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Quantum critical behavior of many-body phase transitions is one of the most fascinating yet challenging
questions in quantum physics. Here, we improved the band-mapping method to investigate the quantum
phase transition from superfluid to Mott insulators, and we observed the critical behaviors of quantum
phase transitions in both the dynamical steady-state-relaxation region and the phase-oscillation region.
Based on various observables, two different values for the same quantum critical parameter are observed.
This result is beyond a universal-scaling-law description of quantum phase transitions known as the
Kibble-Zurek mechanism, and suggests that multiple quantum critical mechanisms are competing in many-
body quantum phase transition experiments in inhomogeneous systems.
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Nonequilibrium quantum physics is one of the most
challenging topics in quantum physics, related with many
different areas such as quantum matters [1,2], many-body
correlations [3,4], and quantum simulations [5–9]. One
central question among the nonequilibrium quantum
physics is how to understand quantum critical behaviors
and dynamics of the quantum phase transitions (QPT).
The Kibble-Zurek mechanism (KZM) [10,11] originating
from thermodynamics [12–16], describes dynamics of
QPT with symmetry breaking [17–22], where the order
parameter can be well defined and the quantum critical
behaviors have a universal scaling-law dependence on the
external ramping speed. As for the development of QPT,
the energy gap as well as the symmetry breaking becomes
one of the critical conditions of phase transitions. Thus, it
becomes interesting to investigate many-body quantum
phase transitions entering symmetry-conserved phases
with open energy gaps, which is on the opposite side
of the conventional KZM.
The superfluid (SF) to Mott insulators (MI) phase

transition is one of the most important QPT in many-body
physics. Seminal experiments [23,24] explored the KZM
based on transitions from symmetry-conserved MI to
symmetry-broken SF with gap closing, where the measured
quantum critical parameters are not consistent with the
theoretical predictions [25,26]. Here, we investigate the
many-body QPT, where the system transits from the SF
phase (gapless symmetry broken) to the MI phase (gapped
symmetry conserved) with an improved band-mapping
method. In such gap-opening QPT, the quantum criticality
is described by the energy gap Δ versus the distance g to

quantum critical point in phase diagrams with a scaling law
Δ ∝ jgjνz, where νz is a quantum critical parameter. The
value of νz decides the spatial-temporal universal dynamics
in KZM [18,27–32]. Based on various observables, we
extract out two different values for the same critical
parameter νz. Both values were predicted theoretically
[25,26], but the coexistence of two different values for
the same parameter violates the universality of KZM.
Besides, we observe dynamical steady-phase relaxations
within the KZM frame transiting into non-steady-phase
oscillations which is beyond the KZM frame. In fact, the
open gap in the many-body systems allows different values
of critical parameters to exist in the same QPT, protects
phase oscillations and thus boosts the many-body QPT
beyond the conventional symmetry-breaking KZM.
Our experiment is performed in a three-dimensional

optical lattice formed by three standing waves perpendi-
cular to each other at wavelength λ ¼ 1064 nm [Fig. 1(a)],
and the magnetic field is applied along the z axis. We
prepare Bose-Einstein condensates of 87Rb atoms in jF ¼
1; mF ¼ −1i and then load them into 3D homogeneous
lattices with trap depth V ¼ 5Er and atom number N ¼
1.1ð2Þ × 105 [33–35]. Here, V is the trap depth generated
by one lattice beam and Er ¼ h × 2 kHz is the recoil
energy of lattice beams. Because of the Gaussian shape of
lattice beams, the lattices are printed by an external
harmonic trap with homogeneous radial vibrational
frequencies ∼2π × 20ð1Þ Hz. The system is described by
a Bose-Hubbard model in an external harmonic trap
[25,36]:
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i describes the external harmonic trap. Since the

atomic cloud size is much smaller than the waist of lattice
beams, the inhomogeneity of J and U are negligible in this
model [see Supplemental Material (SM) [37], section I,
SM-I].
Comparing with the previous band-mapping method

