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We propose a procedure to determine the moduli-space integrands of loop-level superstring amplitudes
for massless external states in terms of the field theory limit. We focus on the type II superstring. The
procedure is to (i) take a supergravity loop integrand written in a BCJ double-copy representation, (ii) use
the loop-level scattering equations to translate that integrand into the ambitwistor string moduli-space
integrand, localised on the nodal Riemann sphere, and (iii) uplift that formula to one on the higher-genus
surface valid for the superstring, guided by modular invariance. We show how this works for the four-point
amplitude at two loops, where we reproduce the known answer, and at three loops, where we present a
conjecture that is consistent with a previous proposal for the chiral measure. Useful supergravity results are
currently known up to five loops.
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Introduction.—The birth of string theory is widely
considered to be the discovery by Veneziano of the
scattering amplitude formula that today bears his name
[1]. More than five decades later, the calculation of string
scattering amplitudes remains a formidable challenge. To
give the example of the type II superstring in Minkowski
spacetime, the four-point amplitude for massless external
states was computed at tree level and one loop in 1982
[2,3], and at two loops in 2005 [4–6]. There has been
significant work on the three-loop problem, namely, a
proposal for the chiral measure [7–9] and a partial
computation using the pure spinor formalism [10], but it
remains to be fully addressed. The advances have had a rich
interplay with those in gauge theory and gravity ampli-
tudes, particularly in their maximally supersymmetric
versions. For instance, the first computations of the four-
point one-loop amplitudes in the now widely studied
4D N ¼ 4 super-Yang-Mills theory (SYM) and N ¼ 8
supergravity were based on the field theory limit of the
analogous superstring calculations [11]. In this Letter, we
aim to return the favor by importing three-loop results in
N ¼ 8 supergravity, themselves obtained from nonplanar

N ¼ 4SYMvia theBern-Carrasco-Johansson (BCJ) double
copy [12], into the type II superstring.
String theory versus field theory.—We will consider the

type II superstring four-point amplitude for massless
incoming states of momenta ki (i ¼ 1;…; 4). The 10D
maximal supersymmetry implies that information on the
four external states is encoded in a kinematic prefactor
R4 [13], such that the supergravity tree-level amplitude is
∼R4=ðs12s13s14Þ. We define the Mandelstam variables as
sij ¼ 2ki · kj. Our working assumption will be that, up to

three loops [14], the g-loop superstring amplitude AðgÞ
S

takes the form

AðgÞ
S

R4
¼

Z
Mg;4

����
Y
I≤J

dΩIJ

����
2
Z

dljYðgÞ
S j2

Y
i<j

jEðzi; zjÞj
α0sij
2

×

���� exp α
0

2

�
iπΩIJlI · lJ þ 2πi

X
j

lI · kj

Z
zj

z0

ωI

�����
2

:

ð1Þ

The integration denoted by Mg;4 is over a genus-g
fundamental domain parametrized by the period matrix
ΩIJ (I; J ¼ 1;…; g) and over four marked points zi. We use
a “chiral splitting” representation [16,17], made possible by
the introduction of the loop momenta lI, with dl denotingQ

I d
10lI. The appearance of the prime form Eðzi; zjÞ and

the exponential (involving the holomorphic Abelian differ-
entials ωI whose cycles define the period matrix) constitute
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the chiral × antichiral loop-level Koba-Nielsen factors. The

interesting object is YðgÞ
S . We make no distinction between

type IIA and type IIB apart from the details of R4, since at
four points there is no contribution from odd spin structures
at least up to three loops [18].
We will exploit the analogy between the formula (1) for

the superstring and the following expected formula for
supergravity:

AðgÞ
A

R4
¼
Z

dl
Z
Mg;4

Y
I≤J

dΩIJðYðgÞ
A Þ2

Y4
i¼1

δ̄ðEiÞ
Y
I≤J

δ̄ðuIJÞ: ð2Þ

This type of formula for a scattering amplitude was
discovered at tree level by Cachazo, He, and Yuan
[20,21], generalizing a previous formula from twistor string
theory [22,23]. The loop-level extension [24–30] was
derived from the type II ambitwistor string [31], which
is a worldsheet model of type II supergravity. The 10D loop
integration in Eq. (2) is UV divergent, so the expression is
formal only, and we understand it as defining a loop
integrand. The genus-g moduli-space integration is fully
localized on a set of critical points, determined by the
genus-g scattering equations: Ei ¼ 0 and uIJ ¼ 0 [32]. An
extensive discussion of the loop-level version of this
formalism was presented in Ref. [30]; the brief discussion
below will be sufficient for our purposes. There is a clear
analogy between Eqs. (1) and (2). Our proposal, under
conditions to be discussed, is to identify the “chiral half-
integrands,”

YðgÞ
S ¼ YðgÞ

A ; ð3Þ

which is known to be possible for g ≤ 2. Notice that Eq. (1)

is a simplified expression where YðgÞ
S is independent of α0.

