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Topological edge states (TES) exhibit dissipationless transport, yet their dispersion has never been
probed. Here we show that the nonlinear electrical response of ballistic TES ascertains the presence of
symmetry breaking terms, such as deviations from nonlinearity and tilted spin quantization axes. The
nonlinear response stems from discontinuities in the band occupation on either side of a Zeeman gap, and
its direction is set by the spin orientation with respect to the Zeeman field. We determine the edge
dispersion for several classes of TES and discuss experimental measurement.
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Introduction.—Topological materials such as topological
insulators, Weyl semimetals, and transition metal dichal-
cogenides, are novel quantum materials hosting helical or
chiral spin-momentum locked states on their surfaces and
edges [1–15], which may enable dissipationless transport.
This fact, coupled with the possibility of electrically driven
topological phase transitions [16–19] has led to an explo-
sion of interest in topological edge state transistors as
novel, power-saving building blocks for next-generation
integrated circuits [17,20–25]. The first step in this road
map is achieving reliable ballistic samples, in which the
electron mean free path l is much greater than the length d
of the channel. The corresponding conduction picture is
frequently described by the Landauer-Buttiker formalism
[26–45].
The ballistic regime can exhibit linear as well as non-

linear transport, as observed in quantum point contacts,
three-terminal ballistic branches, asymmetric microjunc-
tions and related structures [34,46–59]. The transport
properties of conventional devices such as quantum point
contacts are typically tailored by device geometry in a
similar fashion to the transmission properties of a wave-
guide [60]. On the other hand, topological edge states are
expected to exhibit inversion symmetry breaking terms
intrinsic to the edge Hamiltonian, which itself should
enable a nonlinear electrical response in the technologically
relevant ballistic regime, without additional structure inver-
sion symmetry built into the device. Nevertheless this
nonlinear phenomenon has not been considered to date,
in fact the presence of inversion-symmetry breaking terms

in the dispersion has never been probed, because the
standard tools for this, angle-resolved photoemission and
scanning tunneling microscopy, do not work for single
edges. This knowledge gap motivates us to develop here a
quantum kinetic theory for the nonlinear response of
ballistic topological edge states. We focus on the simplest,
but experimentally most relevant, case of a single channel
with perfect transmission to the contacts. We find the
nonlinear contribution to the current

jð2Þ ¼ ðe3=hÞðVL − VRÞ2½f0ðEZ − μÞ − f0ðEZ þ μÞ�: ð1Þ

FIG. 1. Second-order response of quantum spin-Hall edge
states in the ballistic regime in response to a potential difference
between the left and the right electrodes at a finite Zeeman energy
EZ (meV) for different chemical potentials μ (meV) at a fixed low
temperature T ¼ 5 K.
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This is the central result of our work. Here f0ðEZ − μÞ is the
derivative of the Fermi Dirac distribution function ½1þ
eβðEZ−μÞ�−1 with respect to the Zeeman energy EZ, with
β ¼ 1=ðkBTÞ, kB the Boltzmann constant, T the absolute
temperature, while μ is the chemical potential, and VL (VR)
is the potential of the left (right) electrode.
Moreover, it is nonzero only due to the asymmetry

created by the Zeeman energy as illustrated in Fig. 1. Here
we have plotted the second-order current as a function of
the Zeeman energy and the chemical potential referring the
experimental setup shown in Fig. 2. It is observed that jð2Þ
follows the smeared δ-function shape due to the wave
vector derivative of the Fermi function. Note that for
vanishing Zeeman energy, the current becomes zero. The
response is unidirectional, with the direction set by the spin
orientation with respect to the magnetic field, and has
opposite signs on the two edges. The nonlinear part of the
current changes sign on reversing the direction of the
Zeeman term. The necessity of a Zeeman field reflects
the fact that, beyond the linear regime, the role of time-
reversal symmetry is nontrivial [61–69]. It is consistent
with the recent finding that a nonreciprocal current requires
time-reversal symmetry breaking either by magnetic order
at the microscopic level or by incorporating irreversibility
at the macroscopic level [70]. In the presence of time-
reversal symmetry, the symmetrical shift in the electronic
band structure in the valence and conduction bands due to
the potential gradient between two electrodes nullifies the
net motion of the carriers [70,71].
In order to make concrete experimental predictions,

below we evaluate the ballistic nonlinear edge response
for several classes of topological materials such as Na3Bi,
Bi2Se3, HgTe, WTe2 and quantum anomalous Hall edge
states. Our main conclusions are (i) unlike linear response,
the nonlinear response can ascertain the presence of
symmetry-breaking terms in the dispersion, an important
step forward considering that the dispersion of topological
edge states has never been probed; (ii) the shape of the
nonlinear response as a function of chemical potential and
Zeeman energy does not depend on the details of the band
structure. Yet the response only occurs if mirror-symmetry

breaking terms are present in the band structure. Hence if a
ballistic nonlinear response exists, it has the shape of Fig. 1;
(iii) physically, the nonlinear response arises when there is
a discontinuity in the linear current. To detect a finite
nonlinear electrical response one straightforwardly tunes
the chemical potential through the Zeeman gap, whether at
the origin or at finite wave vector, while monitoring the
voltage at twice the applied frequency. (iv) Although
Zitterbewegung terms are formally present in the response
we find they have no physical consequences in one
dimension, and the Berry connection does not play a role
in ballistic transport.
Quantum kinetic theory.—We begin with the quantum