[38] requiring adiabatically turning off three lattice beams,
here we instantaneously turn off the z lattice that is along
the imaging direction [Fig. 1(a)]. The atomic gas expands
along z quickly, releases the interaction energy, and the
momentum distribution along z does not contribute to the
band-mapping image. It helps to avoid the fast relaxations
in the x-y plane in the subsequent expansion. At the same
time when the z lattice is turned off, we ramp down the x
and y lattices in 2 ms, which is slow enough to adiabatically
convert the quasimomentum into the real momentum. Then
the time of flight is applied to measure the momentum
distribution in the x-y plane. Using this technique, we are
able to obtain better quasimomentum distributions of atoms
in the interacting system [Fig. 1(b) and SM-II [37] ], where
the incoherent atoms in the first Brillouin zone are exactly
mapped to a square shape and displays a flat plateau, while
the phase coherent superfluid component corresponds to a

narrow and sharp peak at the zero-momentum point. This
helps us to quantify the coherence across the whole system
[Fig. 1(b)] and to observe the dynamical response at
different ramping rates [Figs. 1(c) and 1(d)]. We define
the incoherent fraction γinc, as the ratio of the integrated
optical depth of the flat plateau divided by the total
integrated optical depth [Fig. 1(b) and SM-III [37] ] based
on the band-mapping images.
To study the dynamics of QPT, we first prepare the

superfluid at V0 ¼ 5Er and hold it for 20 ms. Then, we
ramp up the trap depth V linearly with a ramping rate k
[Fig. 2(a)]. For each k, we perform the band mapping at
different V and measure the corresponding incoherent
fraction γinc [Fig. 2(b)]. According to Refs. [36,39], the
MI starts to appear at Vc ¼ 13Er for 87Rb in 3D optical
lattices. We find two different response regions before and
after ramping through Vc. In the SF region, the system
responses to the ramping rapidly due to its gapless nature.
We measure the response time τSF by defining the time to
reach γinc ¼ 0.6 and obtain a scaling-law dependence
τSF ∝ k−0.91ð3Þ, slightly delayed from the ideal instant
response k−1. We performed numerical calculations by
the Gutzwiller mean field theory (GMFT) [40,41], finding
it consistent with the experimental results [Fig. 2(c)].
However, once the trap depth is above Vc, γinc starts to
furcate and show retarded or oscillating responses depend-
ing on k.
For a slow ramp (k ≤ 4Er=ms), the response in the MI

region is trying to approach the steady state with a
dynamical relaxation time τMI. In Fig. 2(d), we extract
τMI based on the time duration to reach γinc ¼ 0.9 from the
time at trap depth 13Er [18]. It shows a scaling-law
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FIG. 1. Experimental setup and improved band-mapping method. (a) Three orthogonal standing waves form 3D optical lattices for
87Rb, and absorption images are taken along the z direction. The inset: the z lattice is turned off instantaneously while the x and y
lattices are ramped down in 2 ms for the band mapping. (b) The incoherent fraction γinc versus the trap depth V for the SF-MI
phase transitions. The red circles correspond to the measurement with adiabatic ramping, while the blue squares correspond to the
measurement with linear ramping at rates k ¼ 2.5Er=ms. The shadow area locates quantum phase transition at Vc ¼ 13Er for
n̄ ¼ 1’s lobe. Gray arrows indicate data in the panel (c) and (d). The inset shows the decomposition of quasimomentum profiles and
analysis of γinc. (c) and (d) The band mapping profiles performed at trap depth V ¼ 7, 13, 19, and 35Er. Error bars (1 standard
deviation) are smaller than the marker size.
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dependence of nonadiabatic response τMI ∝ k−0.50ð5Þ for
k ≥ 0.7Er=ms. In Sec. VI of the Supplemental Material
[37], we verify that the exponent near −0.5 is not sensitive
to the end point γinc we choose. The KZM predicts the
dependence of the freeze-out time τ on the ramping rate k to
be [18,27–29]

