
Surface Tension and the Strain-Dependent Topography of Soft Solids

Nicolas Bain ,1,* Anand Jagota ,2,† Katrina Smith-Mannschott ,1 Stefanie Heyden,1

Robert W. Style,1 and Eric R. Dufresne 1,‡
1Department of Materials, ETH Zürich, 8093 Zürich, Switzerland

2Departments of Bioengineering, and of Chemical and Biomolecular Engineering, Lehigh University,
Bethlehem, Pennsylvania 18017, USA

(Received 28 April 2021; revised 23 August 2021; accepted 30 September 2021; published 8 November 2021)

When stretched in one direction, most solids shrink in the transverse directions. In soft silicone gels,
however, we observe that small-scale topographical features grow upon stretching. A quantitative analysis
of the topography shows that this counterintuitive response is nearly linear, allowing us to tackle it through
a small-strain analysis. We find that the surprising increase of small-scale topography with stretch is due to
a delicate interplay of the bulk and surface responses to strain. Specifically, we find that surface tension
changes as the material is deformed. This response is expected on general grounds for solid materials, but
challenges the standard description of gel and elastomer surfaces.
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Surface tension is the driving force of a plethora of small-
scale phenomena. In liquids, it is responsible for the spherical
shape of small drops and for the shape of menisci [1]. In soft
solids, surface tension rounds off sharp features [2–5] and
more generally governs mechanical responses at small scales
[6–14]. Despite the growing interest in soft solids for
applications in microsystems and robotics [15–17], the
essential nature of their surface properties remains elusive.
Generally, soft solids come in two forms, elastomers and

gels. Elastomers are made by lightly cross-linking a
polymeric liquid. Gels are cross-linked networks swollen
with a liquid solvent. In both cases, it is generally assumed
that molecules can seamlessly rearrange at the surface,
resulting in liquidlike surface properties. Specifically, it is
expected that the surface tension is independent of the
applied strain. Recently, this assumption has been tested
with wetting experiments. Macroscopic experiments [18]
found no evidence for strain-dependent surface energy in
elastomers. However, microscopic experiments with gels
[19,20] found a marked increase of surface tension with
applied strain, a characteristic feature of solid surfaces
[21–23]. While recent theoretical works have validated the
microscopic method [24,25], others have called it into
question because of the singular nature of the three-phase
contact line [26]. Therefore, there is an urgent need for
measurements of the strain dependence of surface tension
in soft solids that do not rely on wetting phenomena.
Here, we examine the strain dependence of surface

tension for a family of silicone solids, by quantifying their
surface topography as a function of applied stretch. For the
softest silicone gels, we observe a counterintuitive increase
of the amplitude of surface topography. A small-strain
analysis of this increase shows that it can only be
quantitatively captured by a balance of strain-stiffening
bulk properties and solidlike surface tension.

We cure polydimethylsiloxane (PDMS) gels inside
dog-bone shaped poly(methyl methacrylate) molds, so that
the central section of the dog bone has a 3 × 2 mm2

cross section and length of 20 mm, Fig. 1(a). A periodic
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FIG. 1. Experimental overview. (a) Schematic of the patterned
dog-bone samples. (b) and (c) Averaged unstretched surface
profile for the stiffest gel, Sample 1, and for the softest gel,
Sample 7, respectively. The white line in (c) corresponds to the
profile prediction from the linear flattening model, Eq. (1),
applied to all Fourier modes of the initial profile (b), with shear
modulus μ0 ¼ 1.0 kPa and surface tension ϒ0 ¼ 25.3 mN=m,
Table I. It agrees perfectly with the experimental profile and has
been shifted down to be visible. In (d), the stretch λ and the strain
ϵ are calculated from the change of the pattern wavelength. (e),(f)
Averaged surface profile for the stiffest and for the softest gel,
respectively, stretched by 30%.
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rectangular grating of wavelength 50 μm and amplitude
1.52� 0.01 μm is applied to the surface during curing, to
give the profile shown in Fig. 1(b). The grating is made of
low-surface-tension chemically inert fluoroplastic (3M
DyneonTM Fluoroplastic Granules THV 500GZ) by melt-
ing fluoroplastic beads at 200 °C for 8 h onto a stiff PDMS
grating [27]. Samples are cured against the fluoroplastic
mold at 40 °C for over a week to ensure full cross-linking
after detachment from the grating; the patterned surface on
the PDMS sample relaxes to a new shape, in which surface
stresses and bulk elastic stresses balance [2,3,28], Fig. 1(c).
We then stretch the dog-bone shaped sample, Fig. 1(d), and
measure the surface topography at each stretch state with a
3D optical profiler (S-neox, Sensoscan, 40× objective).
The surface topography relaxes completely within a few
minutes. We image only the middle of the sample where we
expect uniform stretching conditions. We conduct the
experiment on seven silicone samples with different stiff-
nesses, each measured independently with an indentation
test. For each sample, all measurements are at roughly the
same location. We name them “Sample 1” to “Sample 7” in
order of decreasing stiffness (see Table I for properties and
Supplement Sec. 1 [29] for experimental details).
To develop a qualitative understanding of the results, we

