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Inelastic scattering experiments are key methods for mapping the full dispersion of fundamental
excitations of solids in the ground as well as nonequilibrium states. A quantitative analysis of inelastic
scattering in terms of phonon excitations requires identifying the role of multiphonon processes. Here,
we develop an efficient first-principles methodology for calculating the all-phonon quantum mechanical
structure factor of solids. We demonstrate our method by obtaining excellent agreement between
measurements and calculations of the diffuse scattering patterns of black phosphorus, showing that
multiphonon processes play a substantial role. The present approach constitutes a step towards the
interpretation of static and time-resolved electron, x-ray, and neutron inelastic scattering data.
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Inelastic scattering experiments in solids have a long
history and have been the subject of intensive research
for almost a century. Originally employed to understand
atomic vibrations [1], this type of experiment reveals
the full dispersion relations of fundamental collective
excitations like phonons [2–10], plasmons [11], and spins
[12,13], as well as of localized excitations like polarons
[14,15], or excitons [16]. Since the development of time-
resolved diffraction [17,18], standard techniques of inelas-
tic scattering have been gradually taken to the ultrafast time
domain [19–33]. In this regime, new scattering signatures
emerge, reflecting intriguing nonequilibrium physics that
arise from many-body interactions [34]. This wealth of
information is obtained by analyzing the inelastic contri-
bution to the total scattering signal. However, scattering
patterns are usually dominated by inelastic interactions
with phonons, for which a full description, beyond the
standard one-phonon structure factor [35], is critical to
(i) improve the analysis of phonon excitations and
(ii) extract other excitation signals with small cross section.
The quantum theory describing inelastic scattering from

phonons, also known as thermal diffuse scattering, has been
developed by Laval [36], Born [1], and James [37] (LBJ)
and is included in several solid-state physics textbooks
[35,38–40]. The appealing characteristic of the LBJ theory
is that one-phonon and multiphonon processes are treated
on the same footing, allowing for the evaluation of the all-
phonon scattering intensity using a single compact

expression. Albeit this theory and the principle of multi-
phonon scattering [cf. Fig. 1(a)] are well established for
decades [41–46], current ab initio calculations of diffuse
diffraction [13,29,33,47–51] only account for the one-
phonon structure factor. This approach becomes problem-
atic whenever scattering wave vectors in high order
Brillouin zones and/or high temperatures are of interest.
In such cases, multiphonon effects hinder an accurate
analysis of experimental data, e.g., for extracting phonon
dispersions and nonequilibrium phonon populations.
In this Letter, we develop an efficient first-principles

method for the calculation of the one-, multi-, and all-
phonon scattering in solids, relying on the LBJ formalism.
We demonstrate the predictive power of this methodology by
performing electron diffraction measurements and calcula-
tions of the scattering intensity of black phosphorus (bP).
Theory and measurements are in striking agreement, con-
firming the decisive role of multiphonon interactions in
reproducing experiments for a large range of scattering wave
vectors. We also evaluate the fraction of the thermal energy
transfer due to multiphonon excitations and find up to 30%
contribution in the temperature range 100–500 K. The
computational approach developed here carries general
validity and can be employed to analyze electron, x-ray,
and neutron inelastic scattering of any material, as long as
the kinematic approximation holds.
To measure the thermal diffraction signals of bP we

performed femtosecond electron diffuse scattering (FEDS)
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[25,28,33,48] and focus on the hot, thermalized phonon
populations resulting from photoexcitation. The experi-
mental setup is described in the parallel paper, Ref. [52]. In
Fig. 1(b) we show a typical thermal difference pattern of bP
obtained as ΔIðQ; tÞ ¼ IðQ; tÞ − IðQ; t0Þ, where IðQ; t0Þ
and IðQ; tÞ are the average scattering intensities prior to
photoexcitation measured at time t0 and at a pump-probe
delay t ¼ 50 ps, at which the bP lattice has acquired a
quasithermalized state [32]. Each scattering wave vector Q
on this pattern can be generally expressed as
Q ¼ G�P

