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The Bose polaron has attracted theoretical and experimental interest because the mobile impurity is
surrounded by a bath that undergoes a superfluid-to-normal phase transition. Although many theoretical
works have studied this system in its ground state, only a few analyze its behavior at finite temperature. We
have studied the effect of temperature on a Bose polaron system performing ab initio path integral
Monte Carlo simulations. This method is able to approach the critical temperature without losing accuracy,
in contrast with perturbative approximations. We have calculated the polaron energy for the repulsive and
attractive branches and we have observed an asymmetric behavior between the two branches. When the
potential is repulsive, the polaron energy decreases when the temperature increases, and contrariwise for
the attractive branch. Our results for the effective mass and the dynamical structure factor of the polaron
show unambiguously that its quasiparticle nature disappears close to the critical temperature, in agreement
with recent experimental findings. Finally, we have also estimated the fraction of bosons in the condensate
as well as the superfluid fraction, and we have concluded that the impurity hinders the condensation of the
rest of bosons.
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Since the first experimental observations of the Bose
Einstein condensate in alkali gases [1,2], BEC systems
have been widely used as quantum simulators of a rich
variety of problems in solid and condensed matter physics.
Probably, the realization of the BCS-BEC crossover in
Fermi gases [3] and the implementation of the celebrated
Bose-Hubbard model are among the most relevant achieve-
ments [4]. All that has been possible due to the high
tunability of the interatomic interactions and the versatility
to explore physics in reduced geometry.
The polaron problem, i.e., a single impurity immersed in

a Fermi or Bose bath, is another example of the power of
ultracold quantum gases to tackle old theoretical issues.
The first theoretical formulation of the problem backs to
Landau and Pekar [5] who studied the quantum nature of a
single electron in a polar solid. The polaron couples to the
medium forming a dressed particle who was termed as a
quasiparticle. This quasiparticle behaves at low momenta as
a free particle, but with an effective mass which includes at
first order the interactions with the surrounding bath.
Depending on the quantum statistics of the bath one

distinguishes between the Fermi and Bose polaron. The
Fermi polaron was studied the first due to the experimental
achievement of Feshbach resonances that made possible to
observe its properties [6,7]. More recently, the Bose
polaron has attracted also the interest from both theory
and experiment. In fact, the Bose polaron offers the
stimulating opportunity of studying the physics of the
impurity in a bath that suffers a phase transition from a
superfluid to a normal gas at a critical temperature Tc.
Interestingly, it has been theoretically predicted that the

Bose polaron loses its quasiparticle nature at the critical
temperature of the bath.
In a first approach, the Hamiltonian of a mobile impurity

in a bath of bosons can be simplified using the Bogoliubov
approximation. The resulting Hamiltonian can then be
mapped onto the Frlich polaron Hamiltonian and solved
using variational schemes [8,9]. However, this theory is
only valid for weak boson-impurity interactions where the
Bogoliubov approximation still holds. Other theoretical
approaches that study strong coupling systems have been
considered: renormalization group theory [10], quantum
Monte Carlo [11–13], variational methods [14–19], and
diagrammatic approaches [20], as well as analysis on the
nonequilibrium dynamics of the quasiparticle [21–25].
Nonetheless, the effect of temperature has not been
included in such analysis. Experimental studies have also
been performed in the regime of strong boson-impurity
interaction [26,27] concluding that a study on the effects of
temperature on this system would be interesting.
Only few works included temperature to the system

using: perturbation theory [28] (only valid for a weak
boson-impurity interaction), time-dependent Hartree-Fock
Bogoliubov (TDHFB) theory [29,30] and large 1=N
expansions [31]. Other works that proposed a diagrammatic
scheme and studied the strong coupling regime have found
unusual behaviors such as the splitting of the ground state
quasiparticle into two branches when the temperature is
increased [32]. Nevertheless, a more recent work claimed
that indeed the number of attractive branches is related to
the number of hole excitations in the proposed Ansätäze
[33]. A recent study using dynamical variational theory
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found broadening of the spectral lines with increasing
temperature [34]. Besides, recent experiments that have
performed temperature analysis on the Bose polaron have
concluded that, close to Tc, the quasiparticle picture
disappears [35]. This breakdown of the quasiparticle has
been theoretically suggested in Ref. [36] and seen in
cuprate superconductors [37,38].
In this Letter, we characterize in an exact way (with-

