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We have measured magnetic-field-induced avalanches in a square artificial spin ice array of interacting
nanomagnets. Starting from the ground state ordered configuration, we imaged the individual nanomagnet
moments after each successive application of an incrementally increasing field. The statistics of the
evolution of the moment configuration show good agreement with the canonical one-dimensional random
field Ising model. We extract information about the microscopic structure of the arrays from our
macroscopic measurements of their collective behavior, demonstrating a process that could be applied to
other systems exhibiting avalanches.
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Avalanche responses to a slow driving field are ubiqui-
tous in nature, appearing in systems as diverse as magnetic
domains, superconducting vortices, earthquakes, land-
slides, power grids, and the stock market [1–5]. The physics
of these systems is particularly complex, due to the
presence of disorder, the intrinsically metastable nature
of the phenomena, and the proximity to instabilities.
An important theoretical model for understanding ava-

lanches in their simplest form is the one-dimensional
random field Ising model (1D-RFIM) [6,7], which is
broadly applicable to many systems [8–11]. A simple
experimental realization of the 1D-RFIM has, however,
been elusive. Typical experimental systems are impacted by
complications such as long-range forces, higher dimen-
sional character, or inaccessibility of the critical regime
where fluctuations are large. Furthermore, very few sys-
tems are amenable to experimental imaging of full ava-
lanches with sufficient resolution to precisely characterize
their scale.
We report a study of avalanche behavior in arrays of

coupled single-domain ferromagnetic nanoislands. These
arrays, known as artificial spin ice (ASI), have the unusual
property of being designable at the microscopic scale and
also accessible to high-resolution imaging at the level of
the individual nanomagnet moments. Such systems display
a wide range of interesting behavior, including unusual
ground states and magnetic-monopole-like excitations
[12,13]. Avalanche-like phenomena have previously been
examined in ASI arrays through studies of reversal behav-
ior from one polarized state to another [14–25]. These
included avalanche statistics and the relation of avalanche
phenomena to the formation of monopole–antimonopole

pairs. The avalanches in these studies had significant two-
dimensional character, associated with the coupling of the
moments transverse to the field direction and starting from
a fully polarized state.
We have studied linear avalanche-like reversal in the

polarization of the nanomagnet moments in an appropri-
ately oriented ASI array. By analyzing the statistics of the
reversed moments, we find that this system provides a clear
experimental manifestation of the 1D-RFIM. Based on the
capacity to image individual moment orientations after
successive avalanches, we also demonstrate a generally
applicable method to extract the underlying random field
distribution. Significant additional data, derivations, exper-
imental techniques, and references [26] are included in the
Supplemental Material [27].
We examined avalanche phenomena in an ASI system

designed to produce strictly one-dimensional avalanches.
Specifically, we studied a rotated version of the canonical
square ice system [see Fig. 1(a) [28] ], where each island
was a single ferromagnetic domain with magnetization
oriented along the long axis by shape anisotropy. Because
of the rotation of our structure, the islands formed vertical
columns [Figs 1(d),1(e)], with the island axes, and thus
the magnetic moments, oriented at 45° from the column
direction (similar to the geometry in Ref. [15,29]). Our
square arrays had size L ¼ 70, 80, and 100, where L is the
number of islands on each side of an array. The permalloy,
Ni80Fe20, islands were patterned by e-beam lithography
with a nominal island size of 220� 11 nm × 80� 8 nm
with nominal thickness of 15 nm, a lattice constant of
a ¼ 320 nm [defined in Fig. 1(d)]. The islands were
capped with 3 nm of Al (forming Al=AlOx) to prevent
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oxidation. To demonstrate reproducibility, we measured
four arrays with L ¼ 70, and three arrays each for L ¼ 80
and 100, and the results are qualitatively consistent across
all arrays. For the purpose of indicating which data are from
which array, the arrays are labeled A,B,C,D, for L ¼ 70,
and A,B,C, for L ¼ 80 and 100.

