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We propose a new field theoretic method for calculating Renyi entropy of a subsystem ofmany interacting
bosons without using replica methods. This method is applicable to dynamics of both open and closed
quantum systems starting from arbitrary initial conditions. Our method identifies the Wigner characteristic
of a reduced density matrix with the partition function of thewhole systemwith a set of linear sources turned
on only in the subsystem, and uses this to calculate the subsystem’s Renyi entropy. We use this method to
study the evolution of Renyi entropy in a noninteracting open quantum system starting from an initial Fock
state. We find a relation between the initial state and final density matrix which determines whether the
entropy shows nonmonotonic behavior in time. For non-Markovian dynamics, we show that the entropy
approaches its steady-state value as a power lawwith exponents governed by nonanalyticities of the bath.We
illustrate that this field-theoretic method can be used to study large bosonic open quantum systems.
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A quantum state of a many-body system encodes phase
relations between spatially separated degrees of freedom.
When this distributed information is erased by tracing out a
set of degrees of freedom, the remaining subsystem is
described by a reduced density matrix, which mixes
quantum probability amplitudes with classical probabilities
[1]. The Renyi entanglement entropy of the subsystem is
the entropy of the resultant classical probability distribu-
tion. It indicates nonseparability of the quantum state
between the traced out and remaining degrees of freedom
]2 ]. Renyi entropy of subsystems has been used to study
quantum phase transitions [3–5] and many-body localiza-
tion transition [6–10] in interacting disordered systems. It
has been measured experimentally in ultracold atomic
systems [11].
The simplest method for calculating entanglement

entropy numerically diagonalizes the many-body
Hamiltonian [12,13]. While this works for fermions and
spin systems of reasonable sizes [14], the large local Hilbert
space of bosons makes this method useless, unless one
imposes hard-core constraints to whittle down the Hilbert
space [15]. The problem becomes harder when one con-
siders open quantum systems where the number of particles
is not conserved, and hence one cannot consider a truncated
Hilbert space. Field-theoretic methods, on the other hand,
either use conformal invariance [16–18] or require corre-
lation functions evaluated in replicated space-time sheets
with branch cuts along the subsystem [19]. In this Letter,
we present a new method for calculating Renyi entropy
of bosonic many-body systems, which can work without
complicated manifolds and in the absence of conformal
invariance. Our method is applicable to systems both in and
out of thermal equilibrium. It can describe the evolution of

Renyi entropy in non-Markovian open quantum systems
(OQS) starting from arbitrary initial conditions.
The Renyi entropy of a density matrix can be written as

an integral of the square of its Wigner quasiprobability
distribution (WQD) [20], which is the closest approxima-
tion to a “phase-space distribution function” for quantum
systems [20–22]. The Wigner function has been measured
in different single mode quantum systems [23–28]. In this
letter, we show that the Wigner characteristic function
(WCF) of a reduced density matrix is equal to the partition
function of the full system in the presence of a particular set
of sources turned on only in the subsystem. For systems out
of thermal equilibrium, we use Schwinger Keldysh (SK)
field theory to calculate this partition function, with
recently proposed modifications to take care of arbitrary
initial conditions [29]. The Wigner characteristics can then
be used to calculate the Renyi entropy. We note that our
formalism is quite different from earlier attempts to
calculate WQDs [30–34] within path integral approaches.
We use this formalism to study the evolution of Renyi

entropy of bosonic systems coupled to external baths,
which are initialized to a Fock state with 0 initial entropy.
For a single mode system coupled to Markovian as well as
non-Markovian baths [35], the entanglement entropy
shows nonmonotonic evolution in time in some cases.
We find an explicit relation between the initial particle
number and final density which determines whether the
entropy evolution is nonmonotonic. To illustrate the power
of this new method, we then study the evolution of Renyi
entropy in a linear chain of 12 sites coupled to external non-
Markovian baths. We recover the nonmonotonic time
dependence of the Renyi entropy of the subsystems. We
have also used this method to calculate Renyi entropies of
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large interacting thermal systems of bosons in one and two
dimensions, which is presented in a separate paper [36].
Thus, our method can be used to calculate Renyi entropy of
bosonic many-body systems in versatile circumstances not
accessible by existing methods [37–44].
Wigner function, Renyi entropy, and Keldysh partition

function.—For a many-body bosonic system, the WCF χW
is given by [20].