The idea is that we can import an ambitwistor string—i.e.,
supergravity—result into the superstring.
The only known procedure to evaluate Eq. (2) reflects

the fact that the ambitwistor string is a field theory in
disguise: the genus-g formula can be localized on a
maximal nonseparating degeneration, i.e., a Riemann
sphere with g nodes, as in Fig. 1. This follows from a
residue argument in moduli space at one [27,28] and two
[29,30] loops, and our three-loop results provide evidence
that it holds at higher order. The formula on the nodal
sphere is

AðgÞ
A

R4
¼
Z

dlQ
IðlIÞ2

Z
M0;4þ2g

cðgÞðJ ðgÞYðgÞÞ2
Y4þ2g

A¼1

δ̄ðEAÞ: ð4Þ

Here, M0;4þ2g is the moduli space of the Riemann sphere
with 4þ 2g marked points, corresponding to 4 external
particles and 2g “loop marked points,” one pair per node
as in Fig. 1. The factors cðgÞ and J ðgÞ arise from the

degeneration of Mg;4 to M0;4þ2g [30]. We will give an
example momentarily. The object YðgÞ in this expression is

the limit of YðgÞ
A in the maximal nonseparating degener-

ation. Finally, the delta functions impose the loop-level
scattering equations on the nodal sphere, EA ¼ 0, on whose
finite set of solutions the moduli-space integral fully
localizes; in fact, this integral can be understood as a
multidimensional residue integral.
Let us be more concrete. The degeneration to the g-nodal

sphere is achieved in a limit involving the diagonal
components of the period matrix: qII ¼ eiπΩII → 0. In this
limit, the holomorphic Abelian differentials whose periods
define the period matrix acquire simple poles at the
corresponding node: with σ ∈ CP1,

ωI ¼
ωIþI−

2πi
; ωIþI−ðσÞ ¼

ðσIþ − σI−Þdσ
ðσ − σIþÞðσ − σI−Þ

; ð5Þ

where the σI� are the marked points for node I. Together
with the marked points σi associated to the four external
particles, we have the total of 4þ 2g marked points
parametrizing M0;4þ2g up to SLð2;CÞ. For g ≥ 2, the
off-diagonal components of the period matrix are expressed
in this limit in terms of cross ratios of the nodal marked
points,

qIJ ¼ e2iπΩIJ ¼ σIþJþσI−J−

σIþJ−σI−Jþ
; ð6Þ

where we denote σAB ¼ σA − σB. This change of integra-
tion variables leads to the ðJ ðgÞÞ2 appearing in Eq. (4). One
J ðgÞ arises from the moduli-space measure,

Y
I<J

dqIJ
qIJ

¼ J ðgÞ

vol SLð2;CÞ ; J ðgÞ ¼ JðgÞ
Y
I�
dσI� ; ð7Þ

while the other arises from rewriting higher-genus scatter-
ing equations as nodal sphere ones. Finally, the scattering
equations on the nodal sphere are equivalent to the
vanishing of a meromorphic quadratic differential PðgÞ
with only simple poles, and can be read off from the
residues of this differential at the 4þ 2g marked points,

FIG. 1. Genus-3 surface and its maximal nonseparating degen-
eration (genus 0) with 2 marked points per node.
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EA ¼ ResσAP
ðgÞ: ð8Þ

The ingredients of Eq. (4) can be illustrated with the two-
loop example. We have cð2Þ ¼ 1=ð1 − q12Þ [33] and

Pð2Þ ¼ P2 − ðlIωIþI−Þ2 þ ðl2
1 þ l2

2Þω1þ1−ω2þ2− ; ð9Þ

where

PμðσÞ ¼ lI
μωIþI−ðσÞ þ

X
i

kiμ
σ − σi

dσ: ð10Þ

Effectively, PðgÞ encodes all the potential loop-integrand
propagators in an expression like Eq. (4), while cðgÞ projects
out certain unphysical propagators. These details are not
important for this Letter, where we are concerned with J ðgÞ

