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By controlling quantum fluctuations via the Falk–Bruch inequality we give the first rigorous argument
for the existence of a spin-glass phase in the quantum Sherrington–Kirkpatrick model with a “transverse”
magnetic field if the temperature and the field are sufficiently low. The argument also applies to the
generalization of the model with multispin interactions, sometimes dubbed as the transverse p-spin model.
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Introduction.—Spin glasses constitute a particularly
multifaceted topic in the statistical mechanics of disordered
systems. Classical spin-glass models, such as the mean-
field one by Sherrington and Kirkpatrick (SK) [1], were
originally introduced to understand the unusual magnetic
properties observed in some metal alloys with irregu-
larly competing ferro- and antiferromagnetic interactions.
Beyond their ongoing significance in condensed-matter
physics [2], such models with their built-in frustration have
evolved meanwhile into paradigms in optimization, infor-
mation processing, and the theory of neural networks [3,4].
Their rich low-energy structure and complexity continues
to generate deep scientific discoveries. For example, among
the recent excitements in computation is a conditional proof
(based on the widely believed assumption of ∞-replica-
symmetry breaking) of the existence of a polynomial-time
classical algorithm for finding an approximate bit string
whose energy is with high probability ε close to the lowest
SK energy [5]. Such an algorithm is not believed to exist for
a search of the ground-state energy in p-spin generaliza-
tions of the SK model. Quantum mechanics promises to
offer help in the form of quantum adiabatic annealing or
quantum approximate optimization algorithms [6–12]. In
this context, but also purely motivated by the fact that spin
glasses are prototypes for the emergence of nonergodic
behavior in disordered quantum systems [13–17], it is
important to study quantum versions of classical spin-glass
models. This can be done by taking the quantum nature of
spins seriously and by adding a “transverse” magnetic
field to the classical energy landscape, which induces
quantum effects. Most prominent is the quantum

Sherrington–Kirkpatrick model (QSKM) with N ≥ 2
three-component vector spins of main quantum number
1=2 (or qubits). Their z components interact with each other
in a random fashion, while their x components interact
individually with a constant magnetic field of strength
b ≥ 0 externally applied along the positive x direction. Up
to a factor 1=2, the jth spin operator may be represented by
the triple

Sxj ¼
�
0 1

1 0

�
; Syj ¼

�
0 −i
i 0

�
; Szj ¼

�
1 0

0 −1
�

of Pauli matrices and is meant to act on the jth factor of the
tensor-product Hilbert space HN ≔⊗N

j¼1 C
2 and as the

identity on the other factors. The Hamiltonian (or energy
operator) of the QSKM is then defined on HN by the sum

HN ≔ JUN − b
XN
j¼1

Sxj ; J > 0; b ≥ 0; ð1Þ

with its (dimensionless) classical zero-field SK part

UN ≔ −
1ffiffiffiffi
N

p
X

1≤j<k≤N
gjkS

z
jS

z
k: ð2Þ

Here the spin coupling is (only) pairwise and given by
independent, identically distributed Gaussian random var-
iables ðgjkÞ with mean E½g12� ¼ 0 and variance E½g212� ¼ 1,
modeling frozen-in spatial disorder of the glass of
strength J > 0.
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As usual, the thermal average for reciprocal temperature
β ∈ �0;∞½ is given by the canonical Gibbs expectation
h·i ≔ Tr e−βHN ð·Þ=ZN with the partition function ZN ≔
Tr e−βHN as the normalization factor. For b ¼ 0 there is
no a priori “globally” preferred spin orientation and no
conventional magnetic order arises. Yet, one expects spin-
glass order even for b ≥ 0 in the sense that E½qN � ¼
E½hSz1Sz2i2� > 0 in the limit of a “macroscopically” large
number of spins (N → ∞), provided that the temperature
and the field are sufficiently low. Here we are using the
model’s spin-index symmetry under the (probabilistic) dis-
order expectation E½·� and the [0, 1]-valued random variable

