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We show that some tripartite quantum correlations are inexplicable by any causal theory involving
bipartite nonclassical common causes and unlimited shared randomness. This constitutes a device-
independent proof that nature’s nonlocality is fundamentally at least tripartite in every conceivable physical
theory—no matter how exotic. To formalize this claim, we are compelled to substitute Svetlichny’s
historical definition of genuine tripartite nonlocality with a novel theory-agnostic definition tied to the
framework of local operations and shared randomness. A companion article by Coiteux-Roy et al.
generalizes these concepts to any N ≥ 3 number of parties, providing experimentally amenable device-
independent inequality constraints along with quantum correlations violating them, thereby certifying that
nature’s nonlocality must be boundlessly multipartite.
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Introduction.—Nonlocality is one of the most common-
sense challenging, but nevertheless well-established,
properties of quantum physics [1,2]. Two or more parties
measuring a shared entangled quantum state can obtain
correlated outputs that resist explanation in terms of any
local hidden variable model. Understanding of the concept
of nonlocality and of its manifestations has captivated the
attention of hundreds of researchers spanning decades;
see Ref. [3] and references therein. Seminal milestones
include the development of tasks inaccessible with only
classical resources such as the Clauser-Horne-Shimony-
Holt (CHSH) game [4], celebrated experimental demon-
strations [5–11], and the device-independent certification
of experimental apparatuses taken as black boxes [12–16].
The bipartite scenario is arguably the most studied.

However, scenarios with more that two parties exhibit
certain valuable features that are qualitatively distinct from
those of the bipartite scenario. For instance, tripartite
quantum scenarios can demonstrate a stronger version of
Bell’s theorem [17]. More generally, the nonlocality of
multipartite chains of bipartite Bell inequalities decays to
zero as the number of party increases (the gap between the
local and no-signalling bounds collapses), whereas genu-
inely multipartite Bell inequalities allow for nondecaying
witnesses of nonlocality [18–20].
Any bipartite scenario can be artificially lifted to a

tripartite scenario by adding an extra spectating party
[21]. To exclude such uninteresting cases, it is critical to
find an appropriate criterion for whether a setup in a
tripartite scenario is genuine, i.e., exploits possibilities not
present in scenarios involving only two parties. One avenue
to highlight tripartiteness is to focus on entanglement—
the property of quantum states that enables nonlocal

correlations. This is the proposal of Ref. [22], which relates
nonlocality to the notion of tripartite entanglement forma-
lized in Ref. [23]. Such genuinely tripartite entanglement
resists any explanation in terms of local operations applied
to networks of bipartite quantum states.
This Letter proposes instead a theory-agnostic avenue.

We consider any causal description of nature—including
classical and quantum physics, and beyond—and ask the
following fundamental question: Could our physical world
be composed of merely bipartite-nonlocal causal constitu-
ents? That is, does there exist any description of quantum
theory’s operational predictions, perhaps very exotic, built
upon bipartite nonclassical common causes? It is already
well known that bipartite resources are not enough to
reproduce all tripartite phenomena. For instance, perfect
correlations between three parties cannot be obtained from
bipartite resources, even in a theory-agnostic analysis [24].
However, that result is predicated on the absence of shared
randomness, which is arguably not realistic. Shared
classical randomness can be obtained by preagreement
on a common classical phenomenon to observe or with
preestablished shared randomness stored in local memo-
ries. It is also known that boxworld [25], an alternative
theory for correlations based on no-signalling boxes [26],
cannot reproduce all quantum correlations even when
allowing for shared randomness [27,28]. This result is
restricted to a precise alternative to classical and quantum
mechanics and may not encompass all possible causal
theories of correlations [29,30].
Accordingly, in this Letter we focus on the (non)

simulability of certain tripartite correlations in setups
allowing for the local composition of any bipartite resour-
ces with global access to common shared randomness. We

PHYSICAL REVIEW LETTERS 127, 200401 (2021)