Liouville equation for the density operator ρ̂,

∂ρ̂
∂t þ

i
ℏ
½Ĥ; ρ̂� ¼ 0; ð2Þ

where H ¼ H0 þ V is the full Hamiltonian of the system,
with H0 the edge state Hamiltonian and VðxÞ the applied
electrostatic potential. Projecting this equation onto the
eigenstate basis of H0 and performing a Wigner trans-
formation [72,73], as described in the Supplemental
Material [74], we obtain for the Wigner function f ≡
fðk; x; tÞ [75–78]

∂f
∂t þ

i
ℏ
½H0; f� þ

1

2

�
v;
∂f
∂x

�
¼ D: ð3Þ

The Wigner function f ≡ fðk; x; tÞ plays the role of a
(matrix) distribution and is a matrix in the band represen-
tation, while v ¼ ℏ−1ð∂H0=∂k − i½Rk; H0�Þ is the velocity,
Rk ¼ hukji∇juki is the Berry connection with juki the
lattice-periodic part of the Bloch function, and the driving
term D ¼ −e=ℏ∂V=∂xð∂f=∂k − i½Rk; f�Þ. It is convenient
to take the Fourier transform (FT) of Eq. (3) with respect to
space and time,

−iωf̃ þ i
ℏ
½H0; f̃� −

iq
2
fv; f̃g ¼ D̃ðq;ωÞ; ð4Þ

where f̃ðk; q;ωÞ depends on the pseudomomentum q. The
driving term D̃ is independent of time, thus the time FT
results in D̃ðq;ωÞ ∝ δðωÞD̃ðqÞ which will contribute only
at ω ¼ 0. Because of this, we neglect the frequency
dependence of f̃ðk; qÞ. We decompose the matrices in
terms of the 2 × 2 Pauli basis as f̃ ¼ S̃0I þ S̃1σxþ
S̃2σy þ S̃3σz, v¼v0Iþv1σxþv2σyþv3σz, where S̃i, and
vi represent the components of the Wigner function
and the velocity associated with the corresponding
Pauli matrices σi, respectively. Since we are working
in the energy eigenstate basis the edge Hamiltonian
H0 ¼ ε0I þ ε3σz, with εi labeling the two (matrix) com-
ponents of the dispersion. This decomposition leads to a set
of four equations corresponding to the identity matrix and

FIG. 2. Schematic of the experimental setup for measuring the
nonlinear current. The voltages are measured along the left and
right electrodes. Here the edge states occur in pairs having spin-
up (blue) and spin-down (yellow). Thick lines refer to occupied
states and thin lines to unoccupied states.
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three Pauli matrices. The resulting equations can be
expressed in matrix form as M̃ f̃ ¼ D̃, where M̃ is a
4 × 4 matrix, given in the Supplemental Material [74].
Transforming back to real space yields the convolution
structure

fðk; xÞ ¼
Z

dx0M−1ðx − x0ÞDðx0Þ: ð5Þ

Inserting the expressions for v, and f, one can find the
current using the definition [73], j ¼ −eTrðvfÞ to Nth
order of the potential (Tr being the full operator trace)