qN ≔
2

NðN − 1Þ
X

1≤j<k≤N
hSzjSzki2 ð3Þ

as the corresponding order parameter. It may be rewritten as

qN ¼ N
N − 1

hR2
Ni⊗ −

1

N − 1

in terms of RN ≔ N−1PN
j¼1 S

z
j ⊗ Szj, the replica-overlap

operator for the “duplicated model” with Hilbert space
HN ⊗ HN , Hamiltonian HN ⊗ 1þ 1 ⊗ HN , and associ-
ated Gibbs expectation h·i⊗. Strict positivity of E½qN � ¼
E½hSz1Sz2i2� is therefore equivalent to replica-symmetry
breaking (as N → ∞).
Main result.—The main result of this Letter is a proof of

this replica-symmetry breaking at small enough temper-
ature and field strength. This is facilitated by extending a
key observation of Bray and Moore [18], generalized to
certain non-Gaussian probability distributions of g12 by
Aizenman, Lebowitz, and Ruelle [19], to the present
quantum case b > 0: the mean order parameter E½qN � is
related to the mean E½hUNi� of the zero-field part of the
Hamiltonian. Specifically, by the spin-index symmetry and
a standard Gaussian integration by parts it is straight-
forward to obtain

−
2

N − 1
E½hUNi� ¼

ffiffiffiffi
N

p
E½g12hSz1Sz2i�

¼
ffiffiffiffi
N

p
E½∂hSz1Sz2i=∂g12�

¼ βJ E½hSz1Sz2jSz1Sz2i − hSz1Sz2i2�
¼ βJ E½hAjAi − hAi2� ð4Þ

in terms of the observable A ≔ Sz1S
z
2 and its Duhamel–

Kubo–Bogolyubov scalar product [20,21] with itself:

hAjAi ≔
Z

1

0

dt hetβHNA�e−tβHNAi:

It satisfies the well-known a priori estimates 0 ≤
hAi2 ≤ hAjAi ≤ hA2i ¼ 1, where the inequalities hold for
general (self-adjoint) A ¼ A� and the equality is due to

A2 ¼ 1 for the present A. In the classical commutative case,
b ¼ 0, the third inequality is also an equality and (4) turns
into (4.3) of [18] and (4.1) of [19] (for Gaussian disorder).
For general b ≥ 0we need a lower bound on hAjAi better

than hAi2 in order to obtain a nontrivial lower bound on
E½hAi2� from (4). As our second main ingredient for the
proof, we control the quantum fluctuations by the Falk–
Bruch inequality [22] (see also [20,23]):

hAjAi ≥ hA2iΦ
�

1

4hA2i h½A; ½βHN; A��i
�
: ð5Þ

The function Φ∶½0;∞½ → �0; 1� from the positive half-line
to the left-open unit interval is defined implicitly by the
relation Φðr tanhðrÞÞ ≔ r−1 tanhðrÞ. It is monotone decre-
asing and convex with Φð0Þ ¼ 1. Moreover, it can be
estimated from below according to ΦðtÞ ≥ t−1ð1 − e−tÞ ≥
maxf0; 1 − t=2g, see [20]. We also note that the Gibbs
expectation of the double commutator in the argument ofΦ
in (5) equals the scalar product h½βHN; A�j½βHN; A�i and is
hence positive for a general self-adjoint A. Since in the
present case A ¼ Sz1S

z
2 commutes with UN , the double

commutator is independent of J and simply given by

½A; ½βHN; A�� ¼ 4βbðSx1 þ Sx2Þ: ð6Þ

Combining (4)–(6) and using Jensen’s inequality for the
convex Φ together with spin-index symmetry, yields the
basis for our main result:
Theorem 1.—The mean of the spin-glass order para-

meter (3) has a lower bound according to

E½qN � ≥ Φð2βbE½hSx1i�Þ þ
2

βJ
1

N − 1
E½hUNi�: ð7Þ

It is valid for any β > 0, J > 0, b ≥ 0, and all N ≥ 2.
For more explicit bounds we further estimate the right-

hand side (rhs) of (7) starting with its first term. Adding to
the Hamiltonian (1) the term ðb − b1ÞSx1 with b1 ≥ 0 and
estimating the associated “local” susceptibility results in
the differential inequality for the transverse magnetization