and especially YðgÞ. At two loops, we have

Jð2Þ ¼ 1

σ1þ2þσ1þ2−σ1−2þσ1−2−
ð11Þ

and

Yð2Þ ¼ 1

3
½ðs14 − s13ÞΔð2Þ

12 Δ
ð2Þ
34 þ cycð234Þ�; ð12Þ

where we used the determinant

ΔðgÞ
i1…ig

¼ εI1…IgωI1ðσi1Þ…ωIgðσigÞ ð13Þ

defined for any g. The expression (12) is built from the
differentials ωI , which naturally lift from the nodal sphere
to become the holomorphic Abelian differentials on the
genus-2 surface. Indeed, the genus-2 expression is also

valid as Yð2Þ
A in Eq. (2) and, crucially for us, as Yð2Þ

S in
Eq. (1). The object ΔðgÞ is a modular form of weight −1 at

any genus, which at genus 2 gives Yð2Þ
S the appropriate

weight such that the moduli-space integral is well defined.
At three loops, the answer is not as simple as Eq. (12): Δð3Þ
still arises [10], but additional ingredients are needed, as
discussed, e.g., in Ref. [34], and as we will see here.
YðgÞ

S from BCJ numerators.—Let us present and test our
strategy. The steps are to (i) take a supergravity loop
integrand written in a BCJ double-copy representation,
(ii) translate that integrand into the ambitwistor string
moduli-space integrand localized on the nodal Riemann
sphere, i.e., obtain YðgÞ, (iii) uplift that formula to a higher-
genus modular form conjecturally valid for the superstring,

i.e., obtain YðgÞ
S such that YðgÞ

S → YðgÞ as qII → 0. With our
current understanding, step (iii) relies on an educated guess,
as we will exemplify.
Starting with step (i), a BCJ representation is one in

which the loop integrand is written in terms of trivalent
diagrams, whose numerators are the square of analogous

numerators in nonplanar SYM obeying the BCJ color-
kinematics duality [12,35] [36]. See Ref. [47] for a review
of this remarkable construction, which was motivated by
the KLT relations of string theory [48]. Indeed, there is a
large body of work relating this construction to aspects of
string theory, e.g., Refs. [49–65]. Step (ii) is based on the
connection to the scattering equations story, for which we
use the following relation based on a differential form with
logarithmic singularities [66]

ð2πiÞ4J ðgÞYðgÞ ¼
X

ρ∈S2þ2g

NðgÞð1þ; ρ; 1−Þ
ð1þ; ρ; 1−Þ

Y4þ2g

A¼1

dσA; ð14Þ

where ðABC…DÞ ¼ σABσBC…σDA is a Parke-Taylor
denominator. The BCJ numerators NðgÞ, which depend
on a particle ordering, are SYM numerators whose square
gives the supergravity numerators; this square effectively
translates into the square of J ðgÞYðgÞ in Eq. (4). Notice,
however, that we have extracted the overall factor R4 in
Eq. (4), whose “square root” is therefore not included in the
SYM numerators. The correspondence between the numer-
ators NðgÞ and trivalent diagrams is best understood in an
explicit example, to be discussed below. Before that, let us
make two comments. The first is that two marked points
singled out in Eq. (14) were chosen to be σ1� , but the sum is
independent of that choice. The second, for the reader
familiar with the scattering equations formalism including
the developments [70–73], is that equalities like (14) often
hold only when the marked points satisfy the scattering
equations (e.g., for CHY Pfaffians). Here, on the other
hand, we propose that Eq. (14) defines YðgÞ such that it may
be uplifted to the superstring, as happens up to two loops.
Let us test the strategy at two loops, for which the BCJ

representation of the four-point supergravity loop integrand
is long known [74,75]. The two-loop BCJ numerators can
be compactly written as

Nð2Þð1þ;ρ1;2�;ρ2;2∓;ρ3;1−Þ¼
�
sij ρ2¼fi;jg
0 otherwise:

ð15Þ

They correspond to half-ladder diagrams with loop
momenta �l1 at the ends; see Fig. 2. A standard two-
loop diagram is then obtained by gluing the nodal legs, i.e.,
Iþ with I−. Taking the result (15) from the literature, it is
possible to obtain Yð2Þ via Eq. (14). Then, it is both natural

FIG. 2. Two-loop example. Diagram associated with the
numerator Nð1þ; 2; 2þ; 3; 4; 2−; 1; 1−Þ.
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and easy to rewrite Yð2Þ in the form (12), which, as
explained earlier, can be uplifted to genus 2, matching

the superstring result Yð2Þ
S . This achieves step (iii).