χWðfβjg; tÞ ¼ Tr½ρ̂ðtÞe
P

jβja
†
j−β

�
j aj � ð1Þ

where a†j is the creation operator for the jth site, and ρ̂ðtÞ is
the density matrix of the system. The reduced density
matrix of the subsystem A (of size ΩA), ρ̂AðtÞ ¼ TrBρ̂ðtÞ
is obtained by tracing over the sites in the rest of the
system (B). The WCF χAW of ρ̂AðtÞ can be obtained from
Eq. (1) by restricting the βjs to the sites in A. The second
Renyi entropy Sð2Þ ¼ − logTr½ρ̂2AðtÞ� is [20]

Sð2ÞðtÞ ¼ − log

�Z Y

i∈A

d2βi
πΩA

jχAWðfβig; tÞj2
�
: ð2Þ

The time evolution of the density matrix, ρ̂ðtÞ ¼
Uðt; 0Þρ̂ð0ÞU†ðt; 0Þ, can be described by a SK path integral
with two copies of fields, ϕþðj; tÞ and ϕ−ðj; tÞ, corre-
sponding to the forward and backward evolution in time,
shown in Fig. 1. We decompose the displacement operator

DðfβjgÞ ¼ e
P

j
βja

†
j−β

�
j aj in Eq. (1), into D → D1=2 ×D1=2,

with each of the D1=2 placed on the þ and − contour; i.e.,

χW ¼ Tr½Uð∞; tÞD1=2Uðt; 0Þρ̂ð0ÞU†ðt; 0ÞD1=2U†ð∞; tÞ�:
ð3Þ

The insertion of D1=2 ¼ e
1
2

P
j
βja

†
j−β

�
j aj corresponds to

turning on sources Jþðj; t0Þ ¼ −iðβj=2Þδðt − t0Þ and
J−ðj; t0Þ ¼ iðβj=2Þδðt − t0Þ coupled linearly to the fields,
and evaluating the SK partition function in the presence of
these sources (see Appendix A [45]). Working with the
classical and quantum fields, ϕcl ¼ ðϕþ þ ϕ−Þ=

ffiffiffi
2

p
and

ϕq ¼ ðϕþ − ϕ−Þ=
ffiffiffi
2

p
, the WCF is the Keldysh partition

function Z with the classical source turned off through-
out the evolution, and a quantum source Jqðj; t0Þ ¼
½Jþðj; t0Þ − J−ðj; t0Þ�=

ffiffiffi
2

p ¼ −iβj=
ffiffiffi
2

p
δðt − t0Þ, turned on

only at the time of measurement, i.e.,

χWðfβjg; tÞ ¼ Z

�
Jcl ¼ 0; Jqðj; t0Þ ¼ −i

1ffiffiffi
2

p βjδðt − t0Þ
�
:

ð4Þ
This is the main result of this Letter, which is valid for
generic nonequilibrium dynamics of interacting bosons.
In this formalism, integrating out modes without turning

on a source traces over those degrees of freedom, while
integrating out a mode after turning on a quantum source
calculates theWCF.Hence χAW can be obtained by restricting
the quantum sources βj only to the modes in subsystem A
(see Fig. 1). This simplification allows us to study Renyi
entropy for the arbitrary geometry of subsystems.
Renyi entropy in nonequilibrium dynamics.—We con-

sider a lattice system of bosons initialized in a Fock state
and coupled to an external bath. It evolves to a long time
steady state under a nonunitary dynamics.
This dynamics can be treated within a recent extension of

SK field theory [29]. For an initial ρ̂ð0Þ ¼ jfnigihfnigj,
where jfnigi ¼ jn1; n2…i, with nν the occupation number
of the νth mode, the extended SK formalism adds to the
Keldysh action a source −ið1þ uνÞ=ð1 − uνÞ coupled to
the bilinear ϕ�

qðν; 0Þϕqðν; 0Þ, i.e., it is turned on only at the
initial time t ¼ 0. The WCF χWðβj; t; u⃗Þ can then be
calculated as the partition function in the presence of
both the linear quantum sources βj, turned on at time of
measurement t, and the initial bilinear sources uν turned on
at t ¼ 0. The physical WCF corresponding to the particular
initial state is then obtained from

χWðfβjg; tÞ ¼
Y

ν

1

nν!