Our arrays, as-grown, had all their moments arranged
in the ordered ground state of the square ice system, a
phenomenon observed previously as the formation of
extended domains in larger arrays [30]. In the ground
state, alternating columns of nanomagnets have opposite
polarizations, either up or down in Fig. 1 (tilted at 45° due
to the island rotation). Application of a field along the
columns only flips moments that are anti-aligned with the
field, i.e., those in every other column. This arrangement
enforces the one-dimensional nature of the magnetic
reversal. The measured magnetization as a function of
applied field for a very large array (L ¼ 10 000), is shown
in Fig. 1(c). The steep part of the curve is associated with
moments flipping to align with the external field.
Our choice of island thickness ensured that the moments

were thermally stable and could be measured by magnetic
force microscopy (MFM) without alteration of the moment
state [typical data are shown in Fig. 1(b)]. We took data by
applying a magnetic field (Hext), reducing the field to zero,
and then mapping the orientation of the moments with
MFM. We repeated this process for gradually increasing
values of Hext until the system was fully polarized,
allowing us to track successive increases in the number
of flipped moments. The field was aligned with the array
using Au alignment bars and a precision rotation stage with
�0.5° resolution (SQUID magnetization measurement
indicated that angles up to 10° did not impact the data).
We indicate the studied values of Hext on Fig. 1(c), and
additional data and our digitization technique are described
in the Supplemental Material [27] (Sec. SI-2).
In Fig. 2, we show the measured moment configurations

from one of the L ¼ 70 arrays for a set of successively
increasing values of Hext. The flipped moments are
indicated in red, and a cursory examination reveals that
they occurred in clusters, growing in avalanchelike steps

FIG. 1. (a) Atomic force microscope image of the rotated
square lattice. (b) Magnetic force microscope (MFM) image of
the ground state of L ¼ 70 array, sample C. (c) Normalized
magnetization measured with a Quantum Design SQUID mag-
netometer (MPMS 3) as a function of applied field for an L ¼
10 000 array (blue circles), and the fields (red stars) correspond-
ing to the values of Hext used in the MFM studies. (d) Schematic
of the lattice with arrows indicating initial moment configuration,
and the yellow arrow indicating the direction of Hext. The lattice
constant for the structure is also indicated as a. (e) Schematic of
the lattice with arrows indicating the polarized state moment
configuration.

FIG. 2. Digitized moment maps for the field evolution of avalanche growth for an L ¼ 70 array, sample C. The blue stripes represent
columns of moments that were aligned with the Hext direction in the initial state of the system. The white points represent moments that
were anti-aligned with Hext in the initial configuration. The red points represent moments that flipped to align with the field.
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with each increasing value of Hext. The size of a cluster of
flipped moments, S, can be defined as the total number of
consecutive flipped moments along a column at a given
Hext. Because we imaged in zero field at remanence, we did
not examine the dynamics of the moment flipping process
(which is expected to occur many orders of magnitude
faster than MFM imaging) [15].
The MFM maps of moments for each value of Hext were

converted to a distribution of cluster sizesDðS;HextÞ, which
is plotted below in Fig. 5. In Fig. 3, we show an average of
the distributions of cluster sizes,DavgðSÞ for all of our arrays
for each of our three different array sizes with the data binned
logarithmically as a function of S, for S < L. Note that
DavgðSÞ is averaged over all values of Hext for which island
moments reversed, and over samples with the same L,
then normalized by the number of moments initially
aligned antiparallel to Hext, i.e., L2=2. For DavgðSÞ, we also
discarded any system-spanning clusters of size S ¼ L. The
collapse of the data in Fig. 3 indicates the presence of a
robust and broad range of length scales, and that clusters
smaller than L are not significantly affected by system size
effects. The observed functional form is consistent with our
theoretical predictions, as discussed below.
The islands in ASI have disorder associated with the

polycrystalline nature of the permalloy and with imperfec-
tions in the lithography (see Supplemental Material [27],
Sec. SI-1). The resulting disorder should be reflected in the
energetics associated with the nucleation of moment
reversals as well as the interactions among neighboring
moments, and it has been shown previously to impact the

physics of ASI [31–34]. Because of the effective one-
dimensional nature of our structure, the 1D-RFIM is a
natural model for our experimental data that can reflect the
underlying physics through a simple parametrization of the
disorder.
The 1D-RFIM for Ising-like spins has the general

Hamiltonian [6,7]

H ¼ −X
i;j

Jijsisj −
X
i

ðHext þHiÞsi: ð1Þ

Here, si denotes a particular spin, Jij the dipolar
interaction strength between spins i and j, Hext denotes
the external field, andHi denotes an effective intrinsic field
that varies randomly between sites (see Supplemental
Material [27], Sec. SI-1). A simple Ising spin model
where each spin can only take discrete values of �1 is
applicable because of the strong shape anisotropy of the
islands [6,7,28,35,36].
We take Jij ≡ J > 0 for the nearest neighbors along a

column of moments that can be flipped by Hext [the white
and red moments in Figs. 1(d),1(e) respectively]. The
nearest neighbor moments in adjacent columns (the blue
moments in those figures) were aligned with Hext and
remained fixed during an avalanche. Thus, the interaction
field associated with them can effectively be viewed as a
small shift in the mean of Hi (longer-range interactions
among more distant columns appear to be negligible, as
discussed in the Supplemental Material [27], Sec. SI-3). We
can then view the Hamiltonian as