jðNÞ ¼ −
e2

h

Z
x

0

dx0
∂V
∂x0 pðx

0Þ þ e2

h

Z
x

d
dx0

∂V
∂x0 pðx

0Þ: ð6Þ

Here the x integral is for the length of the channel where

the potential is intact, pðx0Þ ¼ ½SðN−1Þ
0 ðx; x0Þ�k¼0, where

SðNÞ
0 ðx;x0Þ ¼M−1

11 ðx− x0ÞDðNÞ
0 ðx0ÞþM−1

12 ðx− x0ÞDðNÞ
1 ðx0Þþ

M−1
13 ðx− x0ÞDðNÞ

2 ðx0ÞþM−1
14 ðx− x0ÞDðNÞ

3 ðx0Þ and d is the
length of the channel. The direct contributions stemming
from other elements of the density matrix such as S1, S2,
and S3 cancel out due to the cancellation of terms after
taking the product of the matrix elements of the M−1ðxÞ
with the velocity components, thus do not contribute to the
main expression for the nonlinear current. However, the
indirect contributions of such terms still survive through
the driving terms. The detailed derivation of Eq. (6) is given
in the Supplemental Material [74]. Further, in Eq. (6), the
first term is for the carriers moving towards the right side of
the electrode or right movers and the second term for the
left movers. For the linear order orN ¼ 1, the quantity pðxÞ
reduce to Sð0Þ0 which is the equilibrium part of the density
matrix and it is equivalent to fs0, where fs0 ¼ f0ðεþÞ þ
f0ðε−Þ is the sum of the equilibrium distribution functions
at the energies correspond to the conduction (þ) and the
valence (−) bands. The distribution function is independent
of the space variable, thus can be pulled out from the
integrand and the spatial integration over x can be per-
formed easily. The latter results the linear current as
e2=hðVL − VRÞfs0. At the low temperature and when the
chemical potential lies in one of the bands, the current
becomes e2=hðVL − VRÞ. This is consistent with the
Landauer-Buttiker formula for the conductance [27,35].
However, if the chemical potential lies in the gap between
the valence and conduction bands, the current vanishes.
In the nonlinear regime or the second-order case,

the current becomes proportional to the first power

of the density matrix Sð1Þ0 at k ¼ 0. The latter quantity
using the definitions for the driving terms can be written

as Sð1Þ0 ðx;x0Þ ¼ ∂V=∂x0½M−1
11 ðx−x0Þ∂fs0=∂kþM−1

12 ðx−
x0ÞR2fd0þM−1

13 ðx−x0ÞR1fd0þM−1
14 ðx−x0Þ∂fd0=∂k�, where

fd0 refers to the difference between the equilibrium

distribution function at different bands. To solve the space
integral, it is convenient to split the matrix elements into
two parts M−1

ij ðxÞ ¼ ½M−1
ij �a þ ½M−1

ij �be−xgðkÞ, having the
first part of the element as space independent while the
other part depends. The forms of different elements of
the inverse of the matrix M are mentioned in the
Supplemental Material [74]. Here

gðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv23 − v20Þε23
ℏ2v20ðv20 − v21 − v22 − v23Þ

s
ð7Þ

determines the Zitterbewegung or decaying nature of the
current depending on the strengths of the velocity compo-
nents. However, in the present study we find that at k ¼ 0
the terms associated with the exponential factor approaches
to zero due to the diverging nature of gðkÞ for a model
having finite value of the component of the velocity v0. In
other cases, this term does not appear in the matrix
elements, and we can drop it in the remaining analysis.
The general expression for the ballistic second-order
current is

jð2Þ ¼ e3ðVL − VRÞ2
h

�
M−1

11

∂fs0
∂k þM−1

14

∂fd0
∂k

�
k¼0

: ð8Þ

Hamiltonian.—We consider a generic edge of finite
length d which is described by the total Hamiltonian
H ¼ H0 þHZ þ VðxÞ, where H0 is the Bloch band
Hamiltonian corresponding to the edge dispersion of the
system under consideration,HZ is the Zeeman energy term,
and VðxÞ the applied potential difference. We briefly sketch
the derivation for the edge state Hamiltonian for Bi2Se3
within the k · p theory framework [79]. We start with the
effective 4 × 4 Hamiltonian for Bi2Se3 in the basis
fψc↑;ψv↑;ψc↓;ψv↓g which has the block diagonal form

H ¼
�
hþðkÞ 0

0 h−ðkÞ

�
: ð9Þ

Here the block matrices h� ¼ E0I þD0ðk2x þ k2yÞIþ
λðk3x − 3kxk2yÞσz − αk∓σy, where the second term, which
is the quadratic term in the wave vector, refers to the kinetic
energy term having D0 as a material-dependent parameter,
the third term is for the warping which reduces the infinite
mirror planes to three [80] whose strength is considered by
the warping coefficient λ, and the last term represents the
spin-orbit interaction having α a spin-orbit coupling con-
stant, E0 is a constant term, and k� ¼ kx � iky, where
kx (ky) is the component of the wave vector along the x̂ (ŷ)
direction. To obtain the Hamiltonian for the edge states, we
consider a finite size system that is placed in the x-y plane
and is defined between the boundaries as −d=2 < y < d=2
along the x̂ direction. Because of the broken translational
symmetry for the ŷ direction, the wave vector ky needs to be
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replaced by an operator −i∂y and the eigenvalue equation
for the upper and lower block matrix separately using the
Schrodinger equation hsðkx;−i∂yÞΦs

0 ¼ EsΦs
0 has been

solved where Φs
κ ¼ eikxxeκyψ s is the edge wave function

for the above Hamiltonian having κ as real numbers,
and s ¼ þ1 (−1) for the upper, ↑ (lower, ↓) block. In prin-
ciple, the resulting calculation is too complex and it is
difficult to obtain the analytical expressions. To proceed,
we first solve the edge wave function in the limit λ → 0
and project the total Hamiltonian onto these edge wave
functions fψ↑;γ