0031-9007=21=127(20)=200401(6) 200401-1 © 2021 American Physical Society

https://orcid.org/0000-0002-7355-4632
https://orcid.org/0000-0002-6960-3796
https://orcid.org/0000-0002-4358-2384
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.200401&domain=pdf&date_stamp=2021-11-10
https://doi.org/10.1103/PhysRevLett.127.200401
https://doi.org/10.1103/PhysRevLett.127.200401
https://doi.org/10.1103/PhysRevLett.127.200401
https://doi.org/10.1103/PhysRevLett.127.200401


adopt a theory-agnostic perspective that applies to any
causal theory [29,30] compatible with device replication
[31]—however exotic it might be. This includes the
classical theory and quantum theory as specific causal
theories, but also, more generally, any hypothetical gener-
alized probabilistic theory (GPT) such as boxword [25].
Our approach is closely related to the concept of network
nonlocality, which has been extensively studied in the past
decade [32–36].
It is natural to name “genuinely tripartite nonlocal” those

correlations that resist explanation in terms of arising from
bipartite resources and shared randomness. That denota-
tion, however, conflicts with a historical term of art due to
Svetlichny [37]. We will explain why Svetlichny’s defi-
nition is not suitable for causal analysis, leading us to
propose an alternative definition (see Definition 1), which
constitutes the main conceptual result of this Letter.
Subsequently, we prove that jGHZi ≔ ðj000i þ j111iÞ=
ffiffiffi

2
p

is a resource that can manifest correlations that are
genuinely tripartite nonlocal according to our novel defi-
nition. This is the subject of Proposition 2, the main
technical result of this Letter. The formal characterization
of such correlations, along with our proof of the quantum
realizability of such correlations, together constitute a
profound implication: The operational predictions of
the quantum theory preclude—in the strongest possible
sense—any future description of nature built upon bipartite
common causes, regardless of how exotic or nonclassical
they could be.
We conclude this Letter by contrasting our no-go

theorem with previous works aiming to exclude physical
theories limited to two-way nonclassical common causes.
We also recognize the desideratum of certifying nature’s
genuine multipartiteness without presupposing the opera-
tional validity of quantum theory and accordingly discuss
considerations for the experimental verification of our
results.
Although this Letter focuses mainly on the tripartite case

for pedagogical simplicity, we note that all of our intro-
duced concepts and most of our results are valid in the
generalized multipartite case, beyond three parties. We
develop the N-partite case in an extended version of this
work in a companion article [31], which includes extending
the result regarding the jGHZi state to any number of
parties N (see Proposition 4), as well as a result regarding
the resourcefulness of the jWi ≔ ðj001i þ j010i þ j100iÞ=
ffiffiffi

3
p

state (see Proposition 3). These generalizations of our
main results to any number of parties imply that, for any
fixed k, any theory based on subjecting k-way multipartite
resources to local operations cannot reproduce the opera-
tional predictions of quantum theory for N > k spacelike-
separated parties.
A causally meaningful notion of genuine tripartite

nonlocality.—We seek to distinguish those correlations
that admit causal explanation in terms of bipartite

nonclassical sources from correlations that resist any such
causal explanation. Furthermore, in order to claim that
nature’s nonlocality is necessarily tripartite without a priori
assuming the correctness of quantum causal explanations,
we must be careful to apply the label “genuinely tripartite”
only to those correlations that resist bipartite causal
explanations in any physical theory.
One might ask if Svetlichny’s historically accepted

definition of genuine tripartite nonlocality [37] is suitable
for capturing such causal distinction. But no, it is easily
hacked: the correlations obtained from CHSH violations in
parallel between Alice and Bob as well as between Bob and
Charlie fulfill Svetlichny’s criterion for genuine tripartite
nonlocality [38]. Such correlations, however, are facially
achievable in quantum theory restricted to bipartite states.
What Svetlichny’s definition is suitable for is as device-
independent witness of genuine tripartite entanglement.
Note that the traditional definition of genuine tripartite
entanglement due to Seevinck and Uffink [39] is suscep-
tible to precisely the same sort of hacking: A 4-qubit state
composed of a singlet shared between Alice and Bob, as
well as a singlet shared between Bob and Charlie satisfies
Seevinck’s criterion for genuine tripartite entanglement,
despite factorizing into bipartite constituents.
The reasons why the historical definitions of tripartite-