i qi, where G is a Bragg vector and qi are
the reduced wave vectors of the phonons involved in the
absorption or emission processes [see Fig. 1(a)]. The
negative and positive ΔIðQÞ are marked in blue and red,
respectively. Bragg (elastic) scattering intensity appears as
negative owing to the Debye-Waller damping, while diffuse
(inelastic) scattering appears as positive due to larger phonon
populations at thermalization [52].
In the framework of the adiabatic LBJ theory, the scatter-

ing intensity arising from an instantaneous atomic configu-
ration is given by the amplitude of the total scattering factor,
as a consequence of the kinematic limit (or first Born
approximation) [39,53]. Formally, this approximation
involves truncating the Born expansion of the Lippmann-
Schwinger equation [54] up to the first order in the interaction
potential. Physically, this is valid for weak probe-crystal
interactions and neglects multiple scattering, i.e., the beam
undergoes a single interaction event. Under these conditions,
the energy attenuation of the incident beam is due to inelastic
scattering from lattice vibrations and the temperature depend-
ence of the collected intensity can be evaluated as a canonical
ensemble average with the electrons in their ground state.
Employing the harmonic approximation, the all-phonon

LBJ scattering intensity at temperature T can be calculated
from the following compact expression [7,52]:

IallðQ; TÞ ¼ Np

X

p

X

κκ0
fκðQÞf�κ0 ðQÞeiQ·½Rpþτκ−τκ0 �

× e−WκðQ;TÞe−Wκ0 ðQ;TÞePp;κκ0 ðQ;TÞ; ð1Þ

where τκ represents the equilibrium positions of atom κ in
unit cell p, and Rp the position vectors of Np unit cells
contained in a periodic supercell. fκðQÞ denotes the atomic
scattering amplitude, WκðQ; TÞ is the exponent of the
Debye-Waller factor [52], and Pp;κκ0 ðQ; TÞ is the exponent
of the phononic factor given by [52]

Pp;κκ0 ðQ;TÞ

¼ M0N−1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MκMκ0
p

X

qν

u2qνRe½Q ·eκ;νðqÞQ ·e�κ0;νðqÞeiq·Rp �; ð2Þ

where Mκ and M0 are the atomic and proton masses, and ν
denotes the phonon branch index. The phonon polarization
vectors, associated with phonon frequenciesωqν, are denoted
byeκ;νðqÞ and themode-resolvedmean-squaredisplacements
of the atoms are given by u2qν ¼ ℏ=ð2M0ωqνÞ½2nqνðTÞ þ 1�,
where nqνðTÞ is the Bose-Einstein distribution. We empha-
size that an important step in obtaining Eq. (1) exploits the
translational symmetry of the lattice [52]. Combining this
point together with the partitioning of the phonons into
two smaller Brillouin zone groups, A and B [55], allows
for the efficient calculation of the total scattering intensity
[52].We also note that Eq. (1) and all subsequent expressions
do not contain a constant prefactor that depends on the probe-
sample interaction [35,38].
Evaluation of the phononic factor ePp;κκ0 accounts for all-

phonon processes to the scattering intensity, including
emission and absorption. Taking now the Taylor expansion
of ePp;κκ0 in Eq. (1) and retaining the zeroth-order term, we
obtain the Bragg diffraction intensity as

I0ðQ; TÞ ¼ N2
p

X

κκ0
fκðQÞf�κ0 ðQÞ cos½Q · ðτκ − τκ0 Þ�

× e−WκðQ;TÞe−Wκ0 ðQ;TÞδQ;G; ð3Þ

where we have employed the sum rule
P

p expðiQ ·RpÞ ¼
NpδQ;G. In a similar spirit, keeping the first order term
yields the one-phonon scattering formula:

I1ðQ; TÞ ¼M0Np

X

κκ0
fκðQÞf�κ0 ðQÞe

−WκðQ;TÞe−Wκ0 ðQ;TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MκMκ0

p

×
X

ν

Re

�

Q · eκ;νðQÞQ · e�κ0;νðQÞeiQ·½τκ0−τκ �
�

u2Qν:

ð4Þ

Subsequent higher-order terms in the expansion of ePp;κκ0

correspond to inelastic excitations of more than one

FIG. 1. (a) Schematic of a multiphonon scattering process. Ki
and Kf denote the beam wave vectors before and after inelastic
scattering. The momentum transfer to the crystal is ℏQ ¼
ℏðq1 þ q2 þ q3Þ, where Q and q are the scattering and reduced
phononwavevectors. (b)Left: rawscatteringpatternofbPascollected
on the detector.G represents a Bragg peak vector. TheBrillouin zone
with theΓ,A, andX high-symmetrypoints togetherwith the armchair
and zigzag directions are indicated. Right: difference scattering
pattern, ΔIðQ; t ¼ 50 psÞ, described in the main text.
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phonon. Therefore, we write the all-phonon scattering
intensity as a summation of the zero-, one-, and multi-
phonon terms, i.e.,

IallðQ; TÞ ¼ I0ðQ; TÞ þ I1ðQ; TÞ þ ImultiðQ; TÞ: ð5Þ

For our calculations we employed the unit cell of bP [56]
with optimized lattice constants a ¼ 4.554, b ¼ 3.307, and
c ¼ 11.256 Å. The evaluation of the full set of phonon
polarization vectors and frequencies was performed by
means of density-functional perturbation theory (DFPT)
[57] and Fourier interpolation as implemented in the
Quantum ESPRESSO suite [58,59]. Using this informa-
tion we calculate the Debye-Waller and phononic factors to
obtain Iall, I0, and I1 from Eqs. (1), (3), and (4), respec-
tively. The multiphonon term is obtained as Imulti ¼
Iall − I0 − I1. We remark that two-phonon, three-phonon,
and subsequent contributions can be straightforwardly
calculated by separating the appropriate order in the
Taylor expansion of ePp;κκ0 in Eq. (1). The atomic scattering
amplitude was evaluated as a sum of Gaussians [60] using
the parameters in Ref. [61]. All patterns were calculated as
the average of the scattering intensities in theQx–Qy planes
at Qz ¼ 0 and Qz ¼ 2π=c ¼ 0.56 Å−1, where Qx, Qy, and

Qz are the Cartesian components of Q. The code used
for calculating the all-phonon scattering intensity and its
various contributions is available at the EPW/ZG tree
[62,63]. Full computational details are given in the parallel
paper, Ref. [52].
In Figs. 2(a)–2(d) we present our calculations of the

difference scattering patterns of bP considering separate
phonon contributions, and compare them with our mea-
surements of the thermalized signals, all obtained as
ΔIðQÞ ¼ IðQ; 300 KÞ − IðQ; 100 KÞ. Our results indicate
that thermal phonon populations exhibit a high degree of
anisotropy, consistent with the phonon band structure along
the zigzag (Γ-A) and armchair (Γ-X) directions [56,64].
This finding reflects, essentially, the structural anisotropy
of bP, giving rise to a different in-plane behavior of the
thermal [64–66] and electrical conductivities [67–70]. The
calculated single-phonon scattering intensity [Fig. 2(a)] is
qualitatively in good agreement with experiment [Fig. 2(d)]
forQx andQy lying within�5 Å−1. Beyond this range, the
one-phonon map underestimates inelastic scattering miss-
ing clearly the outermost diamond-like features observed in
the experiment. This discrepancy disappears once multi-
phonon processes [Fig. 2(b)] are included as described in
the LBJ theory. In fact, the calculated all-phonon scattering