0 ðrÞ;ψ↓;γ
0 ðrÞg with γ ¼ �. We find that

the Hamiltonian yields the dispersion ε� ¼ E0�
αkxσz. Then, we find the elements of the effective
edge Hamiltonian along the x̂ direction using Hγss0

edge¼
hΨ̃s;γ

0 ðrÞjhsðkx;−i∂yÞjΨ̃s0;β
0 ðrÞi, where Ψ̃s;γ

0 ðrÞ is the nor-
malized edge wave function. Finding the diagonal and
off-diagonal elements taking into account the spin-orbit
coupling and finite warping coefficient, the effective edge
Hamiltonian after rotating the Pauli matrices σz → σx, and
σy → σz takes the form

Hγ
edgeðkxÞ ¼ E0I þD0k2xI þ λk3xσx þ αkxσz: ð10Þ

The details are provided in the Supplemental Material [74].
Adding the Zeeman energy term is equivalent to shifting
the wave vector k by k − EZ=A, which ensures that for the
nonlinear current to be finite, the term ∝ λ is indispensable
(this is a descendant of the well-known warping term in 2D
systems). There will be no nonlinear response for this
magnetic field orientation if λ ¼ 0: hence an experimental
measurement of a current at twice the applied frequency
would immediately indicate that λ is finite. The edge energy
dispersion for this model at the different Zeeman energy EZ
is demonstrated in Fig. 3. Interestingly, there is another case
where the finite Zeeman energy along the σz opens a gap
between conduction and valence bands in the dispersion,

resulting the increase in the net current. In a similar way,
we have derived the edge Hamiltonian for WTe2
(Supplemental Material [74]).
Applications to topological materials.—We applied our

general nonlinear theory for ballistic transport to various
modeled systems. First, we consider the case for the
inversion symmetric topological insulator Bi2Se3 whose
edge dispersion is given by Eq. (10). Now, on adding the
Zeeman energy term ∝ σz, the origin in the momentum
space gets shifted and the dispersion here is described by
ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðk − EZ=AÞ6 þ A2k2

p
σz. We find that when

EZ → 0, the second-order current vanishes as shown in
Fig. 1 due to the vanishing fd0 ¼ f0ðεþÞ − f0ðε−Þ at k ¼ 0.
However, the finite EZ yields a nonzero second-order
current, which increases at low energy and then saturates
at low temperatures when the Zeeman energy and the
chemical potential become equal, as depicted in Fig. 4.
Nevertheless, as the temperature rises jð2Þ decreases due to
the broadening of the delta function.
Second, for the WTe2 model the edge dispersion is

represented as ε ¼ ε0I þ ε3σz, where ε0 ¼ Dk2, and
ε3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEZ þ AkÞ2 þ ðCkþ λk3Þ2

p
. Here the kinetic

energy takes into account the particle hole asymmetry
and the Zeeman term along ẑ direction shifts the k points by
an amount EZ=A as mentioned earlier. In the same way as
with Bi2Se3, we find that a finite λ leads to a finite value for
the nonlinear current. This can be probed by varying the
Zeeman energy and has behavior depicted in Fig. 1.
Moreover, in both cases the nonlinearity can be increased
by increasing the potential difference between the source
and drain electrodes.
Third, for the edge states of quantum anomalous Hall

insulators, the edge dispersion is ε0 ¼ tk, where t is a
material dependent parameter. This degenerate dispersion
for two bands gives the nonlinear current at the low
temperature as δðμÞ, which survives only at zero chemical

FIG. 3. Edge energy dispersion for Bi2Se3 with the Zeeman
energy term, but without the particle-hole symmetry term at fixed
warping coefficient λ ¼ 100 eVÅ3.

FIG. 4. Nonlinear current as a function of the chemical
potential (μ), which is set equal to the Zeeman energy (EZ) at
different low temperature values: 5, 7.5, and 10 K.
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potential. It is to be noted that μ ¼ 0 lies on the top of the
valence band where the dispersion actually starts, thus in
practice it will be rather challenging to observe the non-
linear current for quantum anomalous Hall edge states.
Finally, for the HgTe edge states we find that jð2Þ vanishes
with the linear wave vector Hamiltonian [81] along the ẑ
direction due to the absence of the warping and Zeeman
field effects. The details are provided in the Supplemental
Material [74].
In summary, we have shown that ballistic topological

edge states exhibit a nonlinear response in the presence of
inversion- and Kramers symmetry-breaking terms, which is
nonzero on either side of a Zeeman gap, and provides an
experimental probe ascertaining the presence of symmetry-
breaking terms in the edge dispersion.
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