first contrast the surface profiles of the stiffest and softest
samples, Fig. 1. Surface profiles for the other gels are
provided in Supplement Sec. 1.3 [29]. Each profile is an
average of one topography measurement along the trans-
verse direction y. Unstretched, the stiffer sample nicely
reproduces the topography of the initial mold, Fig. 1(b).
This is the behavior we expect from a stiff solid, which is
stiff enough to resist significant deformation by surface
tension. Conversely, the topography of the softer gel
strongly deviates from the one of the initial mold. The
peak-to-peak amplitude is halved, and the shape is signifi-
cantly rounded-off, Fig. 1(c).
To explain this behavior, we begin with a force balance at

the solid-air interface of an unstretched solid. Akin to the
experiments, we consider a solid with an undulating sur-
face, periodic in the x direction and invariant along
the y direction, Fig. 1. For simplicity we assume the initial
surface profile to be sinusoidal, h0 cos qx, where q ¼ 2π=w

is the pattern’s wave vector and h0 the surface amplitude
when the sample is attached to the mold. When released
from the mold, the surface deforms into its new equilibrium
profile hf cos qx. We estimate the final amplitude hf by
balancing the vertical stresses on both sides of the solid-air
interface. On the bulk side, the normal displacement of
the surface v ¼ ðhf − h0Þ cos qx creates a normal stress
response σz. For an isotropic incompressible linear elastic
solid, this stress is proportional to the shear modulus μ0:
σz ¼ 2μ0jqjv [33]. On the other hand, surface tension ϒ0

creates a jump in the stresses across the undulating inter-
face, σϒ, proportional to the local curvature of the final
profile: σϒ ¼ −q2ϒ0hf cos qx [6]. The solid is at mechani-
cal equilibrium when the jump in stresses caused by surface
tension is equal to the stress response from the bulk
deformation σϒ ¼ σz. From this stress balance we express
the final amplitude as a function of the initial one,

hf ¼
h0

1þ jqj ϒ0

2μ0

; ð1Þ

which we call the flattening equation [2,3,28]. Assuming
linear response, this process can be applied to any Fourier
mode of a nonsinusoidal surface. Simply stated, surface
tension acts as a low-pass filter with a cut-off length equal
to the elastocapillary length ϒ0=2μ0.
We use this result to determine the surface tension of the

soft gels (3–7) by inverting the flattening equation Eq. (1)
for the first Fourier mode of the unstretched samples. For
all the soft gels we obtain nearly the same unstretched
surface tension, ϒ0 ¼ 25.7� 2.1 mN=m, Table I. This
value is close to γ ¼ 21� 1 mN=m, the surface tension
of uncross-linked PDMS [34]. To further validate this
model, we apply the flattening equation to each of the
Fourier modes of the mold for the softest sample, and
nicely recover the experimental profile, as shown by the
light curve in Fig. 1(c).
We now return to the qualitative comparison of the

softest and stiffest samples, and consider the effect of
stretching on their surface profiles, Figs. 1(e) and 1(f). With
stretch, the wavelength of both surface profiles increases.

TABLE I. Summary table for the properties of measured when unstretched. We measure the shear modulus μ0 from an independent
indentation test, and the first Fourier mode h̃1 from the surface topography. We measure the surface tensionϒ0 from the linear flattening
theory Eq. (1), using h0 ¼ 0.97� 0.01 μm for reference, measured from the initial molds.