� ∂
∂uν

�
nν
χWðβj; t; u⃗Þ

����
u¼0

: ð5Þ

For a noninteracting system of bosons coupled to non-
interacting bosonic baths, χWðβj; t; u⃗Þ, after integrating out
the bath, is given by

χWðβj; t; u⃗Þ ¼ e−
1
2
β�i βjΛ

0
ijðtÞ

Y

ν

e−β
�
i βjΛ

ν
ijðtÞ uν

1−uν

1 − uν
; ð6Þ

FIG. 1. Two contour (�) evolutions of the density matrix ρ̂ðtÞ in
SK field theory. For calculating χWðβj; tÞ, the displacement
operator, DðfβjgÞ is decomposed into D → D1=2D1=2 with each
D1=2 inserted on the þ and − contour at time t. For the WCF
χAWðβj; tÞ of the reduced density matrix in subsystem A, this
insertion is equivalent to turning on sources JþðjÞ ¼ −iβj=2
(shown by blue upward arrows) and J−ðjÞ ¼ þiβj=2 (shown by
orange upward arrows) only at the time of measurement t, and
only on the lattice sites j ∈ A. The resultant partition function
gives the WCF χAWðβj; tÞ from which Sð2ÞðtÞ can be calculated
using Eq. (2).
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where Λ0
ijðtÞ ¼ hϕclði; tÞϕ�

clðj; tÞi0 is the equal time
classical correlator in a system that starts from the vacuum
state with 0 particles, and Λν

ijðtÞ ¼ GR
iνðtÞGR�

jν ðtÞ, where the
retarded Green’s function GR

iμðtÞ is the probability ampli-
tude of finding a particle in mode i at time t if it was initially
in mode μ. Our formalism can treat open and closed
quantum systems, as well as Markovian and non-
Markovian dynamics on equal footing. After taking the
u⃗ derivatives [46], the physical WCF is given by

χWðβj; tÞ ¼ e−
1
2
β�i βjΛ

0
ijðtÞ

Y

ν

Lnν ½β�i βjΛν
ijðtÞ� ð7Þ

where LnðxÞ is the Laguerre polynomial of order n.
The effect of the bath on the system dynamics is

incorporated through the retarded self-energy ΣRði; j;ωÞ
(real part of ΣR controls the dressing of the system
spectrum, and its imaginary part controls the dissipation
in the system) and the Keldysh self-energy ΣKði; j;ωÞ
(related to the stochastic noise from the bath and controls
the steady state of the system). Inverting the Dyson
equation, the correlators, and hence the evolution of the

Renyi entanglement entropy can be computed (see
Appendix B [45]).
Note that this method can be easily generalized to

interacting systems to start making approximations for
entanglement entropy of interacting OQS (see
Appendixes A and C [45]).
Single mode coupled to bath.—We first consider a single

mode with H ¼ ω0a†a, initialized in the number state
ρ̂ð0Þ ¼ jniihnij, and coupled to an external bath. The time-
evolving Renyi entropy is given by

e−S
ð2ÞðtÞ ¼

2niCni ½Λ̃�2ni
½Λ0�2niþ1 2F1

�
−ni;−ni;−2ni;

−Λ0½Λ − Λ̃�
½Λ̃�2

�

ð8Þ

where Λ̃ðtÞ ¼ Λ0ðtÞ − ΛðtÞ and 2F1 is the hypergeometric
function. Here, as time increases ΛðtÞ decays from 1 to 0
due to dissipation, while the stochastic contribution Λ̃ðtÞ
increases from 0 to a finite value determined by the bath
parameters.
The simplest bath is a Markovian Langevin type bath,

characterized by a frequency independent ΣRðωÞ ¼ iγ,
where γ is the dissipation scale, and a frequency

FIG. 2. (a)–(b) Evolution of Sð2Þ of a 1 mode system starting from jni ¼ 6i coupled to (a) a Markovian bath with increasing final
number nf ¼ 0.1 and r ¼ 6 × 10−7, nf ¼ 4.5 and r ¼ 0.54, and nf ¼ 16.2 and r ¼ 1.35. Here r ¼ nnif =ð1þ nfÞðniþ1Þð1þ 2nfÞ; when
r < 1, Sð2Þ shows nonmonotonic behavior in time. (b) A non-Markovian bath with T=tB ¼ 0.5, showing a peak in Sð2Þ and T=tB ¼ 50

