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We show that long-distance quantum correlations probe short-distance physics. Two disjoint regions of
the latticized, massless scalar field vacuum are numerically demonstrated to become separable at distances
beyond the negativity sphere, which extends to infinity in the continuum limit. The size of this quantum
coherent volume is determined by the highest momentum mode supported in the identical regions, each of
diameter d. More generally, effective field theories (EFTs), describing a system up to a given momentum
scale Λ, are expected to share this feature—entanglement between regions of the vacuum depends upon the
UV completion beyond a separation proportional to Λ. Through calculations extended to three dimensions,
the magnitude of the negativity at which entanglement becomes sensitive to UV physics in an EFT (lattice
or otherwise) is conjectured to scale as ∼e−Λd, independent of the number of spatial dimensions. It is
concluded that two-region vacuum entanglement at increasing separations depends upon the structure of
the theory at increasing momentum scales. This phenomenon may be manifest in perturbative QCD
processes.
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Introduction.—Fundamental principles of effective field
theories (EFTs) leverage clear separations of energy scales
to identify relevant degrees of freedom and to build a
systematically improvable hierarchy of local operators. By
incorporating all relevant interactions consistent with the
symmetries of the theory, this hierarchy accurately captures
physics in regimes where scale ratios are small (see, for
example, Ref. [1]). While short-distance properties require
high-energy probes (e.g., the exploration of hadronic
structure through deep inelastic scattering) or quantum
fluctuations (e.g., flavor-changing neutral currents), long-
distance properties may be informed by infrared (IR)
observables at low energies. Thus, long-distance physics
tends to be insensitive to ultraviolet (UV) modifications
incorporated in an EFT through momentum truncations or
the “integrating out” of high-energy degrees of freedom. In
this Letter, it is shown that the distillable entanglement
between two disjoint regions of a massless scalar field is a
long-distance observable sensitive to the treatment of the
UV degrees of freedom. In particular, a finite momentum
truncation, limiting the effective information resolution of
the field, will cause distantly separated spatial regions of

the field to not only exhibit vanishing distillable entangle-
ment, but to become separable. As such, momentum-space
regularizations in the UV necessarily introduce an IR
truncation of the vacuum quantum correlations [2–9] at
large spatial distances, limiting the IR regime of EFT
validity from the perspective of quantum mechanical
inseparability.
Quantum field theory (QFT) has provided a natural

unifying perspective of particles as excitations or localized
packets of energy embedded in fundamental fields. The
many successes calculating entanglement in QFT benefit
from an assortment of powerful strategies through lattices,
replica tricks, holography, and the AdS=CFT correspon-
dence, e.g., [10–29]. Despite these heroic developments,
particular parameter regimes, e.g., the distillable entangle-
ment between regions distantly separated compared to their
size, have evaded analytic control, retaining the importance
of numerical explorations.
While the QFT description has been remarkably suc-

cessful experimentally, conclusions about the underlying
structure of nature are limited by the possibility that this
success may result from the fact that any relativistic
quantum system with Lorentz symmetry and cluster
decomposition at long distances will behave as a quantum
field at low energies [1,30]. In fact, considerations in large
volumes, inspired by entropy being nonextensive in black
hole thermodynamics [31–35], has led to a conjecture that
the QFT description egregiously overcounts degrees of
freedom [36,37]. This perspective has inspired the proposal
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of a relationship between UVand IR truncations in the valid
regime of an EFT—limiting the volume to avoid the
extensively scaling EFT entropy from exceeding that of
a potential black hole [38,39]. Furthermore, mixing
between UVand IR physics has been connected to proper-
ties of nonlocality and noncommutative or gravitational
generalizations of quantum fields, e.g., [40–46].
This Letter demonstrates a connection between UV and