Three loops.—We now apply our strategy to the much
more intricate three-loop case. From the general form of a
three-loop field theory integrand, namely, the inclusion of
the relevant diagram topologies, we can determine cð3Þ and
Pð3Þ. However, they do not appear in Eq. (14), so they are
not important for the goal of this Letter [76]. The important
quantities are J ð3Þ and Yð3Þ. The Jacobian is straightfor-
wardly obtained from Eq. (7) and can be written as

Jð3Þ ¼ Jhyp

Q
IσIþI−Q

I<JσIþJþσI−J−σIþJ−σI−Jþ
; ð16Þ

where in the factor

Jhyp ¼ σ1þ2−σ2þ3−σ3þ1− − σ1þ3−σ3þ2−σ2þ1− ð17Þ

the subscript refers to hyperelliptic, as we will explain.
We can now determine Yð3Þ using Eq. (14). The right-

hand side is obtained from the known BCJ representation
of the three-loop supergravity integrand, a landmark
application of the double copy [12,77]. The BCJ
numerators, listed in Table I of Ref. [12], are not as
simple as at two loops and depend linearly on the loop
momenta, e.g., [78]

Nð1þ; 1; 2; 2þ; 3; 3þ; 2−; 4; 3−; 1−Þ ¼ 1

3
s12ðs12 − s14Þ þ

2

3
l1 · ½k2ðs13 − s14Þ þ k3ðs13 − s12Þ þ k4ðs12 − s14Þ�:

Via Eq. (14), this property implies

2πiYð3Þ
S ¼ Y0 þ 2πilI

μY
μ
I ; ð18Þ

where the factors were chosen for later convenience. We
write our results already in uplifted form, i.e., for Yð3Þ

S

(which we claim is Yð3Þ
A ) instead of its degeneration Yð3Þ. To

determine Yð3Þ
S , we construct a well-motivated ansatz with

the required modular weight of −1, and fix the coefficients
of that ansatz by matching numerically the degeneration
limit to Eq. (14). This requires expanding in the degener-
ation parameters the Jacobi theta functions which define
various objects, a straightforward if computationally heavy
procedure.
The second term in Eq. (18) is the easiest: we can write

Yμ
I ¼

2

3
½αμ1ωIðz1ÞΔð3Þ

234 þ cycð1234Þ�; ð19Þ

with αμ1 ¼ kμ2ðk3 − k4Þ · k1 þ cycð234Þ. All the ingredients
have been introduced previously.
The object Y0 is more involved. It is convenient to

extricate the kinematic dependence by writing

Y0 ¼ s13s14Y12;34 þ cycð234Þ; ð20Þ

where Y12;34 is independent of the sij and is symmetric
when exchanging: z1 ↔ z2, z3 ↔ z4, fz1; z2g ↔ fz3; z4g.
Let us first state the result and then discuss it:

Y12;34 ¼
1

3
D12;34 −

1

15Ψ9

�
SðaÞ
12;34 −

1

8
SðbÞ
12;34

�
; ð21Þ

where

D12;34 ¼ ω3;4ðz1ÞΔð3Þ
234 þ ω3;4ðz2ÞΔð3Þ

134

þ ω1;2ðz3ÞΔð3Þ
412 þ ω1;2ðz4ÞΔð3Þ

312; ð22Þ

SðaÞ
12;34 ¼

X
δ

Ξ8½δ�½Sδðz1; z2ÞSδðz2; z3ÞSδðz3; z4ÞSδðz4; z1Þ

þ Sδðz2; z1ÞSδðz1; z3ÞSδðz3; z4ÞSδðz4; z2Þ�; ð23Þ

SðbÞ
12;34 ¼

X
δ

Ξ8½δ�Sδðz1; z2Þ2Sδðz3; z4Þ2: ð24Þ

Starting with the expression (22), the object ωi;jðzkÞ is
the normalized Abelian differential of the third kind, whose
degeneration limit is

ωi;jðσÞ ¼
σij

ðσ − σiÞðσ − σjÞ
dσ: ð25Þ

A consistency check is that the contribution (22), including
the kinematic coefficient, is completely fixed by Eq. (19).
This follows from the condition of “homology invariance”:
distinct choices of homology cycles of the Riemann surface
with respect to the marked points zi obey monodromy
relations dictated by the chiral splitting procedure [17], and
this connects the two contributions [79].
The contributions (23) and (24) are more elaborate,

but the structure is familiar from the RNS formalism
[4,16,81–86]. The sums are over the 36 even spin structures
at genus 3, labeled by δ, and the objects Sδðzi; zjÞ are the
Szegő kernels arising from the OPEs of worldsheet
fermions. The “chiral measure” Ξ8½δ�=Ψ9 is the crucial
ingredient. Here, Ψ9 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Q