τ ∝ k−
νz

1þνz; ð2Þ
where τ characterizes the time of relaxation. Based on this
form, we obtain the critical parameter νz ¼ 1.0ð2Þ by
measuring the MI dynamical relaxation time, and infer ν ¼
1=2 and z ¼ 2 corresponding to the off-tip critical param-
eters with linear gap opening in the SF-MI phase diagram
[25]. To show the quantum criticality, we rescale the
horizontal axis of Fig. 2(b) at Vc to be Veff ¼ ðV−
VcÞk−ð1−0.50Þ þ Vc. The different sets of γinc data fall into
one universal curve [Fig. 2(e)] in the MI region. This shows
the universality of the KZM if we consider only τMI under a
slow ramp k. However, GMFT cannot describe this
relaxations (see SM-VII [37]) due to strong interactions
of deep MI [39].
Besides a scaled relaxation time, the KZM also predicts

universally scaled defect density introduced by crossing the
phase transition. Here we use the excitation fraction nex to
characterize the defects, where it describes how many
atoms are excited comparing to ground-state Mott insula-
tors. nex follows the form of [27,30–32]:

nex ∝ k
dν

1þνz: ð3Þ

Here d ¼ 3 is the dimension of 3D optical lattices. We
analyze the excitation fraction as the components of
MI fractions deviated from its adiabatic value [23]:
nexðV; kÞ ¼ γincðV; adiaÞ − γincðV; kÞ. For V > Vc, this
definition quantifies the additional particle-hole pairs on
top of the MI ground state with quantum fluctuations,
which retains additional phase coherence due to the non-
equilibrium dynamics (see SM-VII [37] for more analysis).
In Fig. 3(a), we plot nexðV; kÞ and obtain a scaling-law
nex ∝ k0.97ð12Þ. The value of nexðV; kÞ depends on the
chosen trap depth V, but the value of fitted-exponent α
is robust against different V [Fig. 3(b)]. The fitting on
Eq. (3) shows νz ¼ 0.48ð9Þ, where we infer ν ¼ 1=2 and
z ¼ 1, corresponding to the on-tip critical parameters with
square-root gap opening in the SF-MI phase diagram [25].
To better understand this result, we apply GMFT in the
shallow MI region and find the defect density due to the
nonequilibrium dynamics has a scaling factor of 0.97(5),
consistent with our observations (see SM-VII [37]).
For a fast ramp (k ≥ 6Er=ms), the system response

enters a non-steady-state region where γinc oscillates with
time. This provides a smooth connection from the adia-
batically ramping to the fast ramping [42]. In this region,
the multiple-atom occupancies in the SF are frozen rapidly
without relaxations. However, the phase coherence
between single and multiple occupancies does not dis-
appear immediately and oscillates at the frequency of U=ℏ.
To visualize the oscillation, we hold the lattice for a time
interval t after the ramping, where a larger k leads to a
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FIG. 2. Dynamical response of SF-MI phase transitions. (a) The time sequence of the trap depth ramping. The first stage of 80 ms and
the second stage of 20 ms prepare superfluid samples from the condensates. The third stage is the linear ramp with a ramping rate kwhen
the atoms experience phase transitions. The final stage is the band mapping to distinguish the coherent component from the incoherent
one. (b) The incoherent fraction γinc versus trap depth V for different k. The scattered markers are the experimental data and the solid
lines are the polynomial fits (see SM-V [37]). A furcation appears at critical point Vc ¼ 13Er. And γinc approaches 1 for different
ramping rate k for small k. When k gets larger, γinc starts to oscillate with retard thermalization. The pink triangles denote the dynamics at
k ¼ 14Er=ms, which oscillates drastically and fail to relax. Here we label the definition of SF response time τSF (time to reach
γinc ¼ 0.6) and the MI dynamical relaxation time τMI (time between γinc ¼ 0.6 and γinc ¼ 0.9) on the plot. (c) τSF versus k. The blue
circles are the experimental data and the blue solid line is the fit based on power laws with τSF ∼ k−0.91ð3Þ. The red diamonds are the
GMFT simulation with a fit τSF ∝ k−0.95ð2Þ. (d) τMI versus k. The red filled circles are the extracted data. The blue dashed line is
τMI ∼ k−1 for the adiabatic response (see SM-VI [37]). The black solid line is the fit with τMI ∼ k−0.50ð5Þ for k ≥ 0.7Er=ms, which
indicates νz ¼ 1.0ð2Þ. (e) The universal response of γinc versus the rescaled trap depth Veff , where Veff ¼ ðV − VcÞk−ð1−0.50Þ þ Vc and k
is in the unit of Er=ms. Error bars (see SM-V [37]) correspond to 1 standard deviation.
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larger oscillation amplitude A [Figs. 4(a) and 4(b)]. The fit
shows A ∝ k1.49ð17Þ [Fig. 4(c)]. In GMFT we see similar
trends, where A ∝ k1.41ð15Þ is obtained. Since we stop
ramping at deep MI region at V ¼ 25Er, the oscillation
amplitude A characterizes multiple occupancies as the
excitation for such non-steady states ramping across phase
transition. Since this lack of thermalization and subsequent
oscillation is the direct consequence of the gap-opening
process, the scaling dependence A ∼ k3=2 provides a new
relation in the non-steady-state region which is linked to the
quantum phase transition but was not explored by conven-
tional KZM.
Based on different observables, we get two different