IR physics with an observation that the entanglement in the
vacuum of a simple quantum field, the massless non-
interacting scalar field, is sensitive to high-momentum
modes at large spatial separations. This extends to mixed
states the speculation of Ref. [13], informed by the
modewise spatial entanglement structure of harmonic chain
bipartite pure states, on the role of short-wavelength modes
in the persistence of vacuum entanglement. Explicitly, we
have extended numerical lattice computations of the
logarithmic negativity between pixelated spherical regions
to three dimensions, allowing identification of a dimension-
independent scaling of the smallest supported negativity.
Such extensions to higher dimension are nontrivial due to
cancellations between polynomial- and logarithmic-scaling
lattice correlation functions generating an exponentially
small entanglement, manifesting as a sign problem in the
lattice basis. In the process of exploring the entanglement
structure of these systems, we have provided numerical
evidence, through a separability flow [47], that regions
separated beyond the negativity sphere are also separable,
precluding the presence of entanglement with positive
partial transpose (PPT) in the massless lattice scalar field.
The array of calculations presented in this Letter serve
as an explicit example of a more general relationship—
long-distance quantum correlations probe short-distance
physics—broadly affecting the regime of validity for
quantum observables in EFTs.
Vacuum entanglement sphere.—As a necessary condi-

tion for separability, the negativity [48–51] quantifies the
violation of partial transposition—locally negating the
momentum in one region for continuous variables [50]
—from producing a physical density matrix (non-negative
eigenvalues). If a quantum state is separable across a
bipartition, partial transposition is a map that preserves
the positivity of the density matrix (PPT). Violations to this
positivity herald inseparability and thus the presence of
entanglement for both mixed and pure quantum states.
Consider the matrix of two-point correlation functions,

Gi;j ¼ hϕiϕji; Hi;j ¼ hπiπji; ð1Þ

where fi; jg ∈ A ∪ B for two local field regions A and B.
For ns sites in each region, G and H are ð2ns × 2nsÞ-
dimensional matrices with matrix elements controlled by n,
the vector separating sites fi; jg. In the thermodynamic
limit, the integral representation of the modified Bessel

function of the first kind IνðzÞ allows a succinct calculation
of the necessary correlators as

GðnÞ ¼ 1
ffiffiffi
π

p
Z

∞

0

dx e−ðm2þ2DÞx2Y

i

Inið2x2Þ ð2Þ

and

HðnÞ ¼ ðm2 þ 2DÞGðnÞ −
X

fn0g
Gðn0Þ

→ m2GðnÞ −∇2GðnÞ; ð3Þ

where fn0g is the set of 2D integer vectors shifted by�1 in
each direction of the D-dimensional lattice (see Sec. S1 of
the Supplemental Material [52] for further details). The
logarithmic negativity is additive

N ¼ −
X2ns

i¼1

log2 minðνΓi ; 1Þ; ð4Þ

where νΓi are the symplectic eigenvalues of the partially
transposed covariance matrix, which may be calculated as
the eigenvalues of 2

ffiffiffiffiffiffiffiffiffiffi
GHΓ

p
[13,17,55]. The superscript Γ

indicates partial transposition of the conjugate momentum
two-point functions and may be implemented, in practice,
by negating the matrix element of Hi;j if the sites at
positions fi; jg are in different regions fA;Bg of the
field [50].
Numerical evaluations of the negativity between disjoint

regions of the massless scalar field have shown that the
negativity in the continuum limit with r̃ ≫ d decays
exponentially as N ∼ e−βðr̃=dÞ, with r̃ the separation
between the field regions and d the diameter of each
region. Extractions of the negativity decay constant yield
β1D ¼ 2.82ð3Þ ∼ 2

ffiffiffi
2

p
[17], β2D ¼ 5.29ð4Þ [55], and we

currently estimate β3D ¼ 7.6ð1Þ. Section S3 of the
Supplemental Material [52] provides further discussion
of this three-dimensional calculation. As proposed in
Ref. [55], this progression with dimensionality is consistent
with βD ∼D, the negativity becoming increasingly local-
ized in higher dimensions. At a finite lattice spacing, where
regions experience finite pixelation, there exists a non-
perturbative death of negativity at large separation, r̃=N
[12,13,16,17,20,23–26,28,29]. The scaling of this negativ-
ity sphere with the region pixelation was previously found
to be r̃=N=d ∼ ðγ=aÞd, with γ1D ¼ 1.114ð2Þ, γ2D ¼ 0.60ð2Þ
[55], and we currently estimate γ3D ¼ 0.43ð2Þ. With a
dependence of γD ∼D−1, a more stringent negativity
sphere is observed with increasing spatial dimension.
The negativity is not generally a necessary and sufficient