Name Industrial supplier Shear modulus μ0 First mode h̃1 Surface tension ϒ0

Sample 1 Sylgard184, Dow Corning Toray 500� 10 kPa 0.96� :01 μm � � �
Sample 2 Sylgard184, Dow Corning Toray 500� 10 kPa 0.97� :01 μm � � �
Sample 3 DMS-V31/HMS-301 Gelest 3.9� 0.1 kPa 0.68� :01 μm 26.3� 0.7 mN=m
Sample 4 CY52-276, Dow Corning Toray 2.0� 0.2 kPa 0.56� :01 μm 27.2� 1.2 mN=m
Sample 5 CY52-276, Dow Corning Toray 1.9� 0.1 kPa 0.52� :01 μm 21.8� 1.1 mN=m
Sample 6 CY52-276, Dow Corning Toray 1.9� 0.1 kPa 0.50� :01 μm 27.9� 0.4 mN=m
Sample 7 DMS-V31/HMS-301 Gelest 1.0� 0.1 kPa 0.38� :01 μm 25.3� 1.9 mN=m
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The peak-to-peak amplitude of the stiffest gel goes down,
as expected due to its near incompressibility, Fig. 1(e).
Surprisingly, the peak-to-peak amplitude of the softest gel
increases, even though it is also nearly incompressible,
Fig. 1(f).
To quantify the strain-dependent topography of stiff and

soft gels, we Fourier decompose the surface profile at each
stretched state. We measure the strain, ϵ, from the differ-
ence between the wavelength of the periodic grating at each
stretch state and the initial wavelength of 50 μm, Fig. 1.
The amplitude of the first Fourier mode for all seven gels,
h̃1, are shown in Fig. 2(a). Each measurement is repeated

six times to suppress contributions from environmental
noise. While the amplitude of the first mode decreases
monotonically with stretch for the MPa-scale elastomers,
the amplitude of the first mode exhibits the unexpected
increase with applied stretch for all the kPa-scale gels.
The response of the first Fourier mode amplitude to

stretch is surprisingly linear, especially for the softer
samples, Fig. 2(a). Therefore, we quantify the stretch
response with the initial slope h01 ¼ dh1=dϵ from a linear
fit at small strains, up to 15% for the kPa samples and up to
5% for the MPa samples, Fig. 2(b). The slope decreases
from a positive value for the softest samples to a negative
value for the stiffest one, crossing zero at a shear modulus
around 5 kPa.
To elucidate these counterintuitive observations, we

investigate the competition of surface tension and bulk
elasticity during stretching. If we assume the flattening
process to be linear, we can apply it as a perturbation to a
stretched solid initially devoid of surface tension. Within
this assumption, stretching the solid accounts to changing
Eq. (1) in four ways. First, the initial surface amplitude h0 is
replaced by its stretched counterpart hϵðϵÞ. Then the period
of the surface profile lengthens with strain, and the
associated wave vector becomes q=ð1þ ϵÞ. If solidlike,
the value of the surface tension will also be strain
dependent ϒϵðϵÞ. Finally, the bulk elastic properties are
also subject to change, responding to a sinusoidal vertical
displacement with a strain-dependent effective shear modu-
lus μϵðϵÞ. In short, all the terms of the flattening equation
Eq. (1) become strain dependent,

hfðϵÞ ¼
hϵ

1þ j q
ð1þϵÞ j ϒϵ

2μϵ

: ð2Þ

We now conduct a linear expansion around small strains,
ϵ ≪ 1. At first order, the final amplitude is linear in strain
hfðϵÞ ¼ hfð0Þ þ h0fϵþOðϵ2Þ, with unstrained amplitude,
hfð0Þ, and initial slope, h0f, measured in Fig. 2(b).
Linearizing each term of the strain-dependent flattening
equation (2), hϵ¼h0ð1−αϵÞþOðϵ2Þ, μϵ ¼ μ0ð1þ bϵÞ þ
Oðϵ2Þ andϒϵ ¼ ϒ0ð1þ sϵÞ þOðϵ2Þ, we find their respec-
tive contributions to the initial slope

h0f ¼ h0
ðjqj ϒ0

2μ0
½1 − αþ b − s� − αÞ
ð1þ jqj ϒ0

2μ0
Þ2 : ð3Þ

In the limit where the bulk and surface properties are strain
independent (i.e., s ¼ b ¼ 0), we see that positive initial
slopes are only possible when surface tension is sufficient
to overwhelm the impact of the bulk-term, α. The parameter
α characterizes the strain-dependent amplitude of a pat-
terned solid in the absence of surface tension. In the
geometry of the present experiment, imposing a longi-
tudinal strain to a slender beam, incompressibility requires

(a)

(b)

