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Plasmons are usually described in terms of macroscopic quantities such as electric fields and currents.
However, as fundamental excitations of metals, they are also quantum objects with internal structure. We
demonstrate that this can induce an intrinsic dipole moment which is tied to the quantum geometry of the
Hilbert space of plasmon states. This quantum geometric dipole offers a unique handle for manipulation of
plasmon dynamics via density modulations and electric fields. As a concrete example, we demonstrate that
scattering of plasmons with a nonvanishing quantum geometric dipole from impurities is nonreciprocal,
skewing in different directions in a valley-dependent fashion. This internal structure can be used to control
plasmon trajectories in two dimensional materials.
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Introduction.—Plasmons are fundamental excitations of
metals in which interactions lock electrons into coherent
oscillatory motion. In recent years, controlling their dynam-
ics has become increasingly important as applications in
information processing and communication have been
realized [1–5]. Moreover, advances in two-dimensional
material fabrication have allowed great strides in realizing
new platforms for plasmons [6–9], where strong coupling
between electromagnetic waves and electrons [10–12], low
loss energy propagation [13–15], and fundamentally new
types of plasmon dispersions [16,17] may all be realized.
Because of their collective nature plasmons are usually

described in terms of macroscopic quantities, typically
electric fields and currents [2,4,5,12,18]. As basic excita-
tions of metals, however, they are also quantum bosonic
quasiparticles which may carry internal, microscopic struc-
ture. Such structure offers new avenues for control and
interrogation of plasmons, allowing windows on their
fundamental properties which are, otherwise, difficult to
access. In this Letter, we demonstrate that under appro-
priate circumstances such structure must be present, due to
the quantum geometry of the plasmon Hilbert space. This
takes the form of a dipole moment directly tied to the
plasmon momentum, which can be properly understood as
a quantum geometric dipole (QGD) [19]. Its existence
suggests new ways of manipulating plasmons: for example,
a density step in a two-dimensional metal should bind
plasmons, moving them in opposite directions depending
on the valley in which they reside, offering a way to
incorporate plasmons into valleytronic systems.
An important consequence of the plasmon QGD, which

we analyze in detail in what follows, is that it leads to

nonreciprocal scattering [20–22] of plasmons from impu-
rities. Indeed, within a microscopic RPA treatment of
plasmon wave functions, we show that asymmetry in
scattering around the forward direction is directly propor-
tional to the QGD itself. We also develop an effective
macroscopic description of the scattering, where nonreci-
procity is evident in situations for which plasmons should
present nonvanishing QGD’s. While macroscopic descrip-
tions also predict nonreciprocal behavior in boundary
reflection [23,24], observation of plasmon skew scattering
from, for example, Coulomb impurities affords direct
confirmation that the plasmons carry a microscopic internal
dipole moment. Thus, to our knowledge, observation
of this physics—as should be possible with near-field
microscopy—would offer the first demonstration that the
internal quantum structure of plasmons can play a direct
and important role in their dynamics.
Hamiltonian and plasmon wave function.—We begin by

adopting a simple model for electrons described by a
gapped two-dimensional Dirac Hamiltonian

H0 ¼ ℏvq · σ þ δσz; ð1Þ

where v is the Dirac velocity, 2δ is the gap of the system,
q ¼ ðqx; qyÞ is the two-dimensional wave vector, and σ ¼
ðσx; σy; σzÞ are Pauli matrices. This Hamiltonian describes
the long wavelength physics of a single valley in different
materials including gapped graphene [29], doped transition
metal dichalcogenides (TMDs) [30], and topological insu-
lator surface states with a gap opening due to some
symmetry-breaking perturbation [31–33]. (We return to
possible impacts of multiple valleys below.) For graphene,
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the Pauli matrices act on a sublattice index, while in the
latter two cases, they act on orbital indices. For concrete-
ness, we consider plasmons in n-doped systems, and,
therefore, only include the conduction band of Eq. (1)
with energies ϵq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ℏ2v2q2