values for the same quantum critical parameter νz, namely,
νz ¼ 1 for the MI dynamical relaxation time τMI and νz ¼
1=2 for the excitation fraction nex. According to conven-
tional KZM, the universality of the quantum criticality
predicts the same value of νz for different observables in the
same QPT. Thus, our measurement results contradict the
conventional KZM. According to previous studies [25,26],

νz is either 1 or 1=2 depending on whether the phase
transition point is off tip or on tip and how the gaps open in
the SF-MI phase diagram [Fig. 4(d)]. Because of the
harmonic trap and fixed atom number in our experiment,
we probe the phase transition with an unfixed chemical
potential, corresponding to a line, not a point in the phase
diagram. The center filling of the final stage of MI is
approximately n̄ ∼ 3. In the scenario of a slow ramp, the MI
appear and coexist with SF while the trap depth is not deep
enough. Because the local gap opens as Δ ∝ jgj1=2, the
early-formed MI defects appear in the region of MI under
the quantum criticality of νz ¼ 1=2. Later when the trap
depth increases, the total system enters the region of off-tip
phase transitions where the gap Δ ∝ jgj opens linearly with
νz ¼ 1. However, the previously generated defects are still
protected by the energy gaps under Uð1Þ symmetries with
νz ¼ 1=2. This is how both νz appear in the same QPT
experiment. If the QPT is performed in the opposite
direction from gapped phases to gapless phases as in the
previous experiments [23,24], the gapless excitations due to
broken symmetries will smear out early formed defects
with later dynamics and makes the different values of the
quantum critical parameter indistinguishable. For a fast
ramp, the system is immediately frozen into deep Mott
insulators with failed relaxations due to large energy gaps,
where the actual dynamics versus the excitation fractions or
the correlation length is still an unexplored regime for
nonequilibrium physics and waits for further investigations.
In conclusion, we observe the many-body quantum

phase transition from gapless symmetry-broken phases
to gapped symmetry-conserved phases. As the ramping
gets faster, the critical behaviors change from retarded
relaxations to phase oscillations. Even within the steady-
state-relaxation regime, two different values for one critical
parameter νz are observed. The gap opening provides and
protects different critical-mechanism competitions in the
dynamics of many-body phase transitions. We believe this
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FIG. 3. Excitation fraction nex in the MI region. (a) nexðkÞ
measured at V ∼ 18Er (SM-VI [37]). Blue circles are experi-
mental results with the blue line fit of nex ∼ kα at α ¼ 0.97ð12Þ.
Orange squares are GMFT simulation results with the orange line
fit of nex ∼ kα at α ¼ 0.97ð5Þ. (b) The fitted scaling coefficient α
is robust against the chosen trap depth V, as long as V > 13Er
(goes through phase transition) and V < 19Er (far from deep MI
region). Error bars correspond to 1 standard deviation.
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FIG. 4. Phase oscillations under a fast ramp. (a) Time sequences for oscillation measurements. The atoms are hold at V ¼ 25Er for a
varying time t. (b) γinc oscillates versus time t for different k. The solid lines are cubic splines fit. (c) The fitted oscillation amplitude A
versus k. Blue circles are experimental data and the red squares are GMFT simulations. Two dashed lines are the fits based on power
laws. For experimental data we obtain AðkÞ ∝ k1.49ð17Þ, and the GMFT gives AðkÞ ∝ k1.41ð15Þ. (d) An illustration of the dynamics in the
SF-MI phase diagram. The blue lines represents our actual system and the on- or off-tip locations are labeled by arrows with νz ¼ 1=2 or
1. The on-tip location has square-root gap opening and the off-tip one has linear gap opening.
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inspires further investigations in the phase transition of
symmetry-conserved gapped systems and the nonequili-
brium physics.
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