present case
there are none) need to be matched. However, the EFTwill
also require the matching of Wilson line operators, which is
complicated by their nonlocal nature and sensitivity to total
lattice size, as discussed in the Supplemental Materials. In
this Letter, we work at fixed lattice size and we leave the
detailed investigation of these issues to future work.
The implementation of the exponential of the field

operator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized field

ϕðkÞ
i can be written in terms of sums of σz operators. This

implies that the exponential of products of fields ϕi can
be implemented through combinations of CNOT gates and
RZ rotations [6–8]. The exponential of the conjugate
operator _ϕ2 can be implemented by taking a quantum
Fourier transformation of the exponential of the operator
ϕ2. These can then be combined via the Suzuki-Trotter
formula [50–52]. For details, see the Supplemental
Materials. The initial ground state of the scalar field theory
is a multivariate Gaussian distribution, which can be
created using the approach of Kitaev and Webb (KW)
[53]. To identify states of definite multiplicity and momen-
tum in jXi one can follow the general ideas laid out in [1,5].
Our quantum circuit has been implemented in QISKIT

[54] and is available from the authors upon request. In this
first exploratory paper we compute the foundational quan-
tities, namely,

YX ¼ jhXjT½YnY
†
n̄�jΩij2 ð14Þ

for jXi ¼ jΩi and jXi ¼ jpii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no nontrivial IR safe observable that can
be defined in (1þ 1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.
The quantum circuit for this measurement can be

represented as

where jlni denotes the register of qubits for the nth lattice
site. This creates the multivariate Gaussian vacuum state
from the initial state with all qubits zero using UΩ, acts on
this vacuum with the time ordered product of the two
Wilson lines usingUY , and finally applies the inverse of the
state preparation of state jXi. The details of these various
circuits can be found in the Supplemental Material.
For our numerical results, we work with an N ¼ 3 site

lattice with spacing δx ¼ 1. With only three lattice sites, the
Wilson line operator simplifies to

YX ¼ jhXjT½YnY
†
n̄�jΩij2 ¼ jhXjeigδxðϕx2

−ϕx0
ÞjΩij2; ð15Þ

since all time evolution operators act on the initial or final
eigenstate of the Hamiltonian only and can therefore be
neglected as contributing an overall phase. In Fig. 1 we
show the dependence of the expectation values YX on the
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coupling g for nQ ¼ 2 qubits per lattice site for different
final states, and compare them against the analytical results,
shown by black lines. Results are given for both a quantum
simulation and from the 65-qubit IMBQ Manhattan quan-
tum computer. The operators for implementing all states are
exact, as the resources for doing so on a small lattice are
modest. On a larger lattice approximate methods, such as
KW ground state approximation and the excited state
preparation techniques of [5], will be necessary; the effect
of such approximations is presented in the Supplemental
Material.
Errors in the quantum circuits, especially readout errors

and CNOT gate errors are quite large on existing hardware.
As discussed in the Supplemental Materials, the exponen-
tial of the field operator at a given position requires only nQ
single qubit gates, such that the operator in Eq. (15)
requires no CNOT gates. For nQ ¼ 2 the state preparation
requires six CNOT gates. Note that for more than three
lattice sites the time evolution operator is required, which
requires a much larger amount of gates, although the
resulting circuits are known. For example, even for three
lattice sites the standard implementation of a single Trotter
step of our Hamiltonian requires 60 CNOT gates. We have
applied both readout error mitigation as described in [55] as
well as CNOT gate noise mitigation [56]. For more details,
including Refs. [57–78], see the Supplemental Materials.
One can see that the digitized result with 2 qubits per lattice
site differs from the analytic calculation by up to 10%. This
would be reduced to at most 1.5% by adding just a single

qubit per lattice site, since the resulting digitization errors
fall exponentially with the number of qubits. The quantum
computer reproduces the simulated result to about 5%
accuracy.
In conclusion, EFTs are well known to be able to

describe the low energy dynamics of field theories and,
through short distance, perturbatively computable match-
ing coefficients, can be used to describe the dynamics of a
full underlying quantum field theory. We have argued that
the dynamics of a low energy EFT can be simulated with
significantly smaller quantum resources than the dynamics
of the corresponding full theory. In SCET the interactions
of highly energetic particles with soft particles of low
energy are described through operators containing Wilson
lines, and we have shown in detail how the dynamics of
an analogous scalar soft theory can be described using
quantum algorithms. Using Wilson lines of free scalar
fields in (1þ 1) dimension, we have computed the simplest
matrix elements in this soft theory, namely, the transition
matrix elements from the vacuum to itself and the lowest-
lying excited states of two Wilson lines in opposite
directions, using three lattice sites. We have compared
the computations on a quantum computer to analytical
results that can be obtained for this simple theory. Using
only 2 qubits per lattice we obtain results within 10% of the
analytical result, and by using noise-mitigation techniques,
uncertainties due to running on present-day hardware can
be reduced to about 5%.
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