in controlled statistical noise) the Bose polaron at finite
temperatures performing ab initio path integralMonte Carlo
(PIMC) simulations. Contrarily to previous perturbative
and variational approaches, the PIMC conserves accuracy
when Tc is approached and crossed. Our results agree with
experimental signatures [35] on the suppression of the
quasiparticle behavior of the polaron when the critical
temperature is approached. The dynamic structure factor
of the polaron does show a single peak with an energy
increasing as the squaredmomenta, in contrastwith previous
perturbative results which show a double structure until Tc.
Model.—The Hamiltonian of a mobile impurity sur-

rounded by a bath of N bosons at temperature T is
described as follows:

H ¼ −
XN

i¼1

∇2
i −∇2

I þ
X

i<j

VBðrijÞ þ
XN

i¼1

VIðriIÞ; ð1Þ

written in units of ℏ2=ð2mBÞwhere we consider the mass of
the bosons (mB) and of the impurity (mI) equal. The two
first terms of the Hamiltonian correspond to the kinetic
energy of the bosons and the impurity. The rest of the terms
are the boson-boson (VB) and the boson-impurity (VI)
interactions, that depend only on the modulus of the
interparticle distance. We model the different potentials
using continuous functions [39]: VBðrÞ is always a repul-
sive potential whereas VIðrÞ is chosen as repulsive or
attractive depending on the repulsive or attractive polaron
branch under study, respectively. Our study is carried out
under universality conditions for the gas parameter na3

[50], with n ¼ N=V the density of the bath and a the s-
wave scattering length of the B-B interactions (considered
as unit length). In all our work, we use as energy unit
gn ¼ ð4πℏ2=mBa2Þna3, with g the mean-field strength
interaction.
Method.—The properties of the system, described by the

Hamiltonian in Eq. (1), are calculated by means of PIMC
simulations. Not only does this method allow us to
calculate fundamental properties of the system such as
the energy, but it gives us also access to structural
information, namely, the effective mass, the radial distri-
bution function, the one-body density matrix, and the
dynamic structure factor. Furthermore, no need of approx-
imations is required in this technique if the number
imaginary-time steps (beads) in each particle (polymer)
is sufficiently large. Indeed, as the temperature decreases, a
larger number of beads is required since polymers, i.e.,

particles, become more delocalized (see Fig. 1). In order to
reduce the number of beads to a manageable level, we use
the fourth-order Chin action that can be even sixth order in
an effective way [51]. Finally, we use the worm algorithm
to sample the permutation space (see further technical
details in Ref. [39]).
Results.—We have performed PIMC simulations for a

low density Bose gas (na3 ¼ 10−4). At such low densities,
the universality in terms of the gas parameter holds [50] and
the system only depends on the ratio of the scattering
lengths a=b, with b the s-wave scattering length of the
polaron-bath interaction. We start computing general prop-
erties when the system is thermalized.
The optimal number of beads at each temperature is

determined by studying the convergence of the energy
when this number is progressively incremented [51]. The
computational cost increases dramatically when the tem-
perature approaches the zero limit since the number of
beads is inversely proportional to the temperature. In fact,
only the use of high-order actions like the one used here
allows for reliable calculations at temperatures as low
as ∼0.2Tc.
The simulations for the bath are carried out with N ¼ 64

bosons using periodic boundary conditions. The volume of
the simulation box is such that na3 ¼ 10−4. A second set of
simulations is performed including a mobile impurity
(polaron system), keeping the volume constant. The differ-
ence between the total energy of the bath with polaron
and bath systems is termed the polaron energy, EðN; 1Þ−
E0ðNÞ, which is in fact the chemical potential of the
polaron. Figure 2 shows the PIMC results of the polaron
energy at different temperature and scattering length ratio
in both the attractive (b < 0) and repulsive (b > 0)
branches. The PIMC method cannot be extended to the
T ¼ 0 limit but to know the ground-state values is also
interesting. To this end, we used the zero-temperature
version of PIMC, known as the path integral ground state
(PIGS) method [39]. The polaron energies at T ¼ 0 are
shown as empty circles in Fig. 2. We compared our results
at T ¼ 0 with the predictions of mean-field theory up to
second order (in units of gn) [9],