δ θ½δ�ð0Þ
p

is a modular form
of weight 9 (note our nonstandard definition for the sign),
defined in terms of the even Jacobi theta functions.
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The general properties of the chiral measure were described
in Refs. [7,8] and the precise definition of Ξ8½δ� was given
in Ref. [9]. It is a sophisticated definition, so we will
not repeat it here; we found Ref. [87] very helpful. The
RNS derivation of this measure remains obscure; see
Appendix C of Ref. [88].
In the degeneration limit qII → 0, Ψ9 vanishes with

leading behavior Ψ9 ¼ ðQI q
2
IIÞψ9 þ � � �,

ψ9 ¼ 214Jhyp
ðQIσIþI−Þ3Q

I<JσIþJþσI−J−σIþJ−σI−Jþ
; ð26Þ

where Jhyp is given in Eq. (17). It is opportune to note that
only a codimension-1C subset of genus-3 Riemann surfaces
are hyperelliptic (whereas for g ≤ 2 all surfaces are), and
these are precisely identified by the vanishing of Ψ9 [89].
The condition Jhyp ¼ 0 identifies hyperelliptic surfaces in
the degeneration limit. The factors of Jhyp in Jð3Þ and in
1=Ψ9 cancel, such that J ð3ÞYð3Þ does not vanish in the
hyperelliptic sector.
The sums (23) and (24), which are modular forms of

weight 8, vanish in the degeneration limit in a manner
analogous to Ψ9, so that the ratio appearing in Eq. (21)
yields a finite result on the nodal sphere [91]. As con-
sistency checks on our implementation of the chiral
measure, we verified to order Oðq2IIÞ the following iden-
tities (respectively, from Refs. [9,92,93]):

X
δ

Ξ8½δ� ¼ 0;
X
δ

Ξ8½δ�Sδðz1; z2Þ2 ¼ 0;

X
δ

Ξ8½δ�Sδðz1; z2ÞSδðz2; z3ÞSδðz3; z1Þ ¼ CΨ9Δ
ð3Þ
123;

where we determined the previously unknown coefficient
C ¼ 15ð2πiÞ3. We could not find simplified expressions for
Eqs. (23) and (24); they are not proportional to Ψ9, i.e., not
proportional to Jhyp in the degeneration limit.
Comparing our result to the pure spinor computation of

Ref. [10], the latter was restricted to part of the correlator
and was not manifestly modular invariant, but appears to be
consistent at least with Eq. (19). The main goal of Ref. [10],
for which the partial computation was sufficient, was to
match a prediction from S duality [94] for the low-energy
amplitude, where the overall normalization is important.
We neglected the normalization here, and leave this aspect
and a proper comparison to Ref. [10] for future work.
Because of manifest supersymmetry, the splitting of spin
structures does not arise in the pure spinor approach
[5,6,95–98], so this approach may be helpful in simplifying
the sums seen above.
Discussion.—We have constructed a conjectured

expression for the three-loop four-point amplitude of
massless states in the type II superstring. The crucial
ingredient is the chiral half-integrand (18). As at two loops

[4,80], this object can also, in principle, be imported
into the Heterotic superstring, paired with a bosonic
counterpart.
In place of a first-principles worldsheet calculation, we

wrote down an ansatz inspired by insights from the RNS
and pure spinor formalisms, and then constrained that
ansatz using supergravity data mined with modern ampli-
tudes techniques. Our focus was on briefly delineating a
strategy, with very concrete results. Additional technical
details will be presented elsewhere. We hope that our
conjecture can guide rigorous derivations using established
worldsheet methods. Alternatively, in the spirit of the
amplitudes program, perhaps the proof can follow from
a set of basic constraints, such as unitarity.
Natural future directions are the study of the moduli-

space integration in the low-energy limit, building on
Refs. [10,99–102], which is newly motivated by beautiful
advances in the nonperturbative amplitudes bootstrap [103];
and the consideration of higher-point [7,9,112–118] ampli-
tudes. We expect our strategy to prove useful, not least
because there are BCJ numerators for N ¼ 8 supergravity
up to five loops [119–121], although the five-loop case
required a generalization of this representation. Also at this
loop order, the relation between supermoduli space and
ordinary moduli space becomes more intricate [15], calling
into question the structure of our starting point (1). The
interplay between field theory and string theory amplitudes
continues to present us with many challenges and fruitful
surprises.

We thank Eric D’Hoker, Carlos Mafra, Boris Pioline,
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comments. Y. G. is supported by the CUniverse research
promotion project “Toward World-class Fundamental
Physics” of ChulalongkornUniversity (Grant No. CUAASC).
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Note added.—Recently, it came to our attention that the
authors of Ref. [80] have independently constructed the
contribution to the half-integrand that is linear in the loop
momenta, Eq. (19).
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