ness for both nonlocality and entanglement are ill-suited for
causal analysis is because they were motivated by quanti-
fying resourcefulness relative to local operations and
classical communication (LOCC). When analyzing Bell-
inequality violations, however, we presume that the parties
involved may be spacelike separated, which enforces the
no-signalling condition. When classical communication is
forbidden, the only form of processing of nonclassical
resources that remains is via local operations and shared
randomness (LOSR) [22,40,41].
Therefore, it is critical to employ the LOSR resource-

theoretic framework instead of LOCCwhen quantifying the
nonclassicality of a common cause in a Bell experiment.
Ironically, Svetlichny’s [37] definition was specifically
tailored to the task of witnessing LOCC tripartite entangle-
ment, which is irreconcilably in tension with quantifying
nonlocality, as nonlocality is only meaningfully studied in
the LOSR paradigm.
A notion of genuine tripartiteness relative to LOSR

entanglement has been formulated in Refs. [22,23].
Reference [22] seamlessly extends that notion to provide
a definition of genuine tripartite nonlocality based on the
concept of a correlation resisting explanation in terms of
bipartite quantum states acted upon by LOSR. Our main
conceptual contribution here is to provide an LOSR-
motivated definition for genuine tripartite nonlocality that
is theory agnostic, in that it imagines that LOSR could be
applied to any sort of bipartite nonclassical resource, not
just quantum entanglement.
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We appeal to the GPT formalism to formally define local
operations on any sort of bipartite nonclassical resource. In
brief, we allow for any exotic physical theory that can
extend (or restrict) the bipartite resource of quantum
entanglement (including all nonsignalling nonlocal boxes
such as the Popescu-Rohrlich box [42]) and that can extend
(or restrict) the process of combining subsystems via
entangled joint quantum measurement [34,43]. Quantum
theory itself is merely one of an infinite spectrum of such
hypothetical physical theories [25,26,29,30,44,45].
Definition: Genuine LOSR tripartite nonlocality. A

tripartite nonsignalling correlation P is said to be genuinely
LOSR tripartite nonlocal if and only if it cannot be obtained
by local operations over any two-way GPT resources along
with three-way shared randomness between all parties.
That is, P is said to be genuinely LOSR tripartite nonlocal
when it cannot be realized via the abstract causal process
depicted in Fig. 1.
Equipped with this new definition, let us now provide

examples of quantum tripartite resources that are genuinely
tripartite nonlocal. We also assume that every causal theory
allow for device replication; i.e., one can make independent
and identical copies of resources to draw inferences from
the non-fan-out-inflation technique [46] (see Ref. [31] for
an extended formal treatment of these ideas).
Genuinely tripartite nonlocal correlations exist in

nature.—We now prove that jGHZi ≔ j000i þ j111i= ffiffiffi

2
p

generates quantum correlations that are genuinely LOSR
tripartite nonlocal. As in [27], the basic idea is to split the
problem into two intertwined games, respectively detecting
that some party’s measurement must depend on both (1)
some nonclassical resource, albeit possibly bipartite, and
(2) some tripartite resource, albeit possibly classical.
Performing well at both (1) and (2) would require
dependence on a genuinely LOSR-tripartite-nonclassical
(entangled) resource.

More precisely, we introduce (1) a bipartite-nonlocal
game (conditioned on the third player’s output), which
rewards nonclassical randomness. This first task is the
standard CHSH game between Alice and Bob, with the
particularity that it is scored only when Charlie outputs
C ¼ 1. The function to maximize is (the observables take
value in f−1;þ1g)

IC1¼1
Bell ≔ hA0B0iC1¼1 þ hA0B1iC1¼1

þ hA1B0iC1¼1 − hA1B1iC1¼1: ð1Þ

Then we introduce (2), a tripartite consistency game that
rewards no randomness or tripartite randomness. Here, the
players are asked to output the same result (which can take
either of the two values�1) and are scored according to the
function

Isame ≔ hA0B2i þ hB2C0i: ð2Þ

Because A0 ≔ AX¼0 belongs to both games, on that input
Alice is oblivious as to which of the two games she is
partaking in. This prevents her from playing the two games
separately; rather, her strategy for X ¼ 0must be optimized
in respect to both games simultaneously. The impossibility
of Alice decoupling the two games leads to our central
argument,

ð1Þ þ ð2Þ rewards only genuinely tripartite nonlocality:

More precisely, in the jGHZi case, we combine IC1¼1
Bell

and Isame into an inequality.
Proposition 2: GHZ3. In the absence of any three-way

nonclassical cause, if hC1i ¼ 0,

IC1¼1
Bell þ 4Isame ≤ 10: ð3Þ

Measurements on the jGHZi quantum state can violate the
above by reaching IC1¼1

Bell þ 4Isame ¼ 2
ffiffiffi

2
p þ 8 > 10. The

maximal GPT violation reaches the algebraic maximum
of 12.
For a better presentation, we focus on explaining

why reaching the algebraic maximum of 12 leads to a
contradiction. The quantified proof of inequality (3) is
done in [31], where we also explain how to remove the
hC1i ¼ 0 assumption (this assumption is experimentally
problematic).
Proof of inequality (3), main ideas.—Let us assume by

contradiction the existence of three black-box devices that
satisfy the causal structure of the triangle scenario (Fig. 1),
but that can nevertheless reach the perfect scores IC1¼1

Bell ¼ 4

and Isame ¼ 2.
Inspired by inflation-technique ideas, we now imagine

an inflated scenario where the devices and resources are
duplicated and rearranged; see Fig. 2. Note that the same

FIG. 1. A tripartite distribution is genuinely tripartite nonlocal
according to our definition if it cannot be realized by the above
scenario, where the output of each player is determined by local
operations (such as joint measurements) on (1) their input, (2) the
three-way randomness, and (3) two-way GPT resources.
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instance of the shared randomness λ can be infinitely
copied and hence be distributed to all parties, but that
the (two-way) GPT resources cannot; it is possible, how-
ever, to have multiple independent instances of each of
those resources by device replication. In our scenario, some
of the two-way resources are input only to a single player;
their second halves can be considered never measured.
First, on the left-hand side of the figure, the devices take

the Bell test and inherit exactly the behavior of the original
devices (if we ignore the right-hand side of the inflated
scenario, the left-hand side is precisely the original
scenario).
An important property of Bell inequalities is that any

violation implies true randomness [15,47]. In our case,
A1B1 reaches the maximal algebraic violation of CHSH,
which implies that A1 (and also B1) is totally unpredictable.
Hence, in particular,

A1
X¼0C

2
X¼0 are perfectly uncorrelated: ð4Þ

Second, on the right-hand side, the devices perform the
same test. As we do not know the inner workings of the
black boxes, we cannot describe their whole tripartite joint
behavior. However, note that A2B2 and B2C2 inherit the
joint statistics of their respective original counterparts,
because they see the same environment. This means that
they achieve perfect correlations at the same test:
A2
X¼0 ¼ B2

X¼0 ¼ C2
X¼0. Finally, from the structure of the

graph, A1C2 and A2C2 also see the same environment and
share the same statistics, so

A1
X¼0C

2
X¼0 are perfectly correlated: ð5Þ

The contradiction between (4) and (5) ends our dem-
onstration. In [31] we explain how all the ingredients of this
proof can be made quantitative to obtain the trade-off
described by inequality (3). ▪

Proof of violation.—The quantum violation is achieved
using jGHZi: On inputs corresponding to the same game
(XYZ ¼ 020), all players measure in the rectilinear basis.
On input Z ¼ 1, Charlie measures his state in the
Hadamard basis and obtains marginal hC1i ¼ 0; when
he obtains C1 ¼ 1 (corresponding to a measurement result
jþiC), the state of Alice and Bob is steered toward the
maximally entangled state jϕþiAB and they can play the
Bell game using the standard optimal strategy for CHSH.
Note that the maximal algebraic violation is achieved by

the nonsignalling distribution Ax ≔ ð−1Þr0⊕r1x, By ≔
ð−1Þr0⊕xy, Cz ≔ ð−1Þrz , where r0 and r1 are uniformly
random bits, and ⊕ denotes addition modulo 2. ▪
Generalization.—In [31], we show how these ideas

can be used to prove a similar result for the jWi ≔
j001i þ j010i þ j100i= ffiffiffi

3
p

state.
Proposition 3. Appropriate measurements on the jWi

quantum state lead to genuinely LOSR-tripartite-nonlocal
correlations.
We also explain how to generalize our work to scenarios

with arbitrary number of parties, in which jGHZi straight-
forwardly generalizes to anN-partite state jGHZNi. Indeed,
our Definition 1 can be generalized to the multipartite case
[31], introducing the concept of genuine LOSR multipartite
nonlocality for which we have the following Proposition:
Proposition 4:GHZN. For any N, genuinely LOSR N-

multipartite nonlocal correlations can be obtained through
appropriate measurements on the quantum state jGHZNi.