∂
∂b1 hS

x
1ib1 ¼ βðhSx1jSx1ib1 − hSx1i2b1Þ ≤ βð1 − hSx1i2b1Þ:

Integrating by separation of variables and observing
hSx1i0 ¼ 0, we hence obtain hSx1i ≤ tanhðβbÞ, which by
the monotonicity of Φ results in the estimates

Φð2βbE½hSx1i�Þ ≥ Φð2βb tanhðβbÞÞ ≥ Φð2βbÞ: ð8Þ
A simple bound on the second term in (7) results from the
(nonrandom) ground-state energy −κJ < 0 of JUN=N as
N → ∞ with the constant κ ≈ 0.763 according to [24,25].
Combined with (8) this leads to the more explicit lower
bound
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q̄ðβJ; βbÞ ≔ lim inf
N→∞

E½qN � ≥ Φð2βb tanhðβbÞÞ − 2κ

βJ
ð9Þ

on the lower limit of the sequence ðE½qN �ÞN≥2 in the unit
interval [0, 1]. For b ¼ 0 the rhs of (9) is strictly positive for
temperatures below J=ð2κÞ ≈ 0.655 J. This (not maximum)
temperature regime for the existence of a spin-glass phase
agrees with the one found in (4.14) of [19]. In this regime
the spin-glass phase is seen to survive when turning on the
transverse magnetic field, provided that b=J > 0 is so
small that the rhs of (9) remains strictly positive. This
condition is implied by the slightly stronger but simpler one
1 − e−2βb > 4κb=J, yielding in the zero-temperature limit
the same maximum field strength J=ð4κÞ ≈ 0.328 J as
from (9).
To establish the persistence of spin-glass order for

sufficiently small b=J also for temperatures up to the
zero-field critical (freezing) temperature J, we start from
the observation that (5) and hence (7) are equalities for
b ¼ 0 and remain rather sharp for small βb > 0.
Consequently, (7) should cover the whole regime
βb ≪ 1 ≤ βJ. To confirm this, we estimate the mean
ūðβJ; βbÞ ≔ lim infN→∞E½hUNi�=N of the zero-field SK
part (2) by the Fisher-type [26] inequality

ūðβJ; βbÞ þ a−1 lnðcoshðβbÞÞ ≥ ūðβJ þ a; 0Þ
¼ ½q̄ðβJ þ a; 0Þ − 1�ðβJ þ aÞ=2 ð10Þ

with an arbitrary a > 0. It results from the convexity of
lnðZNðβJ; βbÞÞ in βJ together with the Peierls–
Bogolyubov and Golden–Thompson bounds ZNðβJ; 0Þ ≤
ZNðβJ; βbÞ ≤ ZNðβJ; 0ÞðcoshðβbÞÞN on the partition func-
tion. The equality in (10) is due to (7) for b ¼ 0. Using (8)
and (10) with a ¼ ab ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðcoshðβbÞÞp

in (7) for N →
∞ leads to

q̄ðβJ; βbÞ ≥
�
1þ ab

βJ

�
q̄ðβJ þ ab; 0Þ

−
�
1 −Φð2βb tanhðβbÞÞ þ 2ab

βJ

�
≥ q̄ðβJ þ ab; 0Þ − 3βb: ð11Þ

The simplifying second inequality follows by observing
ab ∈ ½0; βb�, estimating ΦðtÞ as above, and assuming
βJ ≥ 1. Finally, we fix an arbitrary βJ > 1 which is
equivalent to q̄ðβJ; 0Þ > 0 characterizing the spin-glass
phase for b ¼ 0, see [27]. The continuity of ūðβJ þ a; 0Þ in
a (by [30,31]) and hence of q̄ðβJ þ a; 0Þ yields the
continuity of the rhs of (11) in βb. Its strict positivity
for b ¼ 0 therefore extends to sufficiently small
βb ∈ �0; 1=3½. In other words, the well-known spin-glass
phase without a field persists with a low enough transverse
field at any temperature below J.