p
and wave functions

ΨqðrÞ ¼ χ⃗qðeiq·r=
ffiffiffi
S

p Þ, where S is the system area and

χ⃗q ¼
 
ce−iϕq sin θðqÞ

2

cos θðqÞ
2

!
: ð2Þ

Here, θðqÞ ¼ tan−1ðℏvq=δÞ and ϕq ¼ tan−1ðqy=qxÞ. The
conduction band has a Berry’s curvature [34]
bq ¼ f½ℏ2v2δ�=½2ðδ2 þ ℏ2v2q2Þ3=2�g, which may be taken
as bq ≈ ðℏ2v2=2δ2Þ for small q. For TMDs, band gaps are of
order 1–2 eV, while plasmon energies are of order 10−4 eV.
For the concrete examples discussed below, we will assume
δ to be a large energy scale. In particular, the dispersion
may then be approximated by ϵq ≈ δþ ðℏ2q2=2m�Þ
with m� ¼ δ=v2.
In a quantum description, plasmons are bosonic quasi-

particles composed of electron-hole pairs with total
momentum K. Within the RPA, they can be generated
by a quasiparticle creation operator of the form [35]

Q†
K ¼

X
q

aqðKÞc†qþKcq; ð3Þ

where cq annihilates an electron with momentum q, and the
coefficients aqðKÞ are complex parameters that need to be
determined. The operator Q†

K acts on the Fermi sea with
Fermi energy EF in the conduction band to generate the
plasmon state. Working within RPA (for details see
Supplemental Material (SM) [25–28], we obtain explicit
plasmon wave functions and energies in the form
ΦKðr;RÞ ¼ ðeiKR=SÞPq fqð1 − fqþKÞUðK;qÞeiq·r with

UðK;qÞ ¼ aqðKÞχ⃗qþK ⊗ χ⃗�q

aqðKÞ ¼ SðqþK;qÞNðKÞ
ℏωK þ ϵq − ϵqþK

; ð4Þ

where r ¼ r2 − r1, R ¼ ½ðr1 þ r2Þ=2� are relative and
center of mass positions for the electron and hole, fq is
the occupation number of the single particle state of
momentum q, and Sðq;q0Þ ¼ χ⃗�q · χ⃗q0 . NðKÞ is obtained
by normalizing the plasmon wave function. The plasmon
frequency in the long wavelength limit has the form ωK ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðe2=ε0Þðn0=m�ÞK

p
where n0 is the density of electrons

in the system.
Plasmon quantum geometrical dipole.—As in the case of

single particle states, to examine the quantum geometry
associated with plasmon states, first, one must remove
plane wave factors associated with the total momentum K.

The two-body nature of ΦK offers a variety of ways to do
this, opening paths to characterize the quantum geometry of
its Hilbert space that are inherently multibody [19]. We
define Berry’s connections specific to the holes (j ¼ 1) and

electrons (j ¼ 2), writingAðjÞðKÞ ¼ ihuK;jj∇⃗KjuK;ji with
uK;j ¼ e−iK·rjΦKðr;RÞ. These quantities can be directly
related to the dipole moment of a plasmon [19]

d ¼ ehΦKjr1 − r2jΦKi
¼ e½Að1ÞðKÞ −Að2ÞðKÞ�≡ eDðKÞ; ð5Þ

where DðKÞ is the quantity we identify as the quantum
geometric dipole. Our formulation explicitly shows that
DðKÞ is determined by the geometry of the Hilbert space
of plasmon states [36], but the connection of the QGD to
the electric dipole moment is also evident. Using the
expressions above for wave functions of a Dirac fermion,
one finds [25], for long wavelengths,