showing the monotonic evolution of Sð2Þ. In general increasing nf with respect to ni leads to the disappearance of peaks in Sð2ÞðtÞ.
(c) δSð2ÞðtÞ ¼ jSð2ÞðtÞ − Sð2Þð∞Þj as a function of t in a log-log plot. Sð2Þ approaches its steady-state value exponentially for a Markovian
bath and as a power law (∼t−3=2) for a non-Markovian bath. (d)–(f) Schematic representation of 12-site linear chain initialized to
j101010…i coupled to external bath. The gray shaded regions are integrated out to compute the Renyi entropy. (g) Sð2ÞðtÞ for the setup
of (d) where the right half of the system is integrated out. The two graphs correspond to a steady state with a finite current ðμL=tB ¼
−2.025; μR=tB ¼ −5.025Þ and with zero current ðμL=tB ¼ μR=tB ¼ −2.025Þ. (h) Sð2ÞðtÞ for the setups of (e) and (f) where the
subsystem initialized to 1 and 0 particles in the initial state is integrated out respectively. Sð2ÞðtÞ shows damped out-of-phase oscillations
as the density imbalance between the sublattices is wiped out by the bath. Unless otherwise mentioned, the external bath has T=tB ¼ 0.5
and μ=tB ¼ −2.025. The non-Markovian bath has a bandwidth tB ¼ 2 and a system bath coupling ϵ ¼ 1.
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independent ΣKðωÞ ¼ −iD where D is the noise scale.
The steady-state average number in the system is controlled
by 1þ 2nf ¼ D=2γ. The correlators in this case can be
found analytically: Λ0ðtÞ ¼ e−2γt þ ðD=2γÞ½1 − e−2γt� and
ΛðtÞ ¼ e−2γt. Figure 2(a) shows Sð2ÞðtÞ for this OQS
starting from ni ¼ 6 for three different values of
nf ¼ 0.1, 4.5, and 16.2. Sð2ÞðtÞ shows nonmonotonic
evolution with a peak at tpeak ∼ 1=2γ for nf ¼ 0.1 and
nf ¼ 4.5, while the evolution is monotonic for nf ¼ 16.2.
A peak in Sð2Þ implies that at t ∼ tpeak, the initial delta
function distribution of ρnn spreads to a distribution which
is wider than the final thermal distribution.
We next consider coupling the same system to a non-

Markovian bath of bandwidth tB characterized by a spectral
density J ðωÞ ¼ Θð4t2B − ω2Þð2=tBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω2=4t2BÞ

p
, tem-

perature T, and chemical potential μ with coupling strength
ϵ [35]. In this case, ΣRðωÞ ¼ iϵ2J ðωÞ and ΣKðωÞ ¼
−iϵ2J ðωÞ coth½ðω − μÞ=2T�. Figure 2(b) shows the evo-
lution of Sð2ÞðtÞ for this OQS for T=tB ¼ 0.5 where we see
a nonmonotonic time dependencewith a peak at a timescale
∼tB=ϵ2 and T=tB ¼ 50 where the peak has disappeared.
We note that contrary to previous predictions [49,50], the
presence of the peak in Sð2ÞðtÞ is not related to the non-
Markovian nature of the dynamics. The key difference
between the Markovian and non-Markovian dynamics is
manifested in how Sð2ÞðtÞ approaches its steady-state value.
As shown in Fig. 2(c), the Markovian approach is expo-
nential while that for the non-Markovian case has a power
law tail (t−3=2) at long times [35].
To understand why the time evolution is nonmonotonic

in some cases, and monotonic in others, we use the ansatz
ρ̂ðtÞ ¼ AðtÞjniihnij þ BðtÞρ̂ð∞Þ, where the first term
denotes the forward time propagation (decay) of the initial
state due to dissipation and the second term can be viewed
as the backward time propagation of the steady-state
density matrix of the system ρ̂ð∞Þ. For the Langevin bath,
we can obtain exact expressions, AðtÞ ¼ jGRðt; 0Þj2 ¼
e−2γt and BðtÞ ¼ 1 − e−2γt. While similar expressions for
the non-Markovian bath can only be written in terms of
multiple integrals, it is easy to see that in both cases AðtÞ ∼
1 − at and BðtÞ ∼ bt for short times, where a and b are rates
that can be computed from a Fermi golden rule calculation.
Also AðtÞ → 0 and BðtÞ → 1 as t → ∞ to obtain the correct
steady-state density matrix. We can then obtain the time
dependent Renyi entropy

e−S
ð2ÞðtÞ ¼A2ðtÞþB2ðtÞe−Sð2Þð∞Þ þ2AðtÞBðtÞρni;nið∞Þ; ð9Þ

where ρni;nið∞Þ is the diagonal matrix element of ρ̂ð∞Þ in
the initial state jnii.
The initial rise of the entanglement is controlled by

the rates a and b with e−S
ð2ÞðtÞ ∼ 1–2atð1 − ρni;nið∞Þb=aÞ.