Discussion.—Over the years various approximate and/or
numerical studies like [32–37] have suggested for the
QSKM a temperature-field phase diagram with a critical
line between the spin-glass and the paramagnetic phases as
sketched in Fig. 1, see also [38]. In particular, these studies
have predicted a quantum phase transition at zero temper-
ature and b=J ≈ 1.51 or 1.6. The (red) cross-shaded regime
in Fig. 1 illustrates where we prove the existence of spin-
glass order by the lower bounds (9) and (11). Here, the tiny
regime above the temperature J=ð2κÞ is produced by
inserting the asymptotic expansion of q̄ðβJ; 0Þ close to
βJ ¼ 1 from [39] into the rhs of (11). Apart from that we
have no prediction for the location of the true critical line.
In particular, our zero-temperature “critical” field J=ð4κÞ is
very likely too small, as is the whole cross-shaded regime.
The precise location and nature of the true quantum critical
point remains an important problem, in particular in the
context of adiabatic algorithms. Nevertheless, our rigorous
result supports the conjecture that the ground state typically
has localization properties with respect to the eigenbasis of
UN . It does not rule out, though, a weak form of restoration
of ergodicity through quantum tunneling for those param-
eters put forward in [15,16,34,40]. To clarify this question
it is necessary to consider the probabilistic distribution
function of the order parameter and not just its mean,
because the sequence ðqNÞN≥2 is not expected to be self-
averaging in the spin-glass phase.
In this context, we recall that for b ¼ 0 the mean

free energy, −limN→∞E½lnðZNðβJ; 0ÞÞ�=ðNβÞ, and hence

FIG. 1. In the temperature-field plane the (red) cross-shaded
regime indicates where we prove the existence of spin-glass order
in the QSKM by (9) and, respectively, by (11) combined with
[39] (see text). The (red) dashed line is a cartoon of the critical
line between the spin-glass and the paramagnetic phases as
obtained by approximate arguments and/or numerical methods
[32–37]. The (blue) line-shaded regime for βJ < 1 indicates
where the spin-glass order parameter is rigorously known to
vanish [29].
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also the rhs of (10), is exactly determined by Parisi’s
(zero-field) distribution function on [0, 1], which with
increasing βJ > 1 exhibits ∞-replica-symmetry breaking
[24,25,30,31,41,42]. In contrast, no closed-form expres-
sions are available for b > 0. Recently the QSKM free
energy, which previously has been proved to exist and to
be independent of the specific probability distribution of
the coupling coefficient g12 as long as E½g12� ¼ 0 and
E½jg12j3� < ∞ (see [43]), was shown to be given by a
variational formula in terms of a Parisi-like functional for
an infinite-component vector-spin model [44]. However, no
conclusion could so far be drawn about emerging phases
form this formula. In contrast, for the simpler case βJ < 1 it
is known [29] that the free energy coincides with its
annealed version and that there is no spin-glass phase
for any b ≥ 0, see the (blue) line-shaded regime in Fig. 1.
The combination of this result with the present one
rigorously proves the existence of a phase transition in
the QSKM related to replica-symmetry breaking. But Fig. 1
clearly calls for further rigorous work on this model.
For a family of quantum hierarchical models dubbed as

QGREM, which for b ¼ 0 were originally introduced by
Derrida [45] as approximations to the more difficult SK
model, explicit formulas for the free energy are avail-
able [46] also for b > 0. Unlike for their classical counter-
parts, the phase diagrams of these QGREMs seem to
capture the QSKM only on a qualitative level though,
since their critical lines reach up to βJ ¼ 0 separating a
quantum paramagnetic phase from a classical one at high
temperatures.
Extensions.—The above simple strategy for proving

replica-symmetry breaking has straightforward extensions.
From our proof it is evident that Theorem 1 remains true as
it stands if one adds to (1) any term commuting with UN
that is possibly random but independent of UN such as, for
example, a Zeeman term corresponding to a magnetic field
in z direction. Adapting the more-involved argument of
[19], our bounds can also be extended from Gaussian to
more general symmetric distributions of the coupling
coefficients.
This strategy can also be applied to quantum spin-glass

models with multispin interactions, for example to the
“transverse p-spin model.” This model generalizes the
zero-field SK part (2) of (1) for each natural p ≥ 2 to

UN ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p!