FIG. 1. Projections of the positions of the particles in two
dimensions at different temperatures. Dots in blue represent the
impurity.
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EðN; 1Þ − E0ðNÞ ¼ b
a
þ 32

3
ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
na3

p b2

a2
: ð2Þ

The mean-field results (2), which hold only for weak
interactions [11], are shown as empty diamonds in Fig. 2.
Notice that for the attractive branch we have only compared
the mean-field result for a=b ¼ −0.1 as, below that value,
the mean-field approach is no longer valid [11].
We tested different model potentials for the attractive and

the repulsive branches and no differences on the results
were observed. We also explored the polaron system at
different densities in order to compare our results with other
works. However, if we increase the density in excess, the
shape of the interatomic potentials starts becoming relevant
and the universality in terms of the gas parameter is lost.
On the other hand, if we decrease more the density, the
statistical noise of the sampling starts growing and it
becomes of the same order of the polaron energy. A similar
effect appears when we simulate the system at temperatures
above Tc. At such temperatures, where there is not a
condensate of bosons in the bath, the thermal noise
suppresses practically all the signal of the energy difference
between the impurity and the bath systems. Furthermore,
we also simulated the system increasing the number of

particles in the bath (N ¼ 128) without seeing significant
changes in the results.
For the repulsive branch, we observe that the polaron

energy decreases when the temperature increases. This
indicates that, when the fraction of particles in the con-
densate is large, adding an impurity into the system requires
more energy. Noticeably, in the attractive branch we see
the opposite behavior: the polaron energy increases with
temperature. For weak attraction, our results agree quali-
tatively with experiments [35] but we do not obtain the
experimental change of tendency observed for stronger
interactions (a=b ≈ −0.01) [35].
One of the most clear signatures of the quasiparticle

nature of the polaron is its effective mass, which character-
izes its excitation spectrum at low momenta, ϵðqÞ ¼
ℏ2q2=2m�. In QMC methods, the effective mass of the
polaron can be obtained from its diffusion coefficient in
imaginary time,

mI

m� ¼ lim
τ→∞

hjΔr⃗IðτÞj2i
6Dτ

; ð3Þ

where m� is the effective mass, τ is the imaginary time,
D ¼ ℏ2=ð2mIÞ, and Δr⃗IðτÞ ¼ r⃗IðτÞ − r⃗Ið0Þ is the displace-
ment of the impurity in imaginary time [52,53]. The
brackets indicate the mean over the samples.
With the PIMC method we can only compute displace-

ments up to τ ¼ β=2 where β ¼ 1=ðkBTÞ and kB is the
Boltzmann constant. To overcome this limit and approach
large enough imaginary times, we sample the impurity
polymer when it is open. Figure 3 shows the effect of the
temperature on the effective mass, calculated for the
repulsive branch. As one can see, close to the critical
temperature the effective mass (m�=mI) tends to 1. The
effective mass decreases with T because the increase of the
kinetic energy of particles in the bath reduces the size of
the hole created by the polaron. This result reinforces the
idea that close to the critical temperature the quasiparticle
picture of the polaron vanishes [35].
It is interesting to study the influence of the polaron in

the properties of the Bose bath. To this end, we calculated
the two-body distribution function of the bath particles,

FIG. 2. Top box: Polaron energy as a function of temperature
for the repulsive branch (na3 ¼ 10−4). Bottom box: Same for the
attractive branch (na3 ¼ 10−4). Empty circles correspond to data
computed using PIGS method and the diamonds correspond to
the mean field approach [Eq. (2)].

FIG. 3. Effective mass of the Bose polaron as a function of
temperature for a system with a=b ¼ 0.06 and na3 ¼ 10−5. The
empty circle corresponds to data computed using quantum
Monte Carlo methods at T ¼ 0Tc [11].
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gBathðrÞ. Figure 4 shows these results as a function of
temperature and it compares them with the system without
the impurity (dashed lines). We see that, in general,
temperature adds kinetic energy to the system and, thus,
particles in the bath can overcome the repulsive potential
and approach each other. When an impurity is added to the
system we notice an effect of compression in the bath,
probably due to the repulsive interaction between the
polaron and the medium. In all cases, one can see the
bunching effect in gBath when the temperature increases, a
reminiscent of the well-known ideal Bose gas behavior.
Off-diagonal long-range order and superfluidity of the