FIG. 2. (a) Zero-plus-one-phonon (ΔI0 þ ΔI1), (b) multiphonon (ΔImulti), and (c) all-phonon (ΔIall) difference scattering patterns
of bulk bP calculated as ΔIðQÞ ¼ IðQ; 300 KÞ − IðQ; 100 KÞ to match the experimental conditions [32,33]. (d) Experimental
difference scattering pattern of bulk bP measured at 50 ps from FEDS. Data are divided by the maximum count due to elastic scattering.
(e) All-phonon difference scattering pattern of bulk bP showing three vertical paths P1, P2, and P3 at Qx ¼ 4.83, 6.21, and 7.59 Å−1.
Paths pass through several high-symmetry X points in the zigzag direction. (f)–(h) ΔIðQÞ as a function of Qy along P1, P2, and P3.
Zero-plus-one-phonon, all-phonon, and experimental data are represented by green, red, and blue. Vertical dashed lines indicate
positions of high-symmetry X points. All calculated intensities were divided by the Bragg intensity at the zone center, i.e., I0ðQ ¼ 0Þ,
and multiplied by the same scaling factor to facilitate comparison. The Brillouin zone was sampled using a 50 × 50 × 50 q-grid and full
patterns were obtained by a fourfold rotation.
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intensity [Fig. 2(c)] reproduces the measured diffused
pattern, suggesting that multiphonon interactions dominate
inelastic scattering processes with long wave vectors. Our
analysis yields that the major contribution to multiphonon
scattering arises from two-phonon processes. We stress that
our calculations of the all-phonon LBJ scattering intensity
have been verified in a straightforward fashion using
Zacharias-Giustino (ZG) theory [63,71]. As demonstrated
in the parallel paper, Ref. [52], although this method
converges slower, ZG displacements provide the scatterers’
coordinates that best reproduce Debye-Waller factors and
all-phonon inelastic scattering.
Figures 2(e)–2(h) show a quantitative comparison

between the theoretical and experimental thermal diffuse
scattering intensities along three paths in the zigzag
direction, passing through multiple high-symmetry X
points. These paths are labeled as P1, P2, and P3 in
Fig. 2(e) and are selected in a way to (i) exclude elastic
and thus focus on inelastic scattering, and (ii) explore
inelastic scattering maxima in the experimental pattern. In
Figs. 2(f)–2(h) we compare our calculated ΔIðQ; 300 KÞ
with our measured thermalized scattering intensity for
paths P1, P2, and P3, respectively. Red and green curves
represent the all-phonon and one-phonon scattering inten-
sities; blue discs represent our measurements. As for
Figs. 2(a)–2(d), all calculations are scaled by the same
constant. The all-phonon scattering intensity is in excellent
agreement with the experiment, reproducing all main peak
intensities at the X points. The remaining discrepancies
between the two sets of data can be attributed to multiple
and Huang scattering, not included in our calculations, as
well as the sample purity [32,39,72]. It is also evident from
Figs. 2(f)–2(h) that one-phonon processes are not sufficient
to explain the all-phonon scattering intensity, especially
for relatively large jQj. For example, along path P2 one-
phonon processes contribute 60% and 48% to the main
peaks at Qy ¼ 1.9 and 5.7 Å−1. The intensity ratio of these
peaks is 54% and 44% for the all-phonon and one-phonon
scattering, respectively. This comparison confirms that a
single multiplicative factor is not adequate to explain the
change in the scattering intensity calculated for the two
cases. Furthermore, the one-phonon contribution becomes
negligible for Qy > 7 Å−1. A similar analysis can be
applied for paths P1 and P3, demonstrating the significance
of multiphonon interactions in reproducing quantitatively
and qualitatively the diffuse signals of bP over the full
scattering vector range.
To clarify the role of multiphonon interactions in bP we

calculate the percentage P ¼ Imulti=ðI1 þ ImultiÞ across the
full pattern for three different temperatures. Figure 3 shows
P as a function of Qx and Qy extending over 165 Brillouin
zones around the zone center calculated for (a) 100,
(b) 300, and (c) 500 K. Our results reveal that the one-
phonon theory can serve as a reliable method to analyze
scattering signals from Brillouin zones that exhibit weak

multiphonon effects. However, even for T ¼ 100 K, multi-
phonon processes make a clear impact at large jQj. As
anticipated, P increases with temperature becoming more
pronounced for regions closer to the center. It is also
apparent that inelastic scattering around Bragg positions
(ΓþG points) mostly originates from single-phonon
interactions, even for large jGj and T. This observation
is justified by considering that the low-frequency acoustic
phonons dominate inelastic scattering at Q ≃ ΓþG. To
further quantify our results we evaluate the fraction of the
vibrational energy transfer to the crystal due to multi-
phonon excitations as

ΔEðTÞ ¼
R
Q ImultiðQ; TÞdQ

R
Q I1ðQ; TÞ þ ImultiðQ; TÞdQ ; ð6Þ

where the integrals are taken over the area of reciprocal
space shown in Fig. 3. We find ΔE to be 10%, 21%, and
29% at 100, 300, and 500 K, respectively.
Now, we provide a metric that practically assesses the

effect of multiphonon interactions in any crystal. We employ
the Einstein model and replace the phonon frequencies with
their mean value ωE, neglecting dispersion, and set the
associated eigenvectors to be isotropic [73]. Hence, the
metric consists of evaluating the percentage PE and energy
transfer ΔEE using the Einstein model’s analogs of I1

FIG. 3. (a)–(c) Colored maps showing the percentage contri-
bution of multiphonon interactions to thermal diffuse scattering,
P, across a wide range in reciprocal space of bP at 100, 300, and
500 K. (d) PE calculated within the Einstein model for thermal
diffuse scattering at 300 K. Rectangles represent different
Brillouin zones centered at ΓþG.
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and Imulti. These are obtained from the power series of
Cκκ0 ðQ;TÞ¼Q2=ðωE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MκMκ0

p Þ½2nEðTÞþ1� using Eq. (19)
of Ref. [52]. Keeping jQj and T constants, the multiphonon
contribution to inelastic scattering depends on the material-
specific valuesMκ and ωE. Figure 3(d) shows PE calculated
for bP at T ¼ 300 K using ωE ¼ 279.7 cm−1. At variance
with the exact result in Fig. 3(b),PE increases smoothly with
jQj and lacks of any fine structure. Despite this shortcoming,
our metric yields ΔEE ¼ 14% in good agreement with the
actual value of ΔE ¼ 21%. In the parallel paper, Ref. [52],
we show for 2D MoS2 that, although the mean phonon
frequency (ωE ¼ 287.4 cm−1) is similar to that of bP,
multiphonon contributions are less pronounced giving
ΔEE ¼ 10%. Based on our toy model, this difference is
attributed to the large atomic mass of molybdenum being
about 3 times larger than that of phosphorus.
In conclusion, we have established a new first-principles

method for the calculation of the all-phonon inelastic
scattering in solids based on the LBJ theory. The present
work lays the foundations for developing a reverse engi-
neering approach to extract nonequilibrium phonon pop-
ulations from time-resolved experiments [48]. Identifying
the all-phonon scattering signatures is also critical to apply
sophisticated corrections on the experimental data and
obtain reliable information of plasmon and magnetic
excitations [11,13]. Our methodology can be upgraded
to investigate polaron features [14,15] and point defects
[74] in diffused signals, study materials exhibiting anhar-
monic lattice dynamics [75–77], as well as describe
electron energy loss spectroscopy measurements [78,79].
We stress that the adiabatic approximation employed here
performs well in most materials, however, in exceptional
cases, such as highly doped semiconductors, nonadiabatic
effects cannot be ignored and more sophisticated treat-
ments, beyond standard DFPT, are required [80–82]. The
present approach is suitable for both condensed matter
theorists and experimentalists, opening the way for sys-
tematic ab initio calculations of phonon-induced inelastic
scattering in solids.

Electronic structure calculations performed in this study
are available on the NOMAD repository [83].
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[62] S. Poncé, E. Margine, C. Verdi, and F. Giustino, Comput.
Phys. Commun. 209, 116 (2016).

[63] M. Zacharias and F. Giustino, Phys. Rev. Research 2,
013357 (2020).

[64] Z. Luo, J. Maassen, Y. Deng, Y. Du, R. P. Garrelts, M. S.
Lundstrom, P. D. Ye, and X. Xu, Nat. Commun. 6, 8572
(2015).

[65] S. Lee et al., Nat. Commun. 6, 8573 (2015).
[66] H. Jang, J. D. Wood, C. R. Ryder, M. C. Hersam, and D. G.

Cahill, Adv. Mater. 27, 8017 (2015).
[67] J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, Nat.

Commun. 5, 4475 (2014).
[68] F. Xia, H. Wang, and Y. Jia, Nat. Commun. 5, 4458 (2014).
[69] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomnek, and

P. D. Ye, ACS Nano 8, 4033 (2014).
[70] J. He, D. He, Y. Wang, Q. Cui, M. Z. Bellus, H.-Y. Chiu, and

H. Zhao, ACS Nano 9, 6436 (2015).
[71] M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125

(2016).
[72] S. Schafer, W. Liang, and A. H. Zewail, J. Chem. Phys. 135,

214201 (2011).
[73] C. R. Hall, Philos. Mag. 12, 815 (1965).
[74] M. A. Krivoglaz, in X-Ray and Neutron Diffraction in

Nonideal Crystals (Springer, Berlin, Heidelberg, 1996),
pp. 241–356.

[75] O. Hellman, I. A. Abrikosov, and S. I. Simak, Phys. Rev. B
84, 180301(R) (2011).

[76] I. Errea, M. Calandra, and F. Mauri, Phys. Rev. B 89,
064302 (2014).

[77] F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
Phys. Rev. Mater. 4, 083809 (2020).

PHYSICAL REVIEW LETTERS 127, 207401 (2021)

207401-6

https://doi.org/10.1103/PhysRevX.6.021003
https://doi.org/10.1103/PhysRevLett.119.036803
https://doi.org/10.1103/PhysRevLett.119.036803
https://doi.org/10.1126/science.aar4183
https://doi.org/10.1126/science.aar4183
https://doi.org/10.1126/science.aau3873
https://doi.org/10.1103/PhysRevB.97.165416
https://doi.org/10.1103/PhysRevB.97.165416
https://doi.org/10.1126/sciadv.aap7427
https://doi.org/10.1103/PhysRevLett.121.125901
https://doi.org/10.1103/PhysRevLett.121.125901
https://doi.org/10.1126/science.aaw1662
https://doi.org/10.1021/acs.nanolett.0c00734
https://doi.org/10.1021/acs.nanolett.0c00734
https://doi.org/10.1021/acs.nanolett.1c01786
https://doi.org/10.1021/acs.nanolett.1c01786
https://doi.org/10.1021/acs.jpclett.0c03616
https://www.persee.fr/doc/bulmi_0366-3248_1939_num_62_4_4465
https://www.persee.fr/doc/bulmi_0366-3248_1939_num_62_4_4465
https://www.persee.fr/doc/bulmi_0366-3248_1939_num_62_4_4465
https://www.osti.gov/biblio/4310449-multi-phonon-processes-slow-neutron-scattering-crystals
https://www.osti.gov/biblio/4310449-multi-phonon-processes-slow-neutron-scattering-crystals
https://www.osti.gov/biblio/4310449-multi-phonon-processes-slow-neutron-scattering-crystals
https://www.osti.gov/biblio/4310449-multi-phonon-processes-slow-neutron-scattering-crystals
https://doi.org/10.1103/PhysRevB.58.706
https://doi.org/10.1103/PhysRevB.58.706
https://doi.org/10.1103/PhysRevB.75.020505
https://doi.org/10.1103/PhysRevB.77.140503
https://doi.org/10.1103/PhysRevB.77.140503
https://doi.org/10.1103/PhysRevLett.118.035502
https://doi.org/10.1103/PhysRevLett.118.035502
https://doi.org/10.1021/acs.nanolett.9b01179
https://doi.org/10.1103/PhysRevB.100.214115
https://doi.org/10.1103/PhysRevB.100.214115
https://doi.org/10.1103/PhysRevResearch.3.023072
https://doi.org/10.1103/PhysRevResearch.3.023072
https://doi.org/10.1103/PhysRevB.101.100302
https://doi.org/10.1103/PhysRevB.101.100302
https://doi.org/10.1126/sciadv.abf2810
https://doi.org/10.1103/PhysRevB.104.205109
https://doi.org/10.1103/PhysRevB.104.205109
https://doi.org/10.1103/PhysRev.95.249
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1002/jrs.5238
https://doi.org/10.1002/jrs.5238
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1107/S0365110X57000882
https://doi.org/10.1107/S0365110X57000882
https://doi.org/10.1016/j.cpc.2016.07.028
https://doi.org/10.1016/j.cpc.2016.07.028
https://doi.org/10.1103/PhysRevResearch.2.013357
https://doi.org/10.1103/PhysRevResearch.2.013357
https://doi.org/10.1038/ncomms9572
https://doi.org/10.1038/ncomms9572
https://doi.org/10.1038/ncomms9573
https://doi.org/10.1002/adma.201503466
https://doi.org/10.1038/ncomms5475
https://doi.org/10.1038/ncomms5475
https://doi.org/10.1038/ncomms5458
https://doi.org/10.1021/nn501226z
https://doi.org/10.1021/acsnano.5b02104
https://doi.org/10.1103/PhysRevB.94.075125
https://doi.org/10.1103/PhysRevB.94.075125
https://doi.org/10.1063/1.3663963
https://doi.org/10.1063/1.3663963
https://doi.org/10.1080/14786436508218919
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevMaterials.4.083809


[78] M. J. Lagos, A. Trügler, U. Hohenester, and P. E. Batson,
Nature (London) 543, 529 (2017).

[79] F. S. Hage, R. J. Nicholls, J. R. Yates, D. G. McCulloch,
T. C. Lovejoy, N. Dellby, O. L. Krivanek, K. Refson, and
Q.M. Ramasse, Sci. Adv. 4, eaar7495 (2018).

[80] M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407 (2006).
[81] M. Calandra, G. Profeta, and F. Mauri, Phys. Rev. B 82,

165111 (2010).

[82] F. Caruso, M. Hoesch, P. Achatz, J. Serrano, M. Krisch,
E. Bustarret, and F. Giustino, Phys. Rev. Lett. 119, 017001
(2017).

[83] M. Zacharias, NOMAD (2021), https://dx.doi.org/
10.17172/NOMAD/2021.07.11-1.

[84] http://en.uhem.itu.edu.tr.
[85] http://www.tacc.utexas.edu.

PHYSICAL REVIEW LETTERS 127, 207401 (2021)

207401-7

https://doi.org/10.1038/nature21699
https://doi.org/10.1126/sciadv.aar7495
https://doi.org/10.1103/PhysRevLett.97.266407
https://doi.org/10.1103/PhysRevB.82.165111
https://doi.org/10.1103/PhysRevB.82.165111
https://doi.org/10.1103/PhysRevLett.119.017001
https://doi.org/10.1103/PhysRevLett.119.017001
https://dx.doi.org/10.17172/NOMAD/2021.07.11-1
https://dx.doi.org/10.17172/NOMAD/2021.07.11-1
http://en.uhem.itu.edu.tr
http://en.uhem.itu.edu.tr
http://en.uhem.itu.edu.tr
http://en.uhem.itu.edu.tr
http://en.uhem.itu.edu.tr
http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
http://www.tacc.utexas.edu