H ¼ −X
<i;j>

½sjJ þHext þHi�si: ð2Þ

Based on the central limit theorem, the random field
strengths are typically assumed to follow a Gaussian
distribution [6,35]

ϕðHiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πR2

p e−ðHi−hÞ2=2R2

; ð3Þ

where the width of the distribution, R, represents disorder
strength, and h is the center of the distribution. We use the
Gaussian distribution in the discussion below, and we
verified that it represents the data better than a
Lorentzian distribution (see Supplemental Material [27],
Sec. SI-11). We can include all randomness in Hi, because,
in one dimension, any randomness in J can be mapped onto
an additional randomness in Hi for homogeneous nearest
neighbor coupling [35].
For our experimental configuration, the moments that

were flipped by the field were initially oriented opposite
Hext (downward in Fig. 1). As Hext was increased beyond
the intrinsic field and the interaction term, moments
associated with weaker random fields flipped their orien-
tations. This impacted the energetics for nearby moments
along the same column, and thus multiple moments

FIG. 3. Averaged distribution, DavgðSÞ for clusters smaller than
the system size (S < L), averaging over all samples with a
given L. In an infinite system this quantity is expected to follow a
S−1 power law (dashed line) as derived in the Supplemental
Material (Sec. SI-7). In a finite system it is modified by a fitted
exponential cutoff (Supplemental Material, Sec. SI-5). A fit to
this form for L ¼ 80 is shown (dash-dot line).
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typically flipped together in an avalanche for a particular
value of Hext, until the avalanche hit a particularly strong
random field, collided with a separate cluster of already-
flipped moments in the same column, or reached the
sample edge. The probability, pðHextÞ, that a growing
cluster that has propagated to site [i] continues to a site
[iþ 1] depends on Hext through the relation

pðHextÞ ¼ PðHiþ1 > −Hext − αJÞ; ð4Þ
where we approximate the interaction term as αJ, with the
exact value of α depending on geometric factors that do not
affect our analysis. Note that, at the edge of a propagating
avalanche, the interaction term is constant, as there is
always a previously flipped moment behind the edge of the
avalanche as it propagates, and a moment that has yet to flip
ahead of the propagating avalanche.
To compare with experiment, we obtain pðHextÞ from the

measured distribution of cluster sizes, DðS;HextÞ. We
neglect collisions of the avalanches with other clusters
or the sample edge, a reasonable approximation for
sufficiently low Hext (discussed below). A cluster always
consists of at least one moment-flip and has S ¼ 1 with
probability ∝ð1 − pÞ2, which is the probability that both
nearest neighbors of the single flipped moment remain
unchanged. Likewise, as p is constant at the edge of a
growing cluster of flipped moments, a cluster is of exactly
size S with probability ApS−1ð1-pÞ2, where A is a nor-
malization constant, defined as A ¼ ð1-pÞ−1. As a result,
the cluster size distribution is given by

DðS;HextÞ ¼ ð1 − pÞpS−1: ð5Þ
We analyze the cluster data through the complementary

cumulative distribution function (CCDF), which is the
distribution of clusters of size S or greater for a given
Hext. From Eq. (5) we obtain the following CCDF:

CðS;HextÞ ¼ ½pðHextÞ�S−1: ð6Þ
We fit Eq. (6) to our experimental data at each value of

Hext [example fits shown in Fig. 4(a)] to find individual
values of pðHextÞ [Fig. 4(b)]. We find good agreement with
the model, especially for small values of p, where finite
size effects are minimized.
If the random field is normally distributed, we expect

pðHextÞ ¼ PðHiþ1 > −Hext − αJÞ

¼
Z

Hext

−∞
1ffiffiffiffiffiffiffiffiffiffiffi
2πR2

p e
−ð−x−h0Þ2

2R2 dx; ð7Þ

where, h0 ¼ hþ αJ. From the values for pðHextÞ, we can
obtain the parameters h0 and R in the distribution of random
fields [fit in Fig. 4(b), and additional fits in Supplemental
Material [27], Sec. SI-8]. Reconstructions of the distribu-
tions of random fields, using the values h0 and R extracted
from the same fitting process of CðS;HextÞ and pðHextÞ for

the nominally identical L ¼ 70 arrays, are shown in
Fig. 4(c). The distributions show small variations as might
be expected from, e.g., imperfections in the lithography.
Using the fits to pðHextÞ, we can additionally test some

of the assumptions used in our derivations. In Fig. 4(d),
we plot moments of the cluster size distribution, (hSni) for
one array. As shown in the Supplemental Material [27]
(Sec. SI-6), the nth moment on an infinite lattice is expected
to be given by

hSni≡X∞
S¼1

SnDðS;HextÞ ¼ ð1 − pÞ
��

d
dp

�
p

�
n 1

1 − p
:

Here, we consider all external fields for which moments
flipped. The data show good agreement with this expres-
sion for p → 0, indicating that the nearest neighbor cluster
description is justified. Conversely, the lack of agreement
for p ∼ 1 is expected, since that regime is near full
polarization, where finite-size effects and cluster collisions
become non-negligible.

FIG. 4. (a) Complementary cumulative distribution functions
(CCDFs) of cluster sizes for a single L ¼ 70 array, (sample A),
and Hext ¼ 430.5, 434.5, 439, 444, 448, 452, 456, 460, 466, and
470 Oe. The dotted lines are fitted model predictions. (b) The
experimentally recovered values of pðHextÞ calculated from the
data and fits in (a). The blue line is predicted from Eq. (7) with
fitted values of R ¼ 19.2� 1.0 and h0 ¼ 426.6� 0.7 Oe.
(c) Gaussian distributions of random fields [Eq. (3)] using the
fitted values of R and h0 for all four arrays with L ¼ 70 (samples
A, B, C, and D). (d) Moments of the cluster size distribution
plotted as a function of 1-p, for the single L ¼ 70, sample A
array, where dashed lines show the model prediction as discussed
in the text. Here, we include fields in which spanning clusters are
present, so that the deviation from the model due to finite size at
smaller values of 1-p is apparent.
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In Fig. 5(a), we plot the distribution DðS;HextÞ, without
averaging over Hext. In Fig. 5(b), we scale these data,
using our fitted values of pðHextÞ, with the approximate
form DðS; HextÞ ∼ S−1F½Sð1-pÞ� where F½Sð1-pÞ�∼
Sð1-pÞe−Sð1-pÞ, as derived for an infinite system near p ≈
1 in the Supplemental Material [27] (Sec. SI-7). As can be
seen in the figure, the data collapse is good and follows the
predicted scaling form, indicating that our model is valid for
most values ofHext, even in the presence of finite size effects
and cluster collisions. Thus, the random field in our analysis
dominates corrections from these effects, except at the largest
Hext, where all moments are polarized. We also note that,
not considering normalization issues, on an infinite lattice, we
expectDavgðSÞ (plotted in Fig. 3) to follow an S−1 power law
(see Supplemental Material [27], Sec. SI-7). We fit the data
in Fig. 3 to this form with an exponential prefactor, i.e.,
DavgðSÞ ∼ e−S=SmaxS−1, where the cutoff Smax is a fitting
parameter that reflects a finite correlation length for the
clusters in a finite system, further validating our approach.
The above results are qualitatively equivalent across

multiple samples, as demonstrated in several sections of the
Supplemental Material [27]. We therefore conclude that the
square ASI system provides a robust experimental reali-
zation of the nonequilibrium 1D-RFIM. While the RFIM is
a seminal model in statistical mechanics, experimental
extractions of distributions of disorder strengths (such as
the underlying random fields or, equivalently, random
anisotropies) have been quite rare. The above results
demonstrate a general method for reconstructing the under-
lying distribution of random fields from the distribution of
cluster sizes. The results of this reconstruction, obtained
from one specific history of the sample, allows us, in
principle, to predict the system’s behavior under all
possible histories. This possibility is supported by previous
findings of return point memory in square ASI [37].

Although we are primarily concerned with the 1D-
RFIM, our methods should be easily transferable to spin
lattices of higher dimension. They should be especially
pertinent to quasi-one-dimensional and two-dimensional
systems, where similar imaging techniques can be utilized.
Furthermore, by careful control of the ASI fabrication, we
should be able to probe the statistical properties of the 1D-
RFIM by controlling the sources of disorder. Importantly,
our methodology for measuring the successive states of
growing clusters should be accessible in many other
systems where avalanche-type behavior is observed and
can be measured, e.g., materials testing and hazard pre-
vention. The resulting applicability of the well-studied 1D-
RFIM to understanding of such behavior should open the
door to a range of both fundamental and applied studies.
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