2Np−1

r X
1≤j1<…<jp≤N

gj1j2…jpS
z
j1
Szj2 � � � Szjp ;

where ðgj1j2…jpÞ are independent and identically distributed
standard Gaussian random variables. For p > 2 this
classical zero-field Hamiltonian exhibits at its freezing
temperature finite and not ∞-replica-symmetry breaking
[47]. Proceeding for the quantum model as in (4) and
introducing αpðNÞ ≔ N!=½ðN − pÞ!Np�, which tends to
one as N → ∞, the mean zero-field energy

E½hUNi� ¼ −αpðNÞE½g12…phSz1Sz2 � � � Szpi�
ffiffiffiffiffiffiffiffiffiffiffi
Npþ1

p!2

s

is now related to the mean of the pth power of the replica-
overlap operator

E½hRp
Ni⊗� ¼ αpðNÞE½hSz1Sz2 � � � Szpi2� þ opðNÞ;

where opðNÞ is a term which goes to zero as N → ∞. Since
the double commutator (6) for A ¼ Sz1S

z
2 � � � Szp equals

4βb
Pp

j¼1 S
x
j , we thus obtain the following generalization

of Theorem 1:
Theorem 2.—The mean of the pth power of the replica-

overlap operator is lower bounded according to

E½hRp
Ni⊗� ≥ αpðNÞΦðpβbE½hSx1i�Þ

þ 2

βJ
1

N
E½hUNi� þ opðNÞ ð12Þ

for any β > 0, J > 0, b ≥ 0, and all N ≥ p.
As before, we may further estimate the transverse

magnetization, hSx1i ≤ tanhðβbÞ, and bound the second
term in (12) by the ground-state energy of the zero-field
p-spin model, which itself is asymptotically (as N → ∞)
lower bounded by −J

ffiffiffiffiffiffiffiffiffiffi
lnð2Þp

, the known value for p → ∞,
using Slepian’s lemma (see [48]). This proves a spin-glass
phase in a regime where the temperature and the field are
low enough [49,50]. However, the larger we choose p, the
smaller the regime becomes. In the limit p → ∞ replica-
symmetry breaking cannot be concluded by the above
strategy.
This limit corresponds to the quantum random energy

model (QREM). Its zero-field part UN is given in its
(canonical) eigenbasis by the eigenvalues −gσ

ffiffiffiffiffiffiffiffiffi
N=2

p
with

standard Gaussian random variables ðgσÞ, which are inde-
pendent and identically distributed for distinct z configu-
rations σ ∈ f−1; 1gN . In this case the phase diagram is
known [51] for general β and b ≥ 0, even at the rigorous
level [52]. As Goldschmidt’s calculations [51] suggest, in
the spin-glass phase the whole distribution of the replica
overlap hRNi⊗ of the QREM turns out to agree with its
classical analog. In particular, for this phase one can prove
[53] that limN→∞E½hRNi⊗� ¼ 1–2

ffiffiffiffiffiffiffiffiffiffi
lnð2Þp

=ðβJÞ.
Conclusion.—We have presented a simple argument that

establishes replica-symmetry breaking in spin-glass models
with a transverse field. It relies on a susceptibility bound
from [22] combined with an extension of the classical
relation between the mean spin-glass order parameter q̄ and
the mean of the zero-field part of the energy to the quantum
case. For the prominent quantum SK model, we have
discussed in detail two resulting strictly positive but not
optimal lower bounds on q̄. Nevertheless, our method has
extensions beyond the quantum SK model.
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[3] M. Mézard and A. Montanari, Information, Physics, and
Computation (Oxford University Press, Oxford, 2009).

[4] H. Nishimori, Statistical Physics of Spin Glasses and
Information Processing—An Introduction (Clarendon,
Oxford, 2001).

[5] A. Montanari, Optimization of the Sherrington–Kirkpatrick
Hamiltonian, SIAM J. Comput. FOCS19-1 (2021).