Interestingly this rate is neither controlled by the initial

state, nor the final density matrix, but a cross term between
them. For an heuristic argument, we can compare the
entropy at a time t0 ∼ ð2aÞ−1, e−Sð2Þðt0Þ ∼ ρni;nið∞Þb=a, with
its steady-state value e−S

ð2Þð∞Þ and say that a peak occurs
if ρni;nið∞Þb=a < e−S

ð2Þð∞Þ. For the Langevin bath
b ¼ a ¼ 2γ, so this criterion reduces to ρni;nið∞Þ <
e−S

ð2Þð∞Þ ¼ ð1þ 2nfÞ−1, which gives r < 1, where
r ¼ nnif =ð1þ nfÞðniþ1Þð1þ 2nfÞ. We also find the peak
condition for the Langevin bath from an exact calculation
involving the maxima of Eq. (9) (see Appendix D [45]) and
get the same result. Increasing average density in a thermal
system leads to a broader distribution of ρnnð∞Þ, and hence
a decrease in exp½−Sð2Þð∞Þ�. Thus, a general conclusion
from this is that increasing nf keeping ni fixed leads to the
disappearance of the peak in Sð2Þ.
Entanglement dynamics of a many-body system.—For a

single or two mode system the dynamics of Renyi entropy
can in principle be studied by more direct means like
quantum master equations [37–44]. However, these meth-
ods are not easy to generalize to many-body bosonic
systems due to the infinite size of the local Hilbert space.
Our method, however, is easily generalizable to dynamics
of many-body open quantum systems initialized to non-
thermal states. The truncation of the Hilbert space in the
existing methods is specially problematic for open quantum
systems where the particle number is not conserved. While
methods like time evolving density matrix using orthogonal
polynomials algorithm chain mapping [51] try to get
around this by working with a finite sized bath, our method
can easily incorporate infinite baths.
To show the power of this method, we consider a linear

chain of bosons described by the Hamiltonian

H ¼ −g
X

j

a†jþ1aj þ H:c:; ð10Þ

with the nearest neighbor hopping g ¼ 0.5tB. This system
is made of the even (E) and odd (O) sublattices and
is initialized to a Fock state with 0 and 1 number of
particles on the E and O sublattices, respectively [see
Figs. 2(d)–2(f)]. Each site of the system is coupled to the
non-Markovian bath described earlier. The temperature of
the baths is set to T=tB ¼ 0.5. We treat two different cases:
(i) when the baths have the same T and μ, leading to
thermalization at long times, and (ii) when μ of the baths
coupled to neighboring sites have a fixed difference of
chemical potential, leading to steady states with finite
currents. In this case,

e−S
ð2ÞðtÞ ¼

Z Y

i∈A

d2βi
πΩA

e−
P

i;j∈A
β�i βjΛ

0
ijðtÞ

Y

ν∈O
L2
1½β�i βjΛν

ijðtÞ�;

ð11Þ
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where A denotes the reduced subsystem and O denotes the
initially filled sublattice [52].
In a many-body system, we can trace out a part of the

system, together with the bath, to construct the subsystem
for which we consider Renyi entropy. Figure 2(g) shows
the evolution of Sð2ÞðtÞ of the subsystem which occupies
the left half of the linear chain [see setup in Fig. 2(d)]. The
chemical potential for the leftmost bath is set to be
μL=tB ¼ −2.025, so the graph for μR=tB ¼ −2.025 corre-
sponds to identical baths, while the graph for μR=tB ¼
−5.025 corresponds to a linear gradient in μ resulting in a
finite current in the steady state. We find that Sð2ÞðtÞ is
nonmonotonic in both cases, and the steady-state value is
lower for the system with a finite current. In Fig. 2(h), we
consider the same system, with the same initial condition of
alternating filled and empty sites, but our subsystem is now
composed of the AðBÞ sublattice obtained by integrating
out the BðAÞ sublattice, as shown in Figs. 2(e) and 2(f). The
evolution of Renyi entropy shows damped out-of-phase
oscillation in Sð2ÞðtÞ between the two setups, which track
the oscillations in the imbalance of density on the two
sublattices. The steady-state value is the same in both cases,
showing that the system erases information about the
initial state.
We have developed a new method for calculating Renyi

entropy of bosonic many-body systems in and out of
thermal equilibrium. This method has also been used to
study Renyi entropy of a thermal system of interacting
bosons in one and two dimensions of large sizes within a
large N approximation [36]. These ideas can also be
extended to the case of fermionic systems with appropriate
modifications[53,54].
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