FIG. 2. The inflation technique consists of duplicating and rearranging players, sources, and input distributions. Here we inflate the
(nongenuinely tripartite-nonlocal) triangle scenario of Fig. 1 as to have the players play two parallel games (Bell and same). It leads to a
contradiction with the statistics of measurements on jGHZi, and therefore to the conclusion that the jGHZi quantum state is a genuinely
tripartite-nonlocal resource. The duplicated players constitute indistinguishable copies of the same abstract process, hence Alice, on
input X ¼ 0, could be playing either game (A1 and A2 must have the same behavior). The only condition on the random inputs is that
they be independent from all of the sources. The figure represents a cut of a larger inflation of order 3, consisting of a triangle and a
hexagon.
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Discussion.—We have proven that the correlations of
jGHZi can only be obtained using genuinely LOSR-
tripartite-nonlocal resources. Our work implies, under
the (reasonable) hypothesis that quantum mechanics’
predictions for local measurements over jGHZi are exact,
that nature cannot be merely bipartite. In [31], our
generalization implies that it cannot even be N partite
for any fixed N.
In our Introduction, we intentionally kept the concept

of combining any exotic GPT bipartite resources, together
with tripartite shared randomness, vague. Let us now
clarify it, based on the non-fan-out-inflation technique
([46], Sec. 5.4), which is used in our proof (see also other
related frameworks [24,29,30,48–51]). It relies on two
postulates. First, we admit the possibility of device
replication: Any device distributing local resources, or
locally operating resources, can be duplicated in inde-
pendent copies, and one can reorder these replicated
devices to form a new setup. Second, we admit causality.
It implies that any two identical subsets of the initial or
new setups must have the same behavior (more than a
consequence of causality, this can be seen as an opera-
tional definition of what is causality). Moreover, for any
fixed value of the shared randomness, any marginal
correlation of two disjoint subsets of a setup must
factorize. With inflation, these two postulates provide
the definition of theory-agnostic correlations in networks,
which are all correlations P that do not lead, in any
inflated scenario, to any contradiction. See companion
article in Ref. [31] for the formalized definition.
Let us conclude this Letter with experimental consid-

erations. In [31], we relax our experimentally unrealistic
constraint hC1i ¼ 0 for inequality (4) to a generalized
inequality valid for all C1. Moreover, remark that for a
mixture of the jGHZ3i state with white noise, of fidelity f,
our inequality is violated for f ≳ 93%. In [31], we propose
an algorithm based on inflation able to witnesses infea-
sibility down to f ≳ 85%. This shows that an experimental
proof that nature is not merely bipartite is accessible to
current technologies [52]. The experimental feasibility for
larger N values is an open question [53,54].
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technologies (FRQNT), and Perimeter Institute for
Theoretical Physics. Research at Perimeter Institute is
supported in part by the Government of Canada through
the Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario
through the Ministry of Colleges and Universities.
M.-O. R. is supported by the Swiss National Fund Early

Mobility Grant No. P2GEP2_191444 and acknowledges
the Government of Spain (FIS2020-TRANQI and Severo
Ochoa CEX2019-000910-S), Fundació Cellex, Fundació
Mir-Puig, Generalitat de Catalunya (CERCA, AGAUR
SGR 1381), and the ERC AdG CERQUTE.

*xavier.coiteux.roy@usi.ch
†ewolfe@perimeterinstitute.ca
‡Marc-Olivier.Renou@icfo.eu

[1] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered
complete? Phys. Rev. 47, 777 (1935).

[2] J. S. Bell, On the Einstein-Podolsky-Rosen paradox,
Physics 1, 195 (1964).

[3] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[4] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable
Theories, Phys. Rev. Lett. 23, 880 (1969).

[5] S. J. Freedman and J. F. Clauser, Experimental Test of Local
Hidden-Variable Theories, Phys. Rev. Lett. 28, 938 (1972).