condition for determining the separability of Gaussian
states. In particular, there is a form of nondistillable
entanglement, bound entanglement [56], that may forbid
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separability while avoiding detection by the negativity
criterion [57–62]. By employing the necessary and suffi-
cient Gaussian state separability criterion of Ref. [47],
which acts as a flow maintaining the separability (or
nonseparability) of covariance matrices, while systemati-
cally simplifying the entanglement structure, it is found that
regions of the scalar field outside the negativity sphere are
separable. The negativity sphere is thus promoted to an
entanglement sphere and describes a finite-sized quantum
mechanically coherent volume between regions of the field
(see Sec. S2 of the Supplemental Material [52] for further
discussion). As such, any observable calculated outside the
entanglement sphere will be characterized by factorizable
classical probability distributions. For example, the mutual
information, which persists outside this entanglement
sphere, is there quantifying correlations that are entirely
classical.
To the extent that spin models generically are known to

exhibit vanishing two-site entanglement beyond a finite site
separation [63], the presence of the entanglement sphere is
not without precedence. One intriguing implication, how-
ever, is that the long-distance entanglement known to be
present in the continuum quantum field is necessarily
captured through the presence of genuine high-body

entanglement and a Borromean structure on the lattice—
regions entangled at long distances may contain vanishing
negativity for all smaller subsets of sites spanning the two
regions. This reliance on genuine high-body entanglement
at large distances is intuitively consistent with the complex-
ity of low-pixelation regions being insufficient to support
long-distance entanglement.
While not exact and currently limited in numerical

precision due to the presence of a sign problem exacerbated
in higher dimensions, the calculated dependence of the
negativity decay and size of the entanglement sphere
indicate that the emergence of separability at large dis-
tances is set by the UV truncation of the theory. In
particular, at the surface of the entanglement sphere, the
minimum value of the negativity supported by the field

before separability occurs is N=N ∼ e
−βDðr̃=N=dÞ ∼ e−βDγDd=a.

Combining the calculations above to inform the product
provides β1Dγ1D ¼ 3.14ð3Þ, β2Dγ2D ¼ 3.2ð1Þ, and
β3Dγ3D ¼ 3.2ð1Þ. The stability of this product with spatial
dimension leads us to conjecture that

N=N ∼ e−βDγDd=a ∼ e−
πd
a ∼ e−Λd; ð5Þ

where Λ is the scale of the UV truncation, independent of
the number of spatial dimensions. For disjoint regions of
the vacuum, the threshold negativity below which the field
becomes separable is determined by the diameter of each
region and the highest allowed momentum mode. In two
dimensions, where πd acts as the circumference of the
circular field regions, the scaling of the negativity at the
entanglement sphere is coincidentally consistent with an
area dependence. Though the negativity radius has
been conventionally interpreted as a lattice artifact of no
consequence to continuum physics, this conjecture indi-
cates that a truncation in the distillable entanglement will be
present at long distances in continuum theories with finite
UV truncations.
Entanglement sphere and region momentum.—A tan-

gible understanding of the UV-IR connection found in the
distillable entanglement at large distances can be elucidated

FIG. 1. Precision of the mode-restricted logarithmic negativity
as a function of spatial separation in the one-dimensional
massless scalar field with region diameter d ¼ 32. With increas-
ing separation, the discrepancy vanishes and the entirety of the
negativity is captured by the lowest few eigenmodes of GHΓ,
indicated by the shaded background.

FIG. 2. Negativity ground-state wave functions of GHΓ in the massless scalar field in one (top) and two (bottom) spatial dimensions.
The 1D wave functions are provided across the two regions separated at indicated distances r̃=d with d ¼ ns ¼ 32 (r̃=N=d ¼ 34.34). The

2D wave functions are shown for one region (negative spatial parity as in 1D) with d ¼ 64 for a variety of r̃=d separations within the
entanglement sphere, r̃=N=d ∼ 18.