DðKÞ ¼ 2α

ð4αk2F þ 1Þ3=2 ðK × ẑÞ; ð6Þ

where α ¼ ℏ2v2=4δ2. Figure 1 illustrates the real space
form for a plasmon wave function for nonvanishing α and
for α ¼ 0. Note that, in the limit of high density, for which
the plasmon frequency is high and one does not expect to
see quantum effects, D vanishes [25].
Skew scattering due to QGD.—The intrinsic electric

dipole moment of such plasmons suggests they may
undergo skew scattering when impacting upon a charged
impurity. To see this, consider an impurity potential
of the form VimpðrÞ ¼

P
k e

ik·rVI
k. Using the fact that the

separation between the electron and hole in the plasmon is
small [37], we approximate the potential acting on an
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FIG. 1. Square of the plasmon wave function, jΦKj2, for
αKkF ≡ ðℏ2v2=4δ2ÞKkF ¼ 0 (a) and ¼ 0.1 (b), vs electron
hole relative position. x⊥ and xk are the spatial coordinates
perpendicular and parallel to the plasmon wave vector, respec-
tively. The finite K breaks rotational symmetry and the wave
function has an ellipsoidal shape which is more extended in the
direction parallel to K. For finite α (b), the wave function is not
centered at x⊥ ¼ 0, and a quantum geometrical dipole in this
direction appears. This is evident in (c), the difference between
the square of the wave functions (a) and (b).
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electron-hole pair byV impðr1Þ − V impðr2Þ ≈ VI
impðr1 − r2Þ≡

iðr1 − r2Þ ·
P

k kV
I
ke

ik·R. Then, one may show that the
transition amplitude between two plasmon states ofmomenta
K and K0 of the same frequency is, to lowest order in
ðK −K0Þ,

hΦK0 jVI
impjΦKi ¼ iðVI

jK0−KjÞDðKÞ · ðK0 −KÞ: ð7Þ

Equation (7) suggests that when a plasmon carries a non-
vanishing QGD, one necessarily finds nonreciprocal asym-
metric skew scattering from an impurity, proportional to
K ×K0. Observation of plasmon skew scattering demon-
strates that they carry this quantum geometry.
While the above analysis captures the underlying physics

of plasmon skew scattering, it fails to capture any non-
vanishing forward scattering component that remains when
K ↔ K0, yielding zero in this limit [38]. The reason for this
is that the effect of the impurity on the ground state density
has not been included. A more complete analysis may be
carried out within RPA in which the impurity potential
is fully included to first order. In this approach, one
computes a correction to the plasmon operator in

Eq. (3), Q†
K0

¼ Qð0Þ†
K0

þPKQð1Þ†
K0

ðKÞ, where Qð1Þ† is

linear in the impurity potential. Viewing Q†
K0

as a bosonic
plasmon creation operator allows us to write an effective

plasmon Hamiltonian H ¼ H0 þ hscat þ h†scat, with H0 ¼P
K0

ℏΩðK0ÞQð0Þ†
K0

Qð0Þ
K0

and hscat ¼
P

K0
ℏωK0

Qð1Þ†
K0

Qð0Þ
K0
,

where ΩðK0Þ includes the linear order correction to the
plasmon energy. Within this approach, the scattering matrix
element from a state K0 into a state K is

MðK;K0Þ ¼ h0jQð0Þ
K hscatQ

ð0Þ†
K0

j0i; ð8Þ

where j0i is the vacuum state for plasmons. The
computation of M is lengthy (see SM [25]); nevertheless,
scattering from a Coulomb impurity may be
succinctly summarized. In general, M naturally divides
into three terms, M ¼ MI þMII þMIII; in the limit
jK −K0j≡ jδKj ≪ K0 ≪ kF, with kF the Fermi wave
vector, to lowest nonvanishing order in δK and to lowest
nontrivial order in ℏvK0=δ, these terms become