[6] A. Aspect, P. Grangier, and G. Roger, Experimental Tests of
Realistic Local Theories via Bell’s Theorem, Phys. Rev.
Lett. 47, 460 (1981).

[7] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Violation of
Bell Inequalities by Photons More than 10 km Apart, Phys.
Rev. Lett. 81, 3563 (1998).

[8] B. Hensen et al., Loophole-free Bell inequality violation
using electron spins separated by 1.3 kilometres, Nature
(London) 526, 682 (2015).

[9] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P.
Bierhorst, M. A. Wayne et al., Strong Loophole-Free Test
of Local Realism, Phys. Rev. Lett. 115, 250402 (2015).

[10] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J.
Handsteiner, A. Hochrainer et al., Significant-Loophole-
Free Test of Bell’s Theorem with Entangled Photons, Phys.
Rev. Lett. 115, 250401 (2015).

[11] W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N.
Ortegel, M. Rau, and H. Weinfurter, Event-Ready Bell Test
Using Entangled Atoms Simultaneously Closing Detection
andLocalityLoopholes, Phys.Rev.Lett.119, 010402 (2017).

[12] D. Mayers and A. Yao, Quantum cryptography with
imperfect apparatus, in Proceedings of the 39th Symposium
on Foundations of Computer Science (1998), pp. 503–509,
Cat. No. 98CB36280, https://arxiv.org/abs/quant-ph/
9809039.

[13] A. Acín, N. Gisin, and L. Masanes, From Bell’s Theorem to
Secure Quantum Key Distribution, Phys. Rev. Lett. 97,
120405 (2006).

[14] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio,
and V. Scarani, Device-Independent Security of Quantum
Cryptography against Collective Attacks, Phys. Rev. Lett.
98, 230501 (2007).

[15] S. Pironio et al., Random numbers certified by Bell’s
theorem, Nature (London) 464, 1021 (2010).

[16] T. V. Rotem Arnon-Friedman, R. Renner, and T. Vidick,
Simple and tight device-independent security proofs, SIAM
J. Comput. 48, 181 (2019).

PHYSICAL REVIEW LETTERS 127, 200401 (2021)

200401-5

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevLett.81.3563
https://doi.org/10.1103/PhysRevLett.81.3563
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/PhysRevLett.115.250402
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.119.010402
https://arxiv.org/abs/quant-ph/9809039
https://arxiv.org/abs/quant-ph/9809039
https://arxiv.org/abs/quant-ph/9809039
https://doi.org/10.1103/PhysRevLett.97.120405
https://doi.org/10.1103/PhysRevLett.97.120405
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1038/nature09008
https://doi.org/10.1137/18M1174726
https://doi.org/10.1137/18M1174726


[17] D. M. Greenberger, M. A. Horne, A. Shimony, and A.
Zeilinger, Bell’s theorem without inequalities, Am. J. Phys.
58, 1131 (1990).

[18] R. F. Werner and M.M. Wolf, All-multipartite Bell-
correlation inequalities for two dichotomic observables
per site, Phys. Rev. A 64, 032112 (2001).

[19] K. Chen, S. Albeverio, and S.-M. Fei, Two-setting Bell
inequalities for many qubits, Phys. Rev. A 74, 050101(R)
(2006).

[20] R. Chaves, D. Cavalcanti, L. Aolita, and A. Acín, Multi-
partite quantum nonlocality under local decoherence, Phys.
Rev. A 86, 012108 (2012).

[21] S. Pironio, Lifting Bell inequalities, J. Math. Phys. (N.Y.)
46, 062112 (2005).

[22] D. Schmid, T. C. Fraser, R. Kunjwal, A. B. Sainz, E. Wolfe,
and R.W. Spekkens, Understanding the interplay of en-
tanglement and nonlocality: Motivating and developing a
new branch of entanglement theory, arXiv:2004.09194.

[23] M. Navascués, E. Wolfe, D. Rosset, and A. Pozas-Kerstjens,
Genuine Network Multipartite Entanglement, Phys. Rev.
Lett. 125, 240505 (2020).

[24] J. Henson, R. Lal, and M. F. Pusey, Theory-independent
limits on correlations from generalized Bayesian networks,
New J. Phys. 16, 113043 (2014).