PHYSICAL REVIEW LETTERS 127, 211602 (2021)

211602-3



through examination of the dominant GHΓ right eigenvec-
tor contributing to the logarithmic negativity of Eq. (4).
While many symplectic eigenvalues contribute to the
negativity at small separations, this number diminishes
as the separation increases, as shown in Fig. 1. As the
separation approaches the entanglement sphere, the neg-
ativity is characterized by the single ground state of GHΓ.
In Ref. [55], we examined the negativity ground-state wave
function and found it to evolve to high-momentum com-
ponents with increasing separation. The structure of the
GHΓ ground state within the field regions at increasing
separation is shown in Fig. 2 for one and two spatial
dimensions. In 1D, the ground state is demonstrated to have
negative parity between the two regions, allowing the
depiction of a single region in 2D for visual clarity. At
small separations, the negativity ground state is composed
of low-frequency contributions. As the separation grows to
multiple region diameters, fluctuations sequentially emerge
from the boundary and propagate toward the central peak.
These fluctuations comprise high-frequency contributions
and stress the pixelation of the region. In this long-distance
regime, the region negativity ground-state wave function
tends to become rotationally symmetric with a boundary
condition vanishing at the edges, allowing the characteri-
zation of region entanglement to become effectively one-
dimensional.
The frequency space representations of the 1D region

wave functions, ψ̃ðkÞ ¼ ð1= ffiffiffiffiffi
ns

p ÞPx ψðxÞeikx, are shown
in Fig. 3 for a Brillouin zone k ∈ ð2π=nsÞZns . At small
separations, support in momentum space is localized to the
regimes of small region momentum at the 0 and 2π
boundaries of the Brillouin zone. As the separation between
regions increases, the momentum content within the region
is driven to the high-momentum boundary of k ¼ π.
Outside the entanglement sphere (gray region), the momen-
tum-space wave function, now separable, locally saturates
the UV truncation and ceases to evolve.
Implications for effective field theories.—Effective field

theories provide a powerful technique for computing low-
energy processes in systems with hierarchies in their energy

spectrum. The lore is that the predictions of an EFT (valid
below some momentum scale Λ) can systematically repro-
duce those of the full theory (UV complete) when the IR
degrees of freedom and symmetries match. When the full
theory is known, local counterterms in the EFT are
determined by matching matrix elements computed in both
theories. The results of lattice calculations of the negativity
discussed in the previous sections indicate that the behav-
iors of distillable entanglement and separability at long
distances of a massless noninteracting scalar field are
determined by high-momentum modes of the field, with
the radius of the entanglement sphere determined by the
UV cutoff. In particular, the exponentially small negativity
between regions of vacuum is lost beyond some dimen-
sionless separation determined by the maximum momen-
tummode allowed by the lattice spacing π=a. However, this
feature is generic for any low-energy EFT valid up to some
momentum scale Λ. The higher the EFT cutoff, the larger
the separation between regions of the EFT vacuum that
remain entangled.
The lattice and other abrupt cutoffs in momentum space

lead to a well-defined distance, beyond which regions of
the vacuum state are separable. Other regulators can be
used to render EFT computations finite by implementing a
form factor in momentum or position space, e.g., Pauli-
Villars (PV) or dimensional regularization (DR). These
provide smooth modifications of perturbative Feynman
diagrams, which furnish finite loop diagrams, along with
associated counterterms that depend upon the PV mass or
the DR scale μ. As calculations that can be compared with
experiment are independent of the choice of regulator and
renormalization scheme, it is the UV completion of the
theory that will determine the behavior (vanishing or
otherwise) of negativity at long distances (see Sec. S4 of
the Supplemental Material [52]). In this way, precision
studies of the large-scale entanglement in the quantum
vacuum can probe short-distance physics. However, the
precise translation of such entanglement studies into
constraints on, for instance, beyond the standard model
physics, remains to be explored.
Rather than an IR constraint on the spatial volume

scaling with the inverse UV truncation L ∼ Λ−3 as asso-
ciated with fundamental bounds on black hole entropy
[38,39], this Letter identifies a linearly scaling IR trunca-
tion, L ∼ Λ, necessary to accurately capture the insepa-
rability of the field ground state. While the core principles
of these cutoffs lie in the saturation of spatially localized
information, their distinct scaling suggests a stringency
crossover—the formation of black holes being the relevant
constraint for UV truncations above the crossover and the
separability criterion being the relevant constraint for
UV truncations below. To gain some insight into the
potential impacts, we provide mass and length scales for
two different scenarios. Using, in three dimensions,
r̃=N ∼ d2=ð3aÞ → Λd2=ð3πÞ, and setting Λ ¼ MPl to be