MI ¼ −i
V impðδKÞ

S
DðK0Þ · δK; ð9Þ

MII ¼ −
V impðKÞK
2πSkF

�
1 −

ℏ2v2K2

4δ2

�
; ð10Þ

MIII ¼
�
kFK
2π2

�
1 −

ℏ2v2K2

4δ2

��
VðKÞ
ℏωK

MIðK;K0Þ; ð11Þ

where VðKÞ ¼ 2πe2=ϵ0K and V impðKÞ ¼ ZVðKÞ for an
impurity of charge Ze. The momentum and angular

dependence of these expressions is discussed in the
SM [25].
These equations may be interpreted as follows.MI is the

direct scattering of a plasmon from the Coulomb impurity,
and is equivalent to the Born approximation in Eq. (7). As
presented in Eq. (9), MI is more general than the case of a
Coulomb impurity, applying to other types of impurity
potentials as well. Moreover, it requires neither specific
assumptions about the single-particle electron wave func-
tions, nor an assumption of small particle-hole separation.
The contribution of MII may be understood as scattering
from the density induced in the ground state by the
impurity. Note, this remains nonvanishing in the limit
δK → 0 so that this contribution encodes scattering in
the forward direction. This term, in principle, may also
include a skew scattering component, but is of higher order
in δK than the contributions from MI and MIII . Finally,
MIII encodes the effect of oscillations in the electric
potential induced by the plasmon on its wave function,
which must be included self-consistently in RPA. Note that
this contribution is directly proportional to the QGD; for
D ¼ 0, it makes no contribution. Interestingly, for long
wavelength plasmons (small K) this term dominates over
MI , greatly enhancing the skew scattering for small δK.
While these microscopic descriptions show the crucial

role played by the QGD in plasmonic skew scattering,
relatively simple results are limited to the near-forward
scattering regime. Moreover, obtaining measurable quan-
tities associated with plasmons starting from a microscopic

FIG. 2. Main figure: Proposed geometry to detect skew
scattering due to QGD carried by a plasmon. Light impinging
upon an antenna coupled to a two dimensional material launches
plasmons. A tip placed near an impurity detects the plasmon
scattering amplitude as a function of angle θ. Because the tip
collects information about both the magnitude and phase of the
scattered wave, skew scattering asymmetry will be evident. Left
inset: Magnitude of scattered contribution to electric potential
fðθ;ωÞ [Eq. (17)] normalized to θ ¼ 0, as a function of scattering
angle θ for α ¼ 0.854 Å2. Right inset: Difference in phase angle
for systems with α ¼ 0.854 Å2 and α ¼ 0. Other parameters
used for insets: ω ¼ 0.2 eV, 2δ ¼ 2 eV, EF − δ ¼ 0.04 eV,
qTF ¼ 27.87 Å−1. K is fixed by the plasmon dispersion relation.
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description is rather involved. As we now discuss, these
difficulties can be overcome using a macroscopic analysis
of the system.
Macroscopic plasmon scattering from density

inhomogeneities.—As discussed above, density fluctuations
play an important role in both symmetric and skew scattering
of plasmons. In situations where the density varies slowly in
space, one can formulate a macroscopic description which
captures the full angular dependence of the scattering
amplitude. Suppose the electron density in the two-
dimensional metal has the form nðrÞ ¼ n0 þ δnðrÞ,
where δnðrÞ is the density perturbation induced by a
Coulomb impurity. In this situation, plasmons in the system
may be analyzed macroscopically by focusing on the
dynamics of the electric field in the metal. In particular,
for slowly varying δnðrÞ, the system may be characterized
by a position dependent optical conductivity tensor, σ.
In the local approximation, this depends only on the charge
density at r, and for a two dimensional metal, the diagonal
conductivity takes the form σxx ¼ −iðe=ωm�ÞnðrÞ.
Crucially, the Hall conductivity is nonvanishing because
of the Berry’s curvature of the bands, and from the
Hamiltonian [Eq. (1)], its form is [39]

σxyðrÞ ¼ −σH
δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πℏ2v2nðrÞ=eþ δ2
p ≈ −σH þ eℏ

2δm� nðrÞ;