[25] P. Janotta, Generalizations of boxworld, Electron. Proc.
Theor. Comput. Sci. 95, 183 (2012).

[26] J. Barrett, Information processing in generalized probabi-
listic theories, Phys. Rev. A 75, 032304 (2007).

[27] R. Chao and B.W. Reichardt, Test to separate quantum
theory from non-signaling theories, arXiv:1706.02008.

[28] P. Bierhorst, Ruling out bipartite nonsignaling nonlocal
models for tripartite correlations, Phys. Rev. A 104, 012210
(2021).

[29] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Informa-
tional derivation of quantum theory, Phys. Rev. A 84,
012311 (2011).

[30] G. Chiribella, Dilation of states and processes in opera-
tional-probabilistic theories, Electron. Proc. Theor. Comput.
Sci. 172, 1 (2014).

[31] X. Coiteux-Roy, E. Wolfe, and M.-O. Renou, companion
paper, Any physical theory of nature must be boundlessly
multipartite nonlocal, Phys. Rev. A 104, 052207 (2021).

[32] A. Tavakoli, A. Pozas-Kerstjens, M.-X. Luo, and M.-O.
Renou, Bell nonlocality in networks, arXiv:2104.10700.

[33] T. Fritz, Beyond Bell’s theorem: Correlation scenarios, New
J. Phys. 14, 103001 (2012).

[34] C. Branciard, N. Gisin, and S. Pironio, Characterizing the
Nonlocal Correlations Created via Entanglement Swapping,
Phys. Rev. Lett. 104, 170401 (2010).

[35] M.-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin,
and S. Beigi, Genuine Quantum Nonlocality in the Triangle
Network, Phys. Rev. Lett. 123, 140401 (2019).

[36] E. Wolfe, A. Pozas-Kerstjens, M. Grinberg, D. Rosset, A.
Acín, and M. Navascués, Quantum Inflation: A General
Approach to Quantum Causal Compatibility, Phys. Rev. X
11, 021043 (2021).

[37] G. Svetlichny, Distinguishing three-body from two-body
nonseparability by a Bell-type inequality, Phys. Rev. D 35,
3066 (1987).

[38] P. Contreras-Tejada, C. Palazuelos, and J. I. de Vicente,
Genuine Multipartite Nonlocality Is Intrinsic to Quantum
Networks, Phys. Rev. Lett. 126, 040501 (2021).

[39] M. Seevinck and J. Uffink, Sufficient conditions for three-
particle entanglement and their tests in recent experiments,
Phys. Rev. A 65, 012107 (2001).

[40] E. Wolfe, D. Schmid, A. B. Sainz, R. Kunjwal, and R.W.
Spekkens, Quantifying Bell: The resource theory of non-
classicality of common-cause boxes, Quantum 4, 280
(2020).

[41] K. Sengupta, R. Zibakhsh, E. Chitambar, and G. Gour,
Quantum Bell nonlocality is entanglement, arXiv:
2012.06918.

[42] S. Popescu and D. Rohrlich, Quantum nonlocality as an
axiom, Found. Phys. 24, 379 (1994).

[43] C. Branciard, D. Rosset, N. Gisin, and S. Pironio, Bilocal
versus nonbilocal correlations in entanglement-swapping
experiments, Phys. Rev. A 85, 032119 (2012).

[44] P. Skrzypczyk and N. Brunner, Couplers for non-locality
swapping, New J. Phys. 11, 073014 (2009).

[45] A. J. Short and J. Barrett, Strong nonlocality: A trade-off
between states and measurements, New J. Phys. 12, 033034
(2010).

[46] E. Wolfe, R. W. Spekkens, and T. Fritz, The inflation
technique for causal inference with latent variables,
J. Causal Infer. 7, 0020 (2019).

[47] C. Bamps, S. Massar, and S. Pironio, Device-independent
randomness generation with sublinear shared quantum
resources, Quantum 2, 86 (2018).

[48] N. Gisin, J.-D. Bancal, Y. Cai, P. Remy, A. Tavakoli, E. Z.
Cruzeiro, S. Popescu, and N. Brunner, Constraints on
nonlocality in networks from no-signaling and independ-
ence, Nat. Commun. 11, 2378 (2020).

[49] J.-D. Bancal and N. Gisin, Non-local boxes for networks,
arXiv:2102.03597.