bath are also affected by the presence of the impurity.
To quantify this effect, we calculated first the ratio of
the fraction of particles in the Bose-Einstein condensate
between the bath and the impurity systems (n0;B=n0;I).
Figure 5 shows the ratio of the systems without and with the
impurity and its dependency on temperature. We see that in
the bath system there are more bosons in the condensate
than in the system with the impurity. This indicates that the
impurity-bath interaction promotes particles out of the
condensate. Moreover, we observe that as the temperature
decreases this effect becomes more evident. One expects

that a similar feature can happen for the superfluid density
of the bath. To corroborate this idea, we calculated the
winding number in order to infer the superfluid density
[54]. The results are also plotted in Fig. 5 and they show
that, in the same way as with the fraction of particles in the
condensate, the superfluid density decreases when the
polaron is present and that the fraction of the superfluid
densities, ρs;B=ρs;I , diminishes with temperature.
Finally, we calculated the dynamic structure factor

Sðq;ωÞ from the intermediate scattering function Fðq; τÞ ¼
heiqrIðτÞe−iqrIð0Þi (where the brackets stand for the thermal
average) through the inverse Laplace transform. This
inverse Laplace transform is computed optimizing the
parameters of a model function S̃ðq;ωÞ using the simulated
annealing technique [55,56]. Figure 6 shows the dynamic
structure factor for the repulsive and attractive branches as a
function of temperature. As one can see, the error bars are

FIG. 4. Radial distribution function of bath-bath particles at
different temperatures (a=b ¼ 0.06 and na3 ¼ 10−4). Dashed
lines correspond to systems without the impurity.

FIG. 5. Blue: Ratio of the fraction of condensed bosons
between a bath system (n0;B) and an impurity system (n0;I) at
a=b ¼ 0.03 and na3 ¼ 10−4. Red: Ratio of the superfluid density
between a bath system (ρs;B) and an impurity system (ρs;I) at the
same conditions.

FIG. 6. Dynamic structure factor as a function of temperature at q0a ¼ 0.16. The blue lines correspond to repulsive interaction
(a=b ¼ 0.03) and the red lines correspond to the attractive interaction (a=b ¼ −0.01). The dark lines show the mean value and the
shaded regions plot the error.
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quite large due to two features. On one side, due to the poor
statistics got in the sampling of Fðq; τÞ as it is an operator
of order 1. On the other, it is due to the uncertainties in the
calculation of the ill-posed inverse Laplace transform.
Anyway, our results show clearly how the quasiparticle
behavior of the excited polaron is lost when Tc is crossed,
in agreement with experimental observations [35]. Also,
our results do not show any signature of a second peak in
Sðq;ωÞ as initial perturbative estimations claimed [32].
Similar results to the ones obtained here appeared some
time ago for the problem of a single 3He impurity in a
4He bath [57,58].
Conclusions.—The main purpose of this Letter was to

study the effect of temperature (up to Tc) on a Bose polaron
system in a similar way as recent experiments have done
[35]. On the basis of the results obtained, we see similar
trends for weak interactions in the attractive branch and
also a particular asymmetry between the attractive and the
repulsive branches. We do not observe a significant change
in the attractive branch at various scattering length ratios as
Ref. [35] suggests. However, we agree that the quasiparticle
picture vanishes close to the critical temperature since we
see that the effective mass tends to the bare mass when the
temperature increases. Furthermore, we also notice that
the impurity disturbs the bath and reduces the number of
bosons in the condensate as well as the superfluid density.
This effect is in agreement with the behavior of the polaron
energy for the repulsive branch where we observe that, at
low temperatures, adding an impurity requires more energy.
Indeed, this increase in the polaron energy as temperature
decreases can be understood as the competition between
the bath, that tries to condensate all the particles, and the
impurity that (slightly) hinders this condensation due to its
interaction with the bath. As it is clear from our results for
the dynamic structure factor, the polaron loses dramatically
its quasiparticle nature when the critical temperature is
crossed.
Currently, only one experiment studied the Bose pola-

ron with an attractive potential [35]. This work suggests
that it would be interesting to conduct more experimental
research analyzing the effect of temperature for repulsive
potentials as well. Finally, our work could be easily
extended to low dimensions by constraining the sampling
of the PIMC.
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