FIG. 2. Quantification of the strain-dependent topography.
(a) Strain-dependent amplitude of the first Fourier mode ampli-
tude, h1=h0, for all samples as a function of strain, ϵ. Circles:
experimental data. Error bars are smaller than marker size. Solid
colored lines: linear fits of the data at small strains, for up to 15%
for samples (3–7) and up to 5% for samples (1–2). Black line:
prediction from incremental elasticity (see Supplement Sec. 2.4
[29]). (b) Initial slope, h01=h0, of the strain-dependent first Fourier
mode, as measured in (a), for all samples as a function of shear
modulus, μ0. Error bars correspond to the 95% confidence
interval of the linear fit. Gray line: prediction of the initial slope
from linear expansion Eq. (3) no surface elasticity s ¼ 0. Black
line: prediction of the initial slope from linear expansion Eq. (3)
with surface elasticity s ¼ 0.3. These two predictions were made
for α ¼ 1=2 and b ¼ 5=4.
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α ¼ 1=2, which is in good agreement with the initial slope
of the MPa samples, Fig. 2(b). When the materials’
properties depend on the strain (i.e., s, b ≠ 0), contributions
from the surface and bulk have opposing effects: while the
bulk strain-stiffening ratio b increases the slope, surface
elasticity ratio s decreases it.
To isolate the effect of surface elasticity, we must first

evaluate the strain-dependent response of the bulk. To do
so, we need to identify the appropriate nonlinear constit-
utive relation for our materials. As shown in the
Supplement Sec. 1.2 [29], our silicone based materials
are well modeled as incompressible Neo-Hookean solids
over the current range of strains. In our experimental
geometry, incremental elasticity [35] gives a small-strain
stiffening ratio of b ¼ 5=4, as derived in Supplement Sec. 2
[29]. The validity of the incremental elasticity model is
verified numerically in Supplement Sec. 3 [29]. This result
accurately predicts the strain-dependent topography of the
MPa samples [Fig. 2(a)].
With this, we can now investigate the role of surface

elasticity. We plot predicted values of h0f=h0 versus shear
modulus in Fig. 2(b). While liquidlike surface tension
systematically overestimates the initial slope (gray curve,
s ¼ 0), we find better agreement between theory and
experiment for s ¼ 0.3. This systematic overshoot is very
explicit in Supplement Sec. 3, where we compare the
experimental strain-dependent topography with the ana-
lytical and numerical models. Physically, we can interpret
nonzero s values as surface elasticity, with an elastic
constant Ms ¼ sϒ0. We can independently determine the
value of Ms from the measured values of h0f in each
experiment, using Eq. (3). The resulting values of Ms are
plotted for all the soft samples in Fig. 3. Similar to [19,20],
we find a nonzero surface modulus for all the soft gels.
However, we find a weaker effect of surface elasticity. In
this experiment, we find Ms ≈ 10 mN=m, with significant
variability across nominally identical samples. According
to the wetting measurements of [20,25], we would expect
Ms ¼ 52 mN=m, see Supplement Sec. 4 [29]. We show in
Supplement Sec. 1.4 that this result is independent of the
pattern wavelength.

We have found that the strain-dependent topography of
soft silicone gels is consistent with nonzero surface elastic
constants. We observe notable variability in the surface
elastic moduli of nominally identical samples. The factors
underlying this sample-to-sample variation demand further
investigation. Qualitatively, we reach the same conclusions
as previous wetting experiments [19,20]. Quantitatively, we
find significantly smaller surface elastic moduli. This
discrepancy could arise from nonlinear stress focusing at
sharp wetting ridges [24,26], or differences in surface
preparation [36]. While both experiments couple surface
elasticity and bulk nonlinearities, the singular behavior of a
three-phase contact line complicates their decoupling
[24,26]. The present experiment avoids this singularity,
allowing us to develop a simple framework to disentangle
bulk and surface effects. More generally, our experiments
suggest that the surface mechanical properties of swollen
polymer networks can have significant contributions from
both their solvent and network. They raise basic questions
in physics of polymer networks that have received limited
theoretical attention. How is the structure of the polymer
network different at the surface than in the bulk? What sets
the magnitude of surface elastic moduli? Can they be tuned
independently of bulk elastic moduli? Can we engineer
surface elastic constants by curing in different environ-
ments, or through the addition of surface-active species, as
done with liquid-liquid interfaces [37–39]? We hope that
the answers to these questions will provide fresh insights
into the physics of soft solids, and enable future applica-
tions in wetting and adhesion.
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