[50] S. Beigi and M.-O. Renou, Covariance decomposition
as a universal limit on correlations in networks, arXiv:
2103.14840.

[51] M.-O. Renou and S. Pironio (to be published).
[52] D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili,

V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T.
Jennewein, Direct generation of three-photon polarization
entanglement, Nat. Photonics 8, 801 (2014).

[53] C. Zhang, Y.-F. Huang, Z. Wang, B.-H. Liu, C.-F. Li, and
G.-C. Guo, Experimental Greenberger-Horne-Zeilinger-
Type Six-Photon Quantum Nonlocality, Phys. Rev. Lett.
115, 260402 (2015).

[54] C. Zhang, T. R. Bromley, Y.-F. Huang, H. Cao, W.-M. Lv,
B.-H. Liu, C.-F. Li, G.-C. Guo, M. Cianciaruso, and G.
Adesso, Demonstrating Quantum Coherence and Metrology
that is Resilient to Transversal Noise, Phys. Rev. Lett. 123,
180504 (2019).

PHYSICAL REVIEW LETTERS 127, 200401 (2021)

200401-6

https://doi.org/10.1119/1.16243
https://doi.org/10.1119/1.16243
https://doi.org/10.1103/PhysRevA.64.032112
https://doi.org/10.1103/PhysRevA.74.050101
https://doi.org/10.1103/PhysRevA.74.050101
https://doi.org/10.1103/PhysRevA.86.012108
https://doi.org/10.1103/PhysRevA.86.012108
https://doi.org/10.1063/1.1928727
https://doi.org/10.1063/1.1928727
https://arXiv.org/abs/2004.09194
https://doi.org/10.1103/PhysRevLett.125.240505
https://doi.org/10.1103/PhysRevLett.125.240505
https://doi.org/10.1088/1367-2630/16/11/113043
https://doi.org/10.4204/EPTCS.95.13
https://doi.org/10.4204/EPTCS.95.13
https://doi.org/10.1103/PhysRevA.75.032304
https://arXiv.org/abs/1706.02008
https://doi.org/10.1103/PhysRevA.104.012210
https://doi.org/10.1103/PhysRevA.104.012210
https://doi.org/10.1103/PhysRevA.84.012311
https://doi.org/10.1103/PhysRevA.84.012311
https://doi.org/10.4204/EPTCS.172.1
https://doi.org/10.4204/EPTCS.172.1
https://doi.org/10.1103/PhysRevA.104.052207
https://arXiv.org/abs/2104.10700
https://doi.org/10.1088/1367-2630/14/10/103001
https://doi.org/10.1088/1367-2630/14/10/103001
https://doi.org/10.1103/PhysRevLett.104.170401
https://doi.org/10.1103/PhysRevLett.123.140401
https://doi.org/10.1103/PhysRevX.11.021043
https://doi.org/10.1103/PhysRevX.11.021043
https://doi.org/10.1103/PhysRevD.35.3066
https://doi.org/10.1103/PhysRevD.35.3066
https://doi.org/10.1103/PhysRevLett.126.040501
https://doi.org/10.1103/PhysRevA.65.012107
https://doi.org/10.22331/q-2020-06-08-280
https://doi.org/10.22331/q-2020-06-08-280
https://arXiv.org/abs/2012.06918
https://arXiv.org/abs/2012.06918
https://doi.org/10.1007/BF02058098
https://doi.org/10.1103/PhysRevA.85.032119
https://doi.org/10.1088/1367-2630/11/7/073014
https://doi.org/10.1088/1367-2630/12/3/033034
https://doi.org/10.1088/1367-2630/12/3/033034
https://doi.org/10.1515/jci-2017-0020
https://doi.org/10.22331/q-2018-08-22-86
https://doi.org/10.1038/s41467-020-16137-4
https://arXiv.org/abs/2102.03597
https://arXiv.org/abs/2103.14840
https://arXiv.org/abs/2103.14840
https://doi.org/10.1038/nphoton.2014.218
https://doi.org/10.1103/PhysRevLett.115.260402
https://doi.org/10.1103/PhysRevLett.115.260402
https://doi.org/10.1103/PhysRevLett.123.180504
https://doi.org/10.1103/PhysRevLett.123.180504