ð12Þ

where σH ¼ ðe2=4πℏÞ is the quantized value of the Hall
conductivity when the chemical potential is in the gap. The
right hand term of Eq. (12) is valid when the Fermi energy
measured from the conduction band bottom is much smaller
than the gap of the semiconductor.
Now, consider a time dependent plasma oscillation

described by an extra charge density modulation,
δρKeiðK·r−ωtÞ, with an associated electric potential
ϕKeiðK·r−ωtÞ, where ϕK ¼ ð2πe=ϵ0KÞδρK. Using Ohm’s
law and the conductivity tensor, we can relate the potential
ϕK to the current induced in the system

JK ¼ σEK ¼ en0
ωm� KϕK þ e

ωm�
X
K0

K0δnK−K0ϕK0

− iσHðẑ ×KÞϕK −
i
2

eℏ
δm� n0ðẑ ×KÞϕK

−
i
2

eℏ
δm�

X
K0

ðẑ ×K0ÞδnK−K0ϕK0 ; ð13Þ

where EK ¼ iKϕK is Fourier component of the plasmon
electric field. JK can be related to the density δρK using the
continuity equation, and finally, we introduce self-consis-
tency by linking the electric potential and the density of
charge induced by the plasmon through the Poisson
equation, ϕK ¼ ð2πe=ϵ0KÞδρK. Through these steps, we
obtain, for the plasmon potential,

�
1−

ω2
K

ω2

�
ϕK¼VðKÞ

X
K0

ΔðK;K0;ωÞϕK0 ; with

ΔðK;K0;ωÞ¼ 1

m�

�
1

ω2
K ·K0−

i
ω

ℏ
2δ

ẑ ·ðK×K0Þ
�
δnK−K0 :

ð14Þ

Equation (14) describes scattering between plasmons of
momentum K and K0 due to a charge modulation δnK−K0 .
The scattering has two terms, a real symmetric term
proportional to K ·K0 that produces reciprocal scattering,
and an asymmetric imaginary term proportional to K ×K0
which induces skew trajectories for scattered plasmons.
Note that this last term is proportional to the Berry’s
curvature of the one-electron band structure, which enters
through the Hall conductivity σxy. For high frequency
plasmons, where one does not expect quantum structure
to be apparent, skew scattering vanishes [25].
The impurity in this approach is implicitly present

through its impact on the density. The induced density is
approximately given by [40–42]

δnK ¼ χ0V impðKÞ=ϵðKÞ; ð15Þ

where ϵðKÞ ¼ 1þ ðqTF=KÞ and χ0 ¼ −ðm�=2πℏ2Þ are the
static dielectric constant of the uniform electron gas and the
static density-density response function, respectively. Here,
qTF ¼ ðm�e2=ℏ2ϵ0Þ is the Thomas-Fermi (TF) wave vector
of the electron gas. In the case where the charge modulation
is created by a Coulomb impurity of charge Ze, and for
long wavelengths, the density modulation that appears in
Eq. (15) is independent of the wave vector, δnK ¼ Ze.
An alternative derivation of Eqs. (14) and (15) can be

carried out using an RPA dielectric formalism that is
perturbative in the screened impurity potential, for which
one does not find skew scattering when the QGD vanishes
[43–47]. By contrast, we find, in applying this formalism to
systems with nonvanishing QGD, skew scattering is,
indeed, present, with precisely the form found in the
macroscopic analysis above (see SM [25]).
Scattering cross section.—We have shown that an

impurity of charge Ze acts as a scattering center for
plasmons. To obtain its scattering cross section, we rewrite
Eq. (14) in the form of a Lippman-Schwinger equation,
[43,47]

ϕK ¼ ϕ0
K þ ω2VðKÞ

ω2 − ω2
K þ iη

X
K0

ΔðK;K0;ωÞϕK0 ; ð16Þ

where ϕ0
K is the solution of the homogeneous equation

ðω2 − ω2
KÞϕ0

K ¼ 0. Solving Eq. (16) involves boundary
conditions, for which we assume that ϕ0