FIG. 3. Momentum-space negativity ground-state wave func-
tions of GHΓ for the 1D massless scalar field isolated to a
single region of ns ¼ 32 as a function of r̃=d region separation.
The gray area at large separation lies outside the negativity
radius, r̃=N=d ¼ 34.34.
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the Planck mass, we find that regions of vacuum of a
massless noninteracting scalar field approximately the size
of the proton are separable at distances beyond ∼6 km, and
that regions approximately the size of an atom are separable
beyond ∼1011 km. If the cutoff of the EFT is instead
Λ ∼ 1 TeV, then proton-sized regions are separable beyond
∼500 fm and atomic-sized regions beyond ∼5 mm.
Evaluating the potential for possible signatures from these
distance scales in experiment, one takes pause from the
values of negativity at the point of separability, which are
∼10−1800 and ∼10−2×108 , respectively, for a TeV scale
cutoff. The magnitude of this effect falls exponentially
with separation, imposing what are likely to be severe
limits on the constraints that can be determined by
experiment.
Discussion.—By considering massless, noninteracting

scalar field theory, the onset of separability between regions
of a quantum vacuum in discretized systems has been
shown to result from a connection between long- and short-
distance physics. In particular, the maximum distance
between regions of the vacuum that are entangled is directly
related to the high-momentum modes of the field. For a
lattice field theory, this distance is set by the inverse lattice
spacing. While analytic results and a deep understanding of
the underlying mechanism(s) remain to be uncovered,
numerical explorations indicate that the onset of separabil-
ity is connected to a saturation of information contained in
regions of the pixelated vacuum. This naturally suggests
that such effects are present in the vacuum of any quantum
field theory that has a UV cutoff, as in the case of any EFT.
This violates EFT lore, which assumes that IR physics in a
complete theory can be systematically recovered in a low-
energy EFT. The present results show, however, that a UV
cutoff in an EFT leads to separable regions of the vacuum
beyond an entanglement sphere. Further lattice calculations
are required to reduce uncertainties associated with the
negativity parameters and to pursue calculations in higher
spatial dimensions to better define their dimensional
scaling.
For most systems, the discrepancies in measures of

entanglement are very small, with estimates suggesting
they will be challenging to explore experimentally.
However, recent advances in the control of quantum
systems capable of representing bosonic fields, e.g., [64–
67] and the potential to leverage quantum computing
technologies as quantum detectors of background field
entanglement properties yields numerous directions for
potential experimental connection. Beyond the vacuum,
experimental signatures of this UV-IR connection, and its
implications for low-energy EFTs, may be more profitably
sought in excited states of the field theory, in particular, in
systems of two or more wave packets, themselves amenable
to detection and measurement. For example, in the EFT
description of S-channel scattering of nuclei, entanglement

power has been proposed to impact the relevant hierarchy
of local operators [46,68].
While fundamental massless scalar fields do not exist in

nature, fields with massless or light excitations and modest
or weak interaction strengths, e.g., electromagnetism,
perturbative QCD, nuclear EFTs around the chiral limit
[69,70], gravity, axions, Bose-Einstein condensates (e.g.,
Refs. [71,72]), and neutrinos, may exhibit a modified
vacuum entanglement structure at long distances due to
UV physics. High-energy processes in the nucleon or
nucleus, probing distances below the confinement scale
with a spatial momentum transfer Q and UV cutoff Λ,
may be sensitive [73–77] to such modifications for
r̃=N ≳ Λ=ð3πjQj2Þ, resulting in a negativity deviation

∼ expð−Λ=jQjÞ. Similar signatures are also expected in
massive fields, where the long-distance negativity decay
becomes Gaussian [17]. It would appear that the phenom-
enology of entanglement in the quantum vacuum at long
distances may depend on what lies beyond the standard
model describing electroweak and strong interactions.
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