[6] T. Albash and D. A. Lidar, Adiabatic quantum computation,
Rev. Mod. Phys. 90, 015002 (2018).

[7] C. L. Baldwin and C. R. Laumann, Quantum algorithm for
energy matching in hard optimization problems, Phys. Rev.
B 97, 224201 (2018).

[8] V. Bapst, L. Foini, F. Krzakala, G. Semerjian, and F.
Zamponi, The quantum adiabatic algorithm applied to
random optimization problems: the quantum spin glass
perspective, Phys. Rep. 523, 127 (2013).

[9] A. Callison, M. Festenstein, J. Chen, L. Nita, V. Kendon,
and N. Chancellor, Energetic perspective on rapid quenches
in quantum annealing, PRX Quantum 2, 010338 (2021).

[10] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F.
Rosenbaum, and D. Sen, Quantum Phase Transitions in
Transverse Field Spin Models—From Statistical Physics to
Quantum Information (Cambridge University Press, Delhi,
2015).

[11] E. Farhi, J. Goldstone, S. Gutmann, and L. Zhou, The
quantum approximate optimization algorithm and
the Sherrington–Kirkpatrick model at infinite size, arXiv:
1910.08187.

[12] S. Knysh, Zero-temperature quantum annealing bottlenecks
in the spin-glass phase, Nat. Commun. 7, 12370 (2016).

[13] C. L. Baldwin, C. R. Laumann, A. Pal, and A. Scardicchio,
Clustering of Nonergodic Eigenstates in Quantum Spin
Glasses, Phys. Rev. Lett. 118, 127201 (2017).

[14] C. R. Laumann, A. Pal, and A. Scardicchio, Many-Body
Mobility Edge in a Mean-Field Quantum Spin Glass, Phys.
Rev. Lett. 113, 200405 (2014).

[15] S. Mukherjee and B. K. Chakrabarti, On the question of
ergodicity in quantum spin glass phase and its role in
quantum annealing, J. Phys. Soc. Jpn. 88, 061004 (2019).

[16] P. Ray, B. K. Chakrabarti, and A. Chakrabarti, Sherrington–
Kirkpatrick model in a transverse field: Absence of replica
symmetry breaking due to quantum fluctuations, Phys. Rev.
B 39, 11828 (1989).

[17] V. N. Smelyanskiy, K. Kechedzhi, S. Boixo, S. V. Isakov,
H. Neven, and B. Altshuler, Nonergodic Delocalized
States for Efficient Population Transfer within a Narrow
Band of the Energy Landscape, Phys. Rev. X 10, 011017
(2020).

[18] A. J. Bray and M. A. Moore, Some observations on the
mean-field theory of spin glasses, J. Phys. C 13, 419
(1980).

[19] M. Aizenman, J. Lebowitz, and D. Ruelle, Some rigorous
results on the Sherrington–Kirkpatrick spin glass model,
Commun. Math. Phys. 112, 3 (1987); 116, 527 (1988).

[20] F. J. Dyson, E. H. Lieb, and B. Simon, Phase transitions in
quantum spin systems with isotropic and nonisotropic
interactions, J. Stat. Phys. 18, 335 (1978).

[21] R. Kubo, M. Toda, and N. Hashitsume, Statistical
Physics II—Nonequilibrium Statistical Mechanics, 2nd ed.
(Springer, Berlin, 1998), 3rd corrected printing.

[22] H. Falk and L.W. Bruch, Susceptibility and fluctuation,
Phys. Rev. 180, 442 (1969).

[23] G. Roepstorff, A stronger version of Bogoliubov’s inequal-
ity and the Heisenberg model, Commun. Math. Phys. 53,
143 (1977).

[24] A. Crisanti and T. Rizzo, Analysis of the ∞-replica
symmetry breaking solution of the Sherrington–Kirkpatrick
model, Phys. Rev. E 65, 046137 (2002).

[25] G. Parisi, A sequence of approximated solutions to the S–K
model for spin glasses, J. Phys. A 13, L115 (1980).

[26] M. E. Fisher, Bounds for the derivatives of the free energy
and the pressure of a hard-core system near close packing,
J. Chem. Phys. 42, 3852 (1965).

[27] This well-known equivalence follows easily from the
inequality

R βJ
0 dt tq̄ðt; 0Þ ≥ 2kðβ2J2=4Þ for any βJ > 0. It

is due to (7) and Guerra’s observation [28] that the (replica-
symmetric) SK approximation [1] provides a lower bound
on −E½lnðZNðβJ; 0ÞÞ�=ðNβÞ for any N ≥ 2. The differen-
tiable function λ ↦ kðλÞ is zero for λ ≤ 1=4 and strictly
positive and increasing for λ > 1=4, see [1,29].

[28] F. Guerra, Sum rules for the free energy in mean field spin
glass models, Fields Inst. Commun. 30, 161 (2001).

[29] H. Leschke, S. Rothlauf, R. Ruder, and W. Spitzer, The free
energy of a quantum Sherrington–Kirkpatrick spin-glass
model for weak disorder, J. Stat. Phys. 182, 55 (2021).

[30] D. Panchenko, On differentiability of the Parisi formula,
Electron. Commun. Probab. 13, 241 (2008).

[31] M. Talagrand, Parisi measures, J. Funct. Anal. 231, 269
(2006).

[32] Ya. V. Fedorov and E. F. Shender, Quantum spin glasses in
the Ising model with a transverse field, Pis’ma Zh. Eksp.
Teor. Fiz. 43, 526 (1986) [JETP Lett. 43, 681 (1986)].

[33] Y. Y. Goldschmidt and P.-Y. Lai, Ising Spin Glass in a
Transverse Field: Replica-Symmetry-Breaking Solution,
Phys. Rev. Lett. 64, 2467 (1990).

[34] S. Mukherjee, A. Rajak, and B. K. Chakrabarti, Possible
ergodic-nonergodic regions in the quantum Sherrington–
Kirkpatrick spin glass model and quantum annealing, Phys.
Rev. E 97, 022146 (2018).

[35] K. D. Usadel and B. Schmitz, Quantum fluctuations in an
Ising spin glass with transverse field, Solid State Commun.
64, 975 (1987).

[36] T. Yamamoto and H. Ishii, A perturbation expansion for the
Sherrington–Kirkpatrick model with a transverse field,
J. Phys. C 20, 6053 (1987).

[37] A. P. Young, Stability of the quantum Sherrington–
Kirkpatrick spin glass model, Phys. Rev. E 96, 032112
(2017).

PHYSICAL REVIEW LETTERS 127, 207204 (2021)

207204-5

https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1137/20M132016X
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/PhysRevB.97.224201
https://doi.org/10.1103/PhysRevB.97.224201
https://doi.org/10.1016/j.physrep.2012.10.002
https://doi.org/10.1103/PRXQuantum.2.010338
https://arXiv.org/abs/1910.08187
https://arXiv.org/abs/1910.08187
https://doi.org/10.1038/ncomms12370
https://doi.org/10.1103/PhysRevLett.118.127201
https://doi.org/10.1103/PhysRevLett.113.200405
https://doi.org/10.1103/PhysRevLett.113.200405
https://doi.org/10.7566/JPSJ.88.061004
https://doi.org/10.1103/PhysRevB.39.11828
https://doi.org/10.1103/PhysRevB.39.11828
https://doi.org/10.1103/PhysRevX.10.011017
https://doi.org/10.1103/PhysRevX.10.011017
https://doi.org/10.1088/0022-3719/13/3/016
https://doi.org/10.1088/0022-3719/13/3/016
https://doi.org/10.1007/BF01217677
https://doi.org/10.1007/BF01229207
https://doi.org/10.1007/BF01106729
https://doi.org/10.1103/PhysRev.180.442
https://doi.org/10.1007/BF01609128
https://doi.org/10.1007/BF01609128
https://doi.org/10.1103/PhysRevE.65.046137
https://doi.org/10.1088/0305-4470/13/4/009
https://doi.org/10.1063/1.1695850
https://doi.org/10.1090/fic/030
https://doi.org/10.1007/s10955-020-02689-8
https://doi.org/10.1214/ECP.v13-1365
https://doi.org/10.1016/j.jfa.2005.03.001
https://doi.org/10.1016/j.jfa.2005.03.001
https://doi.org/10.1103/PhysRevLett.64.2467
https://doi.org/10.1103/PhysRevE.97.022146
https://doi.org/10.1103/PhysRevE.97.022146
https://doi.org/10.1016/0038-1098(87)90575-8
https://doi.org/10.1016/0038-1098(87)90575-8
https://doi.org/10.1088/0022-3719/20/35/020
https://doi.org/10.1103/PhysRevE.96.032112
https://doi.org/10.1103/PhysRevE.96.032112


[38] S. Suzuki, J.-i. Inoue, and B. K. Chakrabarti, Quantum Ising
Phases and Transitions in Transverse Ising Models, 2nd ed.
(Springer, Berlin, 2013).

[39] H.-J. Sommers, Parisi function qðxÞ near Tc, J. Phys. Lett.
46, L779 (1985).

[40] G. Büttner and K. D. Usadel, Replica-symmetry breaking
for the Ising spin glass in a transverse field, Phys. Rev. B 42,
6385 (1990).

[41] G. Parisi, The order parameter for spin glasses: A function
on the interval 0–1, J. Phys. A 13, 1101 (1980).

[42] M. Talagrand, The Parisi formula, Ann. Math. 163, 221
(2006).

[43] N. Crawford, Thermodynamics and universality for mean
field quantum spin glasses, Commun. Math. Phys. 274, 821
(2007).

[44] A. Adhikari and C. Brennecke, Free energy of the quantum
Sherrington–Kirkpatrick spin-glass model with transverse
field, J. Math. Phys. (N.Y.) 61, 083302 (2020).

[45] B. Derrida, A generalization of the random energy model
which includes correlations between energies, J. Phys. Lett.
46, L401 (1985).

[46] C. Manai and S. Warzel, Generalized random energy models
in a transversal magnetic field: free energy and phase
diagrams, arXiv:2007.03290 [Probab. Math. Phys. (to be
published)].

[47] E. Gardner, Spin glasses with p-spin interactions, Nucl.
Phys. B257, 747 (1985).

[48] A. Bovier, Statistical Mechanics of Disordered Systems. A
Mathematical Perspective (Cambridge University Press,
Cambridge, England, 2006).

[49] V. Dobrosavljevic and D. Thirumalai, 1=p expansion for a
p-spin interaction spin-glass model in a transverse field,
J. Phys. A 23, L767 (1990).

[50] T. Obuchi, H. Nishimori, and D. Sherrington, Phase diagram
of the p-spin-interacting spin glass with ferromagnetic bias
and a transverse field in the infinite-p limit, J. Phys. Soc.
Jpn. 76, 054002 (2007).

[51] Y. Y. Goldschmidt, Solvable model of the quantum spin
glass in a transverse field, Phys. Rev. B 41, 4858 (1990).

[52] C. Manai and S. Warzel, Phase diagram of the quantum
random energy model, J. Stat. Phys. 180, 654 (2020).

[53] C. Manai and S. Warzel (to be published).

PHYSICAL REVIEW LETTERS 127, 207204 (2021)

207204-6

https://doi.org/10.1051/jphyslet:019850046017077900
https://doi.org/10.1051/jphyslet:019850046017077900
https://doi.org/10.1103/PhysRevB.42.6385
https://doi.org/10.1103/PhysRevB.42.6385
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.1007/s00220-007-0263-x
https://doi.org/10.1007/s00220-007-0263-x
https://doi.org/10.1063/5.0009291
https://doi.org/10.1051/jphyslet:01985004609040100
https://doi.org/10.1051/jphyslet:01985004609040100
https://arXiv.org/abs/2007.03290
https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1088/0305-4470/23/15/013
https://doi.org/10.1143/JPSJ.76.054002
https://doi.org/10.1143/JPSJ.76.054002
https://doi.org/10.1103/PhysRevB.41.4858
https://doi.org/10.1007/s10955-020-02492-5