K corresponds to
an incident plane wave of momentum K and frequency ω.
In the first order Born approximation, one finds
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ϕKðr; θÞ⟶r→∞
eiKr − fðθ;ωÞ e

iKrffiffiffi
r

p ; with

fðθ;ωÞ ¼ eiπ=4K3=2
ffiffiffiffiffiffi
2π

p

EF

e2Z
ϵ0

1

2Kj sin θ
2
j þ qTF

×

�
cos θ − i

ℏω
2δ

sin θ

�
: ð17Þ

Here, fðθ;ωÞ is the scattering amplitude, which depends
both on the plasmon frequency and on the angle, θ, formed
by the incident and the scattered plasmons. This expression
demonstrates that an asymmetry appears in the electric
potential energy fluctuations created by plasmons scatter-
ing from a pointlike Coulomb impurity. That this occurs is
only possible because the underlying probability amplitude
for scattering of a plasmon is itself asymmetric, a signal
that the plasmon carries a nonvanishing QGD. Thus, an
observation of nonreciprocity in the electric field of
scattered plasmons signals the nontrivial quantum geom-
etry of their Hilbert space.
Discussion.—In this work, we demonstrated that plasmon

wave functions may support nontrivial internal structure,
specifically a dipole moment, tied to their quantum geom-
etry. While quantum geometric effects are well known for
single-particle properties of some materials [48–63], their
impact on collective excitations—particularly excitons—
are onlymore recently appreciated [19,31,64–73].Our study
demonstrates for the first time that such quantum effects are
also relevant for plasmons.
The QGD appears for materials where the underlying

band structures carry nontrivial Berry’s curvature. While
this is the case, for example, for ultrathin TMDs, these
semiconductors have degenerate Dirac-like gaps at differ-
ent points of the Brillouin zone, such that, when doped, the
Berry’s curvature effects from different valleys will cancel.
However, in monolayer MoS2, it is possible to imbalance
populations of carriers in these valleys by optical pumping
with circularly polarized light [74,75], providing a route to
lifting precise cancellation of asymmetries by the valleys.
Another possibility involves applying a magnetic field or
doping with magnetic ions [76]. Because of the locking of
spin and valley indices in these materials [30], magneti-
zation in the system induces differing Fermi wave vectors
in the valleys, eliminating precise cancellations in their
plasmon dynamics.
The asymmetric skew scattering of plasmons by charged

impurities we propose in this Letter can be observed
experimentally using different experimental setups. One
possibility is to send a plasmon wave packet from a
scanning near field tip [77,78] or a fixed nanoantenna
[79] toward a set of charged impurities, or a large defect
that creates a cylindrical charge density modulation, and
analyze, as a function of the angle, the electric field of the
reflected plasmons by their coupling to another scanning
near field tip (See Fig. 2.). Note that the ratio of the

symmetric and antisymmetric components of the scattering
cross section for the electric potential [Eq. (17)] is of order
the ratio between the plasmon energy and the gap of the
host semiconductor. In the case of MoS2, the latter is
roughly 1.9 eV [80], while plasmon energies are in the
range of 10–100 meV. Thus, we expect the skew scattering
to be of order 1%–5% of the symmetric one, which should
be measurable.
Nonreciprocal scattering from impurities presents a new

way to guide two-dimensional plasmons, an ability of
great interest for technological applications. More
generally, nonreciprocity in plasmon dynamics is of
considerable fundamental interest, both in homogeneous
systems [23,81–83] and in more structured environments
[17,18,84–86]. Although plasmons are typically described
by macroscopic electric fields and currents, in this work, we
have shown that they can support behaviors rooted in
microscopic wave functions and their quantum geometry.
In the case of plasmon skew scattering, the nonreciprocity
is tied to a measure of this which is specifically two body in
nature, the quantum geometric dipole. Detecting such
scattering would give a first view on the microscopic,
internal structure of these fundamental excitations of
